首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to assess survival rate, Zn accumulation, reactive oxygen species (ROS) levels, oxidative damage and antioxidant responses after Zn exposure (2 and 8 mg L?1 Zn) at different exposure times (6, 12, 24, 48 and 96 h) in the liver of large yellow croaker. Survival rate was reduced at 96 h, and hepatic Zn content increased during 24–96 by 8 mg L?1 Zn. In the 2 mg L?1 Zn group, no fish died and the increase in Zn content merely occurred at 96 h. Exposure to 8 mg L?1 Zn induced accumulation of ROS, lipid peroxidation and protein carbonylation during the late stage of exposure. In contrast, exposure to 2 mg L?1 Zn did not result in oxidative damage, which may result from the up-regulation of antioxidant defenses. Although exposure to 8 mg L?1 Zn increased activities and mRNA levels of antioxidant enzymes during the early stage of exposure, including Cu/Zn–SOD, Mn–SOD, CAT, GPx and GR, the activities of these enzymes except Cu/Zn–SOD were inhibited at 96 h. Furthermore, a sharp increase in Nrf2 expression was observed in fish exposed to 8 mg L?1 at 6 and 12 h, and 2 mg L?1 at 12 h and 24 h, suggesting that Nrf2 was required for the protracted induction of these genes. The late increase in Keap1 expression may support its role in switching off the Nrf2 response. In conclusion, the present study demonstrated different effects of low- and high-dose waterborne Zn on antioxidant responses, which could contribute to the understanding of antioxidant and toxic roles of zinc on a molecular level.  相似文献   

2.
Oxytetracycline (OTC) is employed in fish farms to contest or prevent bacterial infections. We simulated an OTC treatment at therapeutic level (75 mg kg?1) and at higher doses (150, 300 mg kg?1) for 10 days. A withdrawal period of 10 days was considered for treated carp, carrying out the same chemical and biochemical analyses (total glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and malondialdehyde). The aim was to obtain data related to the carryover in muscle and on variations in the antioxidant indicators in liver and kidney. The OTC residual levels in muscle showed a dose–response relationship. After 10 days of treatment at the recommended dose (75 mg kg?1), the mean value in muscle was 295 μg kg?1. After 10 withdrawal days, residues in all treated groups were not entirely eliminated by fish. Residues of recommended 75 mg kg?1 OTC dose were lower than the maximum permitted by EEC regulation: 100 μg kg?1. Disturbance in the antioxidant systems in liver and kidney was recorded in (150, 300 mg kg?1) carp, as well as during the withdrawal period. A lowered superoxide dismutase activity and higher levels of catalase, glutathione peroxidase, glutathione reductase and glutathione were evaluated in liver, while in kidney only higher malondialdehyde and glutathione S-transferase concentrations were recorded for 300 mg kg?1 dose. The therapeutic OTC dose exerted lower effects, and only in liver, enhancement of GPx and GR activities was recorded. After the withdrawal period, altered antioxidant responses in tissues were restored for all three OTC doses.  相似文献   

3.
The purpose of this work was to determine the tissue accumulation of lead (Pb) and its effects on osmoregulatory processes of the freshwater fish Prochilodus lineatus. Juvenile fish were exposed to Pb (from 1.7 to 0.7 mg of dissolved Pb L?1) for 6, 24 and 96 h and Pb accumulation was analyzed in the gills, liver, kidneys, blood cells and muscle. The following parameters were also analyzed: hematologic (hemoglobin content, hematocrit and number of red blood cells), metabolic (blood glucose), endocrine (blood cortisol), osmo ionic (plasma osmolality and Na+, K+, Cl? and Ca+2 concentrations), gill enzymes (Na+/K+-ATPase and carbonic anhydrase), chloride cell (CC) density and CC location in the gills. Pb accumulated in all the analyzed tissues, with the kidneys showing the highest concentration, followed by the gills and liver. The lowest Pb concentrations were found in blood cells and muscle. Pb promoted an increase in blood glucose after 6 and 24 h exposure. Gill Na+/K+-ATPase was inhibited after 24 h of exposure, but its activity was restored at 96 h, probably due to the increase in CC in gill lamellae. Plasma Na+ was reduced after 6 and 96 h, while K+ concentrations increased at all the experimental times. Fish exposed to Pb showed reduced plasma Ca+2 at all experimental periods. Hematologic parameters remained unchanged. Overall, this study demonstrated that Pb interferes in osmoregulatory processes of P. lineatus and the proliferation of CC in the gills is a response in order to reestablish adequate ion concentrations.  相似文献   

4.
The study was conducted to evaluate the effect of dietary lipid levels on growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata). Five isonitrogenous (crude protein 420 g kg?1) practical diets containing 58, 87, 115, 144, and 173 g kg?1 crude lipid (named L58, L87, L115, L144, and L173, respectively) were fed to triplicate groups of 30 fish (mean initial weight 24 g) for 8 weeks. The results showed that the final body weight (58.68–78.81 g), specific growth rate (1.41–1.75 % day?1), and protein efficiency ratio (1.66–2.64) increased significantly with the increasing dietary lipid levels. Liver lipid contents (71.65–101.80 g kg?1) and crude lipid (52.10–83.63 g kg?1) of whole body increased with increasing dietary lipid levels and reached the highest values in fish of L173. Fish of L173 showed lower alkaline phosphatase (23.81 King Unit gprot?1) and catalase activities (4.44 U mgprot?1) but higher malondialdehyde content (0.69 nmol mgprot?1) in liver than the other groups. Higher alanine transaminase activity (8.20 U L?1), aspartate transaminase activity (63.65 U L?1), and triglyceride (0.29 mmol L?1) in serum were observed in fish of L173 compared to the other treatments. Fish of L144 showed higher superoxide dismutase activity and glutathione peroxidase activities in liver than that of fish fed diet L58. Fish fed diet L58 showed lower total cholesterol (3.61 mmol L?1), high-density lipoprotein cholesterol (1.39 mmol L?1), and low-density lipoprotein cholesterol (0.46 mmol L?1) in serum. These results suggested that juvenile snakehead (Channa argus × Channa maculata) achieved good growth performance with dietary lipid level 173 g kg?1. Diet with 143 g kg?1 lipid was more conductive to liver health. The appropriate dietary lipid supplementation needs to be determined in further studies.  相似文献   

5.
The present study aimed to assess the possible preventive and reparative effects of isoleucine (Ile) against copper (Cu)-induced oxidative stress in fish enterocytes in vitro. In experiment 1, enterocytes were preincubated with increasing concentrations of Ile (0, 50, 120, 190, 260, and 330 mg L?1) for 72 h followed by exposure to 6 mg L?1 Cu for 24 h. In experiment 2, the enterocytes were pretreated with 6 mg L?1 Cu for 24 h and then treated with 0–330 mg L?1 Ile for 72 h to investigate its potential reparative role. The results of experiment 1 showed that Cu exposure increased lactate dehydrogenase (LDH) activity and malondialdehyde and protein carbonyl (PC) content; these changes were completely suppressed by pretreatment with Ile at optimum concentrations (P < 0.05). Moreover, Ile pretreatment prevented the decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the enterocytes exposed to Cu (P < 0.05). Additionally, cells exposed to Cu exhibited adaptive increases in glutathione-S-transferase (GST) activity. In experiment 2, the LDH activity and protein oxidation induced by Cu were completely reversed by Ile posttreatment. Meanwhile, the Cu-induced decrease in SOD, GPx, and GST activity was completely reversed by subsequent Ile treatment, but the reduced glutathione content was not restored. Collectively, these results indicate that Ile suppresses Cu-induced oxidative damage via preventive and reparative pathways in primary enterocytes and thus protects the structural integrity of enterocytes in fish.  相似文献   

6.
Bacterial diseases cause tilapia's high‐mortality outbreak. This study investigated the toxicity of azithromycin (AZT), a macrolide antibiotic that has been considered a possible therapeutic drug for tilapia aquacultural use. The 48‐h acute toxicity (50% lethal concentration, LC50; 48 h) of AZT was determined for Oreochromis niloticus. Thereafter, fish were exposed to 0, 1, 50 and 100 mg L?1 AZT during 14 days (chronic exposure) and measured the haematological variables, the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione‐S‐transferase (GST) and the concentration of glutathione (GSH), protein carbonyl and lipid peroxidation in the liver; histopathology was analysed the liver, gills and kidneys. The LC50; 48 h was >100 mg L?1. No fish died during chronic exposure. Haematocrit and haemoglobin concentration increased in fish exposed to 50 and 100 mg L?1, and the total number of leucocyte and thrombocyte increased after exposure to 100 mg L?1 AZT, suggesting a stimulation of defence cell production. In the liver, the antioxidant enzyme activities did not change, but GST activity and the GSH level increased in fish exposed to 100 mg L?1 AZT. Oxidative stress did not occur. Histopathological index (HIL) indicates moderate liver damage; minor histological changes in the gill and no change in the kidneys. AZT was considered non‐toxic for O. niloticus after acute exposure and, although it causes moderated histopathology in the liver after chronic exposure, this antibiotic may be an alternative against bacterial infections, depending on its efficacy to control bacterial disease in fish.  相似文献   

7.
This study was conducted to determine the effects of dietary α‐ketoglutarate (AKG) supplementation on the antioxidant defense system and gene expression of heat shock protein (HSP) 70 and HSP 90 in hybrid sturgeons Acipenser schrenckii ♀ × A. baerii ♂ exposed to ammonia‐N stress. A 2 × 3 factorial experiment was arranged, in which each diet (0%, 1% AKG) was randomly assigned to 0.25 (control) 5 and 10 mg L?1 ammonia‐N groups with three replicate aquaria for each 72 h. The 10 mg L?1 ammonia‐N significantly increased serum ammonia concentrations and intestinal Gln concentrations and GS activity compared with the 0.25 or 5 mg L?1 ammonia‐N groups. The intestinal Gln concentration and GS activity increased, and the serum ammonia concentration decreased, in fish given dietary supplementation of 1.0% AKG compared with fish given diets without AKG. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in serum, gills and intestines decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N, and their activity increased in fish given diets with 1% AKG. Catalase in the serum and gills decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N and increased in fish given diets with 1% AKG. The 10 mg L?1 ammonia‐N or 1% AKG supplementation increased HSP 70 and HSP 90 gene expression in the liver. The increased activity of antioxidant enzymes, and increased HSP 70 and HSP 90 gene expression in fish fed diets containing 1% AKG suggested higher tolerance to ammonia‐N stress.  相似文献   

8.
A histopathological screening was performed on juvenile Senegalese soles exposed to environmentally realistic concentrations of waterborne Cd (0.5, 5 and 10 μg L?1) for 28 days. The severity and dissemination of histopathological changes were variable and limited to the kidney, liver, spleen, gills and skin goblet cells. Contradicting available literature that refers the liver as the most affected organ upon acute exposure and the kidney following chronic exposure, the liver was the most impacted organ (even at the lowest concentration), in a trend that could relate to the duration of exposure and Cd concentration. The most noticeable hepatic alterations related to inflammation, although hepatocellular alterations like lipidosis and eosinophilic foci also occurred. The trunk kidney of exposed fish endured moderate inflammation, apoptosis and necrosis, however, without a clear time-dependent effect. The spleen of fish subjected to the highest concentrations revealed diffuse necrotic foci accompanied by melanomacrophage intrusion. The gills, albeit the most important apical uptake organ of dissolved toxicants, sustained only moderate damage, from epithelial hyperplasia and pavement cell detachment to the potentially more severe chloride cell alterations. In the skin, an increase in goblet cell size occurred, most notoriously correlated to Cd concentration at earlier stages of exposure. The results show that a metal-naïve juvenile fish can endure deleterious effects when exposed to low, ecologically relevant, concentrations of a common toxic metal and that the pattern of Cd-induced histopathological alterations can be complex and linked to organ-specific responses and metal translocation within the organism.  相似文献   

9.
In the present study, we investigated the mercury distribution, mercury bioaccumulation, and oxidative parameters in the Neotropical fish Hoplias malabaricus after trophic exposure. Forty-three individuals were distributed into three groups (two exposed and one control) and trophically exposed to fourteen doses of methylmercury each 5 days, totalizing the doses of 1.05 μg g?1 (M1.05) and 10.5 μg g?1 (M10.5 group). Autometallography technique revealed the presence of mercury in the intestinal epithelia, hepatocytes, and renal tubule cells. Mercury distribution was dose-dependent in the three organs: intestine, liver, and kidney. Reduced glutathione concentration, glutathione peroxidase, catalase, and glutathione S-transferase significantly decreased in the liver of M1.05, but glutathione reductase increased and lipid peroxidation levels were not altered. In the M10.5, most biomarkers were not altered; only catalase activity decreased. Hepatic and muscle mercury bioaccumulation was dose-dependent, but was not influenced by fish sex. The mercury localization and bioaccumulation corroborates some histopathological findings in this fish species (previously verified by Mela et al. in Ecotoxicol Environ Saf 68:426–435, 2007). However, the results of redox biomarkers did not explain histopathological findings previously reported in M10.5. Thus, fish accommodation to the stressor may reestablish antioxidant status at the highest dose, but not avoid cell injury.  相似文献   

10.
The objective of this study was to evaluate the effect of two concentrations of copper (0.13 and 0.5 mg L?1) on juveniles of tilapia, Oreocromis niloticus (Linnaeus), using two toxicological assays (I‐ copper exposure and II‐ copper exposure followed by recovery). Doses were taken from the liver of the test organisms to determine the concentrations of copper, reduced glutathione, activities of glutathione S‐transferase and catalase, and lipid peroxidation. Exposure to copper in both assays resulted in significant accumulation of this metal in the analysed tissue and in decreased concentration of reduced glutathione. There was no alteration in the activities of catalase and glutathione S‐transferase and in lipid peroxidation.  相似文献   

11.
Amoebic gill disease (AGD) of Atlantic salmon is treated commercially by bathing affected fish in freshwater. Recently, the efficacy of freshwater bathing has been questioned, and the aim of this study was to examine the potential for improving bathing efficacy using additives to the freshwater bath. AGD‐affected Atlantic salmon were bathed in 350 L tanks containing oxygenated freshwater to which chlorine dioxide (0–50 mg L?1), chloramine‐T (0–50 mg L?1) or hydrogen peroxide (0–100 μL L?1) was added. Before and following a 3‐h exposure to the freshwater and chemical additive, the gills were removed from a sub‐sample of fish and the number of live amoebae on the gills were counted and smears made for confirmation of the presence of Neoparamoeba pemaquidensis, the causative agent of AGD. Following a further 3‐h exposure, a sub‐sample of fish was bled from the caudal vein and the gills were removed for histological examination. Chlorine dioxide and chloramine‐T at 25–50 and 10–50 mg L?1, respectively, reduced the number of amoebae on the gills by approximately 50% compared with pre‐exposure numbers. The results from hydrogen peroxide treatment were equivocal and the toxicity of hydrogen peroxide was high. The toxicity of chlorine dioxide varied with freshwater hardness and/or suspended solid load, whereas chloramine‐T toxicity was low, with mortalities attributable only to elevated temperatures at the highest concentration tested. In conclusion, chlorine dioxide and chloramine‐T show promise as potential freshwater additives for the improved removal of N. pemaquidensis and possibly, other amoebae from the gills of commercially farmed Atlantic salmon.  相似文献   

12.
This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L?1 CaCO3), humic acid (0, 2.5, or 5.0 mg L?1), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1 % (244–423 μmol kg?1 h?1) for ammonia, 10.9 % (30–52 μmol kg?1 h?1) for creatinine, 0.02 % (0.05–0.08 μmol kg?1 h?1) for protein, 0.001 % (0.002–0.004 μmol kg?1 h?1) for urea, 0.5 % (0.64–3.6 μmol kg?1 h?1) for nitrite, and 0.5 % (0.0–6.9 μmol kg?1 h?1) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14–2.97 μmol kg?1 h?1. Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.  相似文献   

13.
Effect of ambient copper on the immune, antioxidant and lipid peroxidation parameters of Fenneropenaeus indicus and its susceptibility to white spot syndrome virus under heavy metal (Cu2+) exposure has been studied. Adult shrimps were acclimated to 25‰ salinity for a period of 7?days, and after 12?h of starvation, shrimps were dosed with 0.075, 0.150, 0.225 and 0.30?ppm Cu2+ by adding appropriate quantities of copper sulphate solution. After 14?days of metal exposure, the shrimps were challenged with white spot syndrome virus through oral administration and the immune and antioxidant parameters were analysed. Analysis of variance showed that there were significant differences (P?<?0.05) in the immune and antioxidant parameters and lipid peroxidation product in different treatment groups of F. indicus compared to untreated group. The immune parameters and antioxidant enzymes have been significantly lowered (P?<?0.05) in the haemolymph of shrimps dosed with higher concentrations of copper sulphate leading to lipid peroxidation and accumulation of malondialdehyde. However, there was less oxidative stress in shrimps exposed to 0.075?ppm Cu2+. The present study showed that high levels of Cu2+ enhanced the mortality of F. indicus with concomitant reduction in immune and antioxidant parameters. A concentration of 0.075?ppm Cu2+ in the rearing water was found to have beneficial effect in shrimps in terms of immunostimulation and higher survival against WSSV infection. This can be adopted as a pharmacological approach towards shrimp health management in culture systems.  相似文献   

14.
A 60-day feeding trial was conducted to study the effect of dietary microbial levan on growth performance and metabolic responses of Cyprinus carpio fry exposed to sublethal dose (1/10th LC50) of fipronil [(±)-5-amino-1-(2,6-dichloro-α,α,α-trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile]. Two hundred and twenty five fry were randomly distributed in five treatments in triplicates. Four purified diets were prepared with graded levels of microbial levan. Five different treatment groups were levan control L0P0 (basal feed + 0 % levan without exposure to pesticide); pesticide control L0P1 (basal feed + 0 % levan with exposure to pesticide); L0.25P1 (basal feed + 0.25 % levan with exposure to pesticide); L0.50P1 (basal feed + 0.50 % levan with exposure to pesticide); and L0.75P1 (basal feed + 0.75 % levan with exposure to pesticide). Weight gain% and specific growth rate were significantly higher (p < 0.05) in levan fed groups compared to their non-levan fed counterpart. Highest (p < 0.05) content of ascorbic acid in muscle, liver and brain tissues was observed with higher level of dietary levan. Glucose-6-phosphate dehydrogenase activity decreased with the increasing level of dietary levan in the liver and muscle. Aspartate aminotransferase activity exhibited a second order polynomial relationship with the dietary levan, both in liver (Y = ?1.001x 2 + 5.366x + 5.812, r 2 = 0.887) and muscle (Y = ?0.566x 2 + 2.833x + 6.506, r 2 = 0.858) while alanine aminotransferase activity showed third order polynomial relationship both in liver (Y = 1.195x 3 ? 12.30x 2 + 35.23x + 9.874, r 2 = 0.879) and muscle (Y = 0.527x 3 ? 8.429x 2 + 31.80x + 8.718, r 2 = 0.990). Highest (p < 0.05) superoxide dismutase activity in gill was observed in the group fed with 0.75 % levan supplemented diet. Overall results indicated that dietary microbial levan at 0.75 % in C. carpio fry ameliorated the negative effects of fipronil and augmented the growth.  相似文献   

15.
Contamination of aquatic ecosystems by metals causes various biochemical changes in aquatic organisms, and fish are recognized as indicators of environmental quality. Silver catfish were exposed to six concentrations of zinc (Zn): 1.0, 2.5, 5.0, 7.5, 10.0 and 12.5 mg/L for 96 h to determine the mean lethal concentration (LC50). The value obtained was 8.07 mg/L. In a second experiment, fish were exposed to concentrations of 1.0 or 5.0 mg/L Zn and a control for 96 h. Afterward, the tissues were collected for biochemical analysis. Lipid peroxidation, as indicated by thiobarbituric acid-reactive substance (TBARS), decreased in the liver and brain for all Zn concentrations tested, while in the gills TBARS levels increased at 1.0 mg/L and declined at 5.0 mg/L. Zn increased protein carbonyls in the muscle of silver catfish and decreased it in the other tissues. The enzyme superoxide dismutase increased in both exposed groups. However, catalase did not change. Glutathione S-transferase decreased in the liver and increased in the gills (1.0 mg/L), muscle (5.0 mg/L) and brain (1.0 and 5.0 mg/L). Nonprotein thiols changed only in brain and muscle tissue. Zn exposure inhibited acetylcholinesterase (AChE) activity in the brain at both concentrations tested, but did not change it in muscle. Exposure to Zn inhibited the activity of Na+/K+-ATPase in the gills and intestine at both concentrations tested. Our results demonstrate that Zn alters biochemical parameters in silver catfish and that some parameters such as AChE and Na+/K+-ATPase could be considered as early biomarkers of waterborne Zn toxicity.  相似文献   

16.
The present study was carried out to investigate the effect of sublethal zinc (Zn) concentrations on growth performance, biochemical variables, and Zn residues in various organs of Nile tilapia, Oreochromis niloticus (L.). Fish (25 ± 0.5 g) were exposed to 0.0, 3.5, or 7.0 mg Zn L?1 for 1 or 6 weeks. Fish growth was significantly reduced with increasing Zn concentrations. However, fish exposed to 7.0 mg Zn L?1 grew less quickly than those of the control group. Likewise, best feed intake and feed conversion ratio were obtained at the control group. Furthermore, glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and cortisol increased significantly with increasing Zn concentrations and exposure time, with maximal values in the 7.0 mg Zn L?1 treatment after 6 weeks. Meanwhile, highest values of serum protein and lipids were obtained in the control fish reared for 6 week, whereas their lowest values were observed in fish exposed to 7.0 mg Zn L?1 for 1 week. There was no significant change in whole-body moisture content of fish due to Zn exposure, although crude protein and total lipid contents decreased significantly with increasing Zn concentrations. In addition, Zn exposure increased total ash contents and Zn residues in different investigated fish organs. The Zn concentrations in all fish organs were time-dependant and the Zn residues after 1 week were found to follow the order of gills > liver > kidney > muscle, meanwhile after 6 weeks it followed the order of liver > kidney > gill > muscle. The present findings revealed that liver and kidney tissues are the prime sites of Zn bioaccumulation, while Zn load in the muscle was for low as compared to other organs.  相似文献   

17.
To investigate the effects of a mixture of hydrolyzed soybean and cottonseed meals (HSC) on the digestion, metabolic enzymes, growth-related hormones, and growth of turbot (Scophthalmus maximus) (initial weight ca 35 g), six isoenergetic (ca 20 kJ/g) and isoproteic (ca 45%) diets were formulated with 0 (control), 14.7% (HSC14.7), 29.4% (HSC29.4), 44.1% (HSC44.1), 58.8% (HSC58.8) HSC, and 44.1% its native protein (SC44.1). Each diet was assigned to triplicate tanks with 36 fish per tank in a re-circulating system. Fish were fed twice daily. After 54 days, fish were weighed after a 24-h fast, and five digestive tracts were dissected for digestive enzyme analysis. Six blood and liver samples were collected from remaining 31 fish at 5 h post-feeding for metabolic enzymes and hormones analysis. The results showed that fish fed diets containing 14.7–44.1% HSC had higher average weight gain (g) (38.77–41.52 vs 29.74) but lower feed conversion rate (0.83–0.88 vs 1.02) than fish given the control diet. The HSC diets increased apparent digestibility coefficients of dry material, protein, and energy from 73.82% to 80.03%, 87.38% to 93.68%, and 76.13% to 81.46%, respectively. Pepsin and trypsin activities (U mg prot?1) were higher in group HSC14.7 (4.94 vs 4.26, 141.66 vs 115.14) than in the control group. The HSC44.1 and HSC58.8 diets increased the serum insulin level (IU L?1) (5.38, 5.50 vs 4.05), as well as the activities (U g prot?1) of hepatic alanine transaminase (868.42, 938.71 vs 730.82), aspartate transaminase (793.84, 854.64 vs 600.30), and glucokinase (104.76, 109.17 vs 93.90). The HSC diets reduced glucose 6 phosphatase activity (262.27–383.81 vs 537.21, U g prot?1) but increased phosphofructokinase activity (1592.55–1983.71 vs 978.52, U g prot?1). The HSC29.4 diet increased insulin-like growth factor 1 level (187.30 vs 151.17, ng L?1). Fish fed the SC41.1 diet exhibited lower growth performance and diet utilization than those fed the HSC44.1 diet. In conclusion, juvenile turbot can efficiently utilize HSC, and the recommended inclusion level is 27.14–30.70%.  相似文献   

18.
ABSTRACT

The present study was conducted to evaluate growth performance and color enhancement of goldfish, Carassius auratus, fed diets containing 0, 50, 100, 200, and 250 mg kg?1 diet of annatto dye (AD) for 60 days. The survival rate was significantly higher in fish fed 100, 200, and 250 mg AD kg?1 diet over than these fed control and 50 mg AD kg?1 diet (p < 0.05). AD significantly (p <0 .05) increased the pigmentation in the skin and caudal fin of goldfish in a concentration dependent manner (R2 = 0.995, 0.997). The highest amount of total carotenoid deposition in fish skin and fins were given by diets containing 200–250 mg AD kg?1 diet. The highest redness (a*) of 43.21 and yellowness (b*) of 12.53 were obtained by 250 and 50 mg AD kg?1, respectively. The present results show that AD can be successfully used as an alternative natural carotenoid source in goldfish diets at levels of 200–250 mg AD kg?1 diet.  相似文献   

19.
Argulosis hampers aquaculture production and alters the host physiology and growth. Azadirachtin is recognized as a potential antiparasitic agent against Argulus sp. The present study aimed to investigate the effect of different concentration of azadirachtin solution on haematological and serum biochemical parameters of Argulus-infested goldfish Carassius auratus. Ninety Argulus-infested goldfish were randomly divided into six equal groups. Fish of group 1–5 were treated with azadirachtin solution through bath of 1, 5, 10, 15 and 20 mg L?1 as T1, T2, T3, T4 and T5, respectively, and group 6 was exposed to 2 % DMSO solution without azadirachtin and considered as negative control T0?. Along with six treatment groups, a positive control T0+ of healthy goldfish free from Argulus infestation was also maintained. Parasitic mortality was evaluated after 3 days of consecutive bath treatment. After 7 days of post-treatment, the blood and serum were drawn from each of the treatment groups and haematological and serum biochemical parameters were evaluated. Total leucocyte count (TLC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), blood glucose, total protein (TP), globulin, serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were significantly (p < 0.05) high in negative control group when compared with positive control group. It could be concluded that Argulus infestation altered marked haematological and serum biochemical parameters. However, in treated groups complete elimination of Argulus was found in T4 and T5 groups. Also significant (p < 0.05) reduction in haematological and serum biochemical parameters of all the treatment groups were recorded in comparison with negative control group. In addition, T4 and T5 groups showed significantly (p < 0.05) high superoxide dismutase (SOD), catalase, total erythrocyte count (TEC) and haemoglobin (Hb). However, higher mean corpuscular haemoglobin concentration (MCHC), blood glucose and lactate dehydrogenase (LDH) levels in T5 group revealed that higher concentration of azadirachtin have notable effects on activity of vital tissues function and physiology of the host. Argulus spp. from infested goldfish could be eliminated using bath treatment with solution of azadirachtin having concentration of 15 mg L?1 and that also shifted haematological and serum biochemical parameters towards homeostasis.  相似文献   

20.
Epinephelus morio is a large carnivorous species of the Caribbean Sea under reproduction in captivity and nutritional physiology. A diet with raw cornstarch (RCS) was compared to a basal diet without starch (basal) to measure plasma glucose, liver glycogen, and intermediary metabolism. Glucose level did not change (p > 0.05) whereas liver glycogen was significantly higher in fish fed the RCS diet (137.2 ± 14.5 mg g?1) than in fish fed the basal diet (87.4 ± 14.5 mg g?1). Oral glucose administration (170 mg glucose per 100 g body weight) yielded a slight change; two peaks of plasma glucose were recorded with basal (5.6 mM L?1) 2 h after oral administration and at 12 h (6.4 mM L?1). After 24 h, with 1.7 mM L?1, fish returned to initial stage (2.4 mM L?1). RCS diet produced the highest level (6.3 mM L?1) 2 h after oral administration; lowest level observed at 24 h after oral administration (1.0 mM L?1). A significant effect was detected with the presence or absence of dietary carbohydrates (CBH) on hepatic fructose 1,6-bisphosphatase and pyruvate kinase activity. Grouper used two strategies to maintain glucose homeostasis: CBH present in the diet oriented towards gluconeogenesis, whereas no dietary CBH enhanced glycolytic route to liberate glucose and increase liver glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号