首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
邓立刚  李增梅  赵善仓  苑学霞  郭长英 《安徽农业科学》2012,(19):10127-10128,10189
[目的]采用超高效液相色谱-质谱联用测定烟嘧磺隆在土壤、玉米植株和玉米籽粒中的消解动态和最终残留。[方法]土壤、玉米植株和玉米籽粒样品经0.2 mol/L磷酸钾缓冲液(pH 7.8)-甲醇提取,提取液用磷酸酸化至pH 2.5后经C18固相萃取柱净化,在ESI+MRM模式下进行检测。[结果]当烟嘧磺隆添加浓度水平为0.001~0.200 mg/kg时,其在玉米植株、玉米籽粒和土壤中的平均回收率为88.6%~99.2%,相对标准偏差(RSD)为1.2%~6.9%;在土壤、玉米籽粒中的检出限为0.001 mg/kg,在玉米植株中的检出限为0.002mg/kg。烟嘧磺隆在土壤中的半衰期为8.6~19.6 d,在玉米植株中的半衰期为0.6~5.5 d;按推荐剂量施药,在青玉米期及成熟期玉米籽粒中烟嘧磺隆的最终残留量均低于定量限。[结论]为烟嘧磺隆的田间合理使用提供了借鉴。  相似文献   

2.
为对烯唑醇在小麦生产上应用的安全性进行评价,通过建立烯唑醇在小麦籽粒、植株和土壤中的前处理和检测方法,对其进行定量分析;通过两年三地的残留试验,研究小麦籽粒、植株和土壤中烯唑醇的残留及消解动态,并对小麦中的残留量进行风险评估。结果表明:烯唑醇在小麦籽粒、小麦植株及土壤空白添加平均回收率为75%~98%,相对标准偏差为1.5%~3.5%,其最小检出量为1.0×10-13 g,在小麦籽粒、小麦植株及土壤中的最低检测浓度均为0.05mg·kg-1,该方法重现性好,准确度、精密度高,可满足烯唑醇在小麦上的残留分析要求。2014和2015年,河南、黑龙江和江苏三地烯唑醇在小麦植株和土壤中的消解半衰期分别为2.3~10.0d、13.0~16.0d;不同施药次数、施药量及采样间隔,烯唑醇在小麦籽粒中的最终残留量均小于等于0.18mg·kg-1。普通人群烯唑醇的国家估算每日摄入量是0.203 3 mg,占日允许摄入量的64.55%左右,按本试验方式进行施药,通常不会对一般人群健康产生不可接受的风险。  相似文献   

3.
研究了4%杀螟丹粒剂在水稻植株、稻米、稻壳、稻田水和土壤中的残留及消解动态.采用石油醚提取,液液分配净化,气相色谱(GC-ECD)测定,结果表明:杀螟丹在稻田土壤中的平均添加回收率为93.25%~106.85%,相对标准偏差为5.99%~8.17%;在水样中的平均添加回收率为95.43%~103.68%,相对标准偏差为2.64%~8.48%;在稻杆中的平均添加回收率为90.81%~100.8%,相对标准偏差为3.00%~6.89%;在稻壳中的平均添加回收率96.77%~101.09%,相对标准偏差2.75%~6.32%;在稻米中的平均添加回收率为92.89%~97.71%,相对标准偏差为2.98%~8.09%.杀螟丹的最低检出量为1.0×10~(-11)g,土样、水样中杀螟丹的最低检出浓度分别为0.001 mg/kg和0.000 25 mg/L,在水稻稻杆、稻米和稻壳中的最低榆出浓度均为0.005 mg/kg.湖南长沙和云南昆明两地残留消解动态试验结果表明:杀螟丹在稻田土壤、水样和植株中的半衰期分别为:6.8~9.9 d,7.4~7.8 d和7.6~8.9 d.  相似文献   

4.
嗪草酮在土壤和大豆中的残留动态研究   总被引:1,自引:0,他引:1  
应用GC-μ-ECD分别对嗪草酮在大豆、土壤中的消解动态和最终残留量进行了分析测定.分析方法的最小检出量为1×10<'-12>g,最低检出浓度为0.01 mg/kg.方法的添加浓度为O.O1、10、1.00 mg/kg,嗪草酮在土壤、大豆植株和大豆籽粒中的添加回收率分别为79.4%~104.4%、91.1%~101.9%、80.O%~98.4%,标准偏差分别为1.46%~5.47%、1.59%~2.96%、2.51%~6.23%.70%嗪草酮水分散粒剂有效成分945 g/hm<'2>施药1次,2年3地试验结果表明:嗪草酮在土壤和大豆植株上的降解规律符合一级动力学反应模式(C=C<,o>e<-kt>),嗪草酮在土壤中的半衰期为14.4-17.7 d,施药60.0 d后消解率即达到90.O%以上;在大豆植株中的半衰期2.7-7.O d,在植株中消解速度快于土壤.  相似文献   

5.
西玛津在玉米植株中的残留消解动态研究   总被引:1,自引:0,他引:1  
试验研究了西玛津在玉米植株中的残留消解动态,结果表明:玉米植株添加浓度在0.05~0.5mg/kg时平均添加回收率为79.3%~91.2%,变异系数为1.43%~3.31%。西玛津的最小检出量为0.04ng,植株样品中的最低检出浓度为2×10-3mg/kg,该方法的准确性、精确性、灵敏度均符合农药残留分析的要求。用该方法测定了西玛津在玉米植株中的残留消解动态,西玛津在玉米植株中的消解动态符合一级动力学规律,消解半衰期为13.3d。  相似文献   

6.
为了探明粉唑醇在小麦中的安全性,对北京、江苏南京、山东烟台3个试验点小麦和土壤中的粉唑醇残留消解动态和最终残留进行了研究。结果显示,在0.01 mg/kg、0.10 mg/kg和2.00 mg/kg 3个添加水平,粉唑醇在小麦植株中的添加回收率为82.3%~94.3%,相对标准偏差为6.2%~8.8%;在小麦籽粒中的添加回收率为83.8%~91.4%,相对标准偏差为5.7%~6.4%;在土壤中平均回收率为81.0%~88.1%,相对标准偏差为4.1%~8.8%;粉唑醇在小麦植株、籽粒和土壤中的最低检出限均为0.01 mg/kg。粉唑醇在北京、江苏南京和山东烟台3个试验点小麦植株中的半衰期为4.7~5.1 d,在土壤中的半衰期为3.6~5.7 d。参照中国、国际食品法典委员会(CAC)、日本、欧盟和美国制定的小麦中粉唑醇的最大残留限量标准(分别为0.50 mg/kg、0.15 mg/kg、0.50mg/kg和2.20 mg/kg),按本试验施药剂量和次数施用粉唑醇21 d后,所采收的小麦是安全的。  相似文献   

7.
为给烟嘧磺隆安全施药提供依据,利用超高效液相色谱串联质谱法,测定烟嘧磺隆在玉米及土壤中的消解和残留动态。结果表明,烟嘧磺隆在玉米植株和土壤中的消解动态均满足一级降解动力学方程及其降解常数,半衰期分别为1.86~1.93 d和5.59~6.27 d;烟嘧磺隆在玉米中的最终残留均未检出,低于我国规定的最大残留限量值(0.1 mg/kg)。该分析方法操作简单,精密度、准确度和灵敏度都符合农药残留标准要求,适用于玉米和土壤中烟嘧磺隆残留测定。建议80%烟嘧磺隆可湿性粉剂防治玉米病害,用药次数1次,使用剂量是50 g a.i./hm2。  相似文献   

8.
采用高效液相色谱–串联质谱(LC–MS/MS) 方法,分析戊唑醇和吡唑醚菌酯在玉米植株和土壤中的残留及消解动态。土壤样品采用乙腈提取,植株样品采用乙腈和丙酮提取,过膜后采用LC–MS/MS分析。结果表明:戊唑醇和吡唑醚菌酯在土壤和玉米植株中的定量限分别为0.01、0.02 mg/kg,检出限分别为0.001、0.005 mg/kg。当添加水平为0.01~2.00 mg/kg时,戊唑醇和吡唑醚菌酯在土壤和玉米植株中的平均回收率为83.9%~113.3%,相对标准偏差为 1.0%~8.0%。消解动态试验结果表明:30%戊唑醇?吡唑醚菌酯悬浮剂按1 050 g/hm2(有效成分315 g/hm2)于玉米苗期施药1次,戊唑醇和吡唑醚菌酯在土壤及玉米植株中的消解动态规律均符合一级动力学方程曲线,戊唑醇在玉米植株和土壤中的消解半衰期分别为5.22、14.10 d,吡唑醚菌酯在玉米植株和土壤中的消解半衰期分别为4.78、13.40 d,二者均属易消解型农药。  相似文献   

9.
建立了辛硫磷在油菜和土壤中的残留分析方法,研究了40%辛硫磷乳油在油菜和土壤中的消解动态和最终残留.辛硫磷最小检出量为3.125x10-11g,最低检出浓度为0.01 mg/kg.土壤中的平均回收率为95%~107%,相对标准偏差2.31%~5.96%;油菜平均回收率为88%~93%,相对标准偏差4.63%~9.90%.试验结果表明,辛硫磷在油菜和土壤中易降解,北京油菜、土壤的半衰期分别为0.4天和1.2天,山东油菜、土壤的半衰期分别为0.3天和1.7天.在油菜生长期,使用辛硫磷540 g a.i./hm2和810 g a.i./hm2分别施药3次和4次,最后1次施药距采收间隔期为3天、7天、14天.  相似文献   

10.
建立了玉米中莠去津和烟嘧磺隆的残留分析方法。样品经乙腈溶剂萃取,C18净化,分散固相萃取,用液相色谱离子阱质谱仪分析。莠去津和烟嘧磺隆的最小检出量分别为2.5×10-10g和3.0×10-10g,莠去津在玉米中的添加回收率为75.2%~95.1%,相对标准偏差为4.9%~7.6%;烟嘧磺隆在玉米中的添加回收率为82.0%~108.3%,相对标准偏差为6.2%~8.1%。本方法操作简单,节省有机溶剂,方法准确,各项指标满足农药残留分析的要求。  相似文献   

11.
[目的]研究多效唑在花生和土壤中的残留及消解动态,为在花生上安全使用多效唑提供科学依据.[方法]所有样品用乙腈提取,土壤经液液分配净化,花生样品经弗罗里硅土层析柱和石墨化炭黑净化后,用带氮磷检测器的气相色谱仪检测,外标法定量,并进行两年3地的田间残留试验,探究多效唑在花生仁、花生壳、花生植株和土壤中的残留及消解动态.[结果]多效唑的气相色谱—氮磷检测法最低检出量为0.15 ng,在土壤、花生仁、花生壳和花生植株的最低检出浓度为0.03~0.05 mg/kg.在添加浓度水平为0.05、0.50和1.00 mg/kg时,多效唑在土壤、花生仁、花生壳和花生植株中的平均回收率分别为72.5%~108.8%、95.9%~108.3%、81.8%~109.6%和75.2%~96.7%,相对标准偏差分别为5.1%~14.3%、5.8%~8.7%、4.6%~9.3%和5.0%~8.9%.多效唑在土壤和花生植株中的降解半衰期分别为2.4~14.3和1.0~5.7 d.广西、湖南和河南3地成熟花生中多效唑的最终残留量未检出.[结论]以气相色谱—氮磷检测法检测多效唑的灵敏度、准确度及精密度均符合农药残留分析要求,可用于花生和土壤中多效唑残留检测.在花生下针期间按照推荐剂量90~120 g a.i./ha使用15%多效唑悬浮剂对水施用1次,收获时无多效唑残留,对花生安全.  相似文献   

12.
氯吡嘧磺隆在玉米植株及土壤中的消解动态研究   总被引:1,自引:0,他引:1  
利用超高效液相色谱-质谱法建立了氯吡嘧磺隆在玉米植株和土壤中的残留分析方法,并研究了氯吡嘧磺隆在玉米植株和土壤中的残留消解动态,对影响残留分析方法的主要参数进行了优化。结果表明,氯吡嘧磺隆标准溶液的线性方程为y=66 535x+747.06(r2=0.999 9),线性范围为10~1 000ng/mL。残留样品采用丙酮提取,乙酸乙酯萃取净化,超高效液相色谱分离,质谱仪检测,外标法定量。该方法在玉米植株和土壤中的最低检测限(LOQ)均为0.002mg/kg,当样品中氯吡嘧磺隆的添加水平为0.05~0.2mg/kg时,采用该方法测得植株和土壤中的平均回收率分别为85.16%~88.13%和87.65%~91.37%,相对标准偏差(RSD)分别为1.92%~2.09%和1.16%~2.61%。消解动态试验表明,氯吡嘧磺隆的残留量随时间延长而降低,消解动态曲线符合一级动力学方程,在植株和土壤中半衰期分别为0.78~0.97d和7.00~16.90d。试验结果显示,氯吡嘧磺隆在玉米田中属较易降解的农药。  相似文献   

13.
[目的]研究氯化苦在土壤上的残留分析方法及在土壤中的消解动态和最终残留量。[方法]采用气相色谱法测定氯化苦在土壤中的残留,用石油醚对土壤样品进行超声波提取,毛细管柱色谱分离,电子捕获检测器进行测定,进行了3种添加浓度的回收率试验并进行实际样品检测。[结果]氯化苦的的最低检出限(LOD)为0.008mg/kg,土壤中最低检出浓度(LOQ)为0.020mg/kg,回收率89.5%—111.1%,变异系数为3.6%—7.2%,均在农药残留测定所允许的范围内。同时在0.008—2.000mg/L浓度范围内峰面积值与氯化苦浓度线性关系良好,且线性范围较宽,适合测定土壤中不同浓度水平的氯化苦。氯化苦的消解很快,在土壤中的半衰期为5.5d。[结论]该分析方法操作简单、快速,定量准确,可有效地测定土壤中氯化苦含量。  相似文献   

14.
联苯菊酯在甘蓝及土壤中的消解动态   总被引:1,自引:0,他引:1  
【目的】建立残留联苯菊酯的检测方法,研究质量分数1%联苯菊酯·噻虫咹颗粒剂中联苯菊酯在甘蓝Brassica oleracea和土壤中的残留及消解动态。【方法】在广东广州市、广西南宁市和湖北潜江市进行田间试验,联苯菊酯在0.01~1.00 mg·kg~(-1)水平范围内取0.01、0.10、0.50 mg·kg~(-1)添加,样品中的联苯菊酯经乙腈超声波辅助提取,弗罗里硅土固相萃取柱净化,气相色谱(GC-ECD)检测,外标法定量,得到联苯菊酯在甘蓝和土壤中的残留及消解动态。【结果】联苯菊酯在甘蓝中的平均回收率为83.64%~96.44%,相对标准偏差为3.26%~7.24%;在土壤中平均回收率为86.76%~90.09%,相对标准偏差为2.17%~4.94%。联苯菊酯在土壤中的残留半衰期为6.77~13.51 d,在甘蓝中未检出。【结论】联苯菊酯属易降解农药;该施药方法安全,值得借鉴。  相似文献   

15.
醚菌酯50%干悬浮剂在草莓及土壤中的残留动态研究   总被引:1,自引:1,他引:1  
[目的]明确醚菌酯在草莓和土壤中的残留动态情况。[方法]于2007~2008年,在天津、吉林、南京和昆明,设3 000倍液和2 000倍液2个剂量,对醚菌酯50%干悬浮剂在草莓及土壤中的消解动态和最终残留量进行了试验。[结果]在天津地区,醚菌酯在草莓和土壤中的半衰期分别为6.4 和12.6 d; 在吉林地区,醚菌酯在草莓和土壤中的半衰期分别为8.3和16.2 d;在南京地区,醚菌酯在草莓和土壤中的半衰期分别为5.2 和8.3 d; 在昆明地区,醚菌酯在草莓和土壤中的半衰期分别为6.3和12.3 d。施药后间隔3、5、7 和14 d的草莓中醚菌酯的残留量均低于1 mg/kg。[结论]醚菌酯50%干悬浮剂在草莓中合理使用的准则为:按3 000倍液在草莓上喷雾使用3次,安全间隔期为3 d,最高残留限量推荐值为1 mg/kg。  相似文献   

16.
二氯吡啶酸在油菜及土壤中的残留动态研究   总被引:1,自引:0,他引:1  
采用高效液相色谱仪测定除草剂二氯吡啶酸在油菜及土壤中的残留消解动态和最终残留量。结果表明:在油菜和土壤上喷施质量分数75%的二氯吡啶酸可溶性粒剂(有效成分338 g/hm2),测出油菜和土壤中的原始沉积量分别为5.63~6.75 mg/kg和0.47~0.48 mg/kg,半衰期为8.49~10.11 d和3.76~4.74 d。对油菜施药1次,施药后45 d测得油菜上残留量为0.15~0.17 mg/kg。  相似文献   

17.
[目的]探讨异丙甲草胺和特丁净在花生上的残留特性和安全风险。[方法]通过田间试验及室内检测研究50%异甲·特丁净乳油在花生和土壤中的残留消解动态及最终残留量。[结果]50%异甲·特丁净乳油按施药剂量为2 250、3 750 g a.i./hm~2,于花生播后苗前土壤喷施1次,收获期的异丙甲草胺和特丁净在花生植株、花生壳、花生仁中的残留量均未检出(异丙甲草胺残留量0.05 mg/kg,特丁净残留量0.01 mg/kg)。异丙甲草胺在土壤中的半衰期为11.6~14.8 d,药后30 d消解90%以上;特丁净在在土壤中的半衰期为12.1~14.7 d,药后30 d消解87%以上。总的来说,异丙甲草胺和特丁净在土壤中半衰期较短,消解速度较快。[结论]试验结果为异丙甲草胺·特丁净在花生上的安全合理使用提供了理论依据。  相似文献   

18.
通过田间试验,研究了芹菜设施栽培条件下啶虫脒的沉积与残留规律,并建立了芹菜叶、茎、根,以及土壤中的啶虫咪经乙腈提取、QuEChERs萃取净化和液相色谱串联质谱检测的方法。结果表明:啶虫脒在芹菜叶、茎、根和土壤中的平均回收率分别为100.2%~102.5%、83.9%~93.5%、97.0%~100.1%和90.8%~94.4%,在芹菜设施栽培体系中啶虫脒的沉积量由大到小依次为芹菜叶>土壤>芹菜茎>芹菜根。啶虫脒在芹菜叶的残留消解动态符合一级动力学方程,消解半衰期为4.2~19.4 d。按有效成分18 g·hm-2和27 g·hm-2施药后7 d,设施栽培条件下芹菜叶和茎的啶虫咪残留量分别为0.330 0~2.570 0、0.004 7~0.030 0 mg·kg-1,均低于GB 2763—2019规定的最大残留限量(3 mg·kg-1)。研究结果可为啶虫脒在芹菜设施栽培体系下的合理使用提供科学参考。  相似文献   

19.
施翠娥  陈枫  王军  蒋闳 《安徽农业科学》2008,36(16):6850-6852
研究了腈菌唑在梨和土壤中的残留分析方法及其残留动态。样品用甲醇提取,中性氧化铝柱净化,气相色谱(ECD)测定。腈菌唑的最低检出量:2.5×10-11g;最低检出浓度:梨和土壤分别为0.005和0.003 mg/kg。添加回收率为80.80%~93.81%,相对标准偏差为1.87%~4.96%,符合农药残留分析要求。试验结果表明,腈菌唑在梨中消解较快,土壤中相对缓慢,半衰期分别为2.86~4.75和15.79~24.17 d;末次施药距收获间隔7 d,梨中腈菌唑残留量均低于0.500 mg/kg,该药按推荐剂量使用是安全的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号