首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Thyrotropin (TSH) responses were determined in eight healthy male beagle dogs after a single administration of thyrotropin-releasing hormone (TRH) and the combined administration of four hypothalamic releasing hormones, i.e., corticotropin-releasing hormone, growth hormone-releasing hormone, gonadotropin-releasing hormone, and TRH. In both tests, TRH was administered in a dose of 10 μg/kg. Basal TSH concentrations ranged form 0.07 to 0.27 μg/1(mean ± SE, 0.14 ± 0.02 μg/1). The administration of TRH, alone or in the combined test, resulted in a prompt and significant increase in TSH with mean (±SE) plasma TSH peaks of 1.26 ± 0.22 μg/1 at 10 min and 0.85 ± 0.17 μg/1 at 30 min, respectively. The area under the curve (0–120 min) was significantly lower in the combined test than in the single TRH test, whereas the increments were not significantly different. It is concluded that measurements of TSH responses to TRH alone and in combination with other releasing hormones can be used for the assessment of pituitary thyrotropic cell function. In the combined test, the TSH response is slightly lower than that in the single test.  相似文献   

2.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

3.
Tumor necrosis factor (TNF)‐α is a powerful macrophage cytokine released during infection, circulating in the blood to produce diverse effects in the organism. We examined the effect of recombinant bovine TNF‐α (rbTNF‐α) administration on hormone release in dairy cows during early lactation. Twelve non‐pregnant Holstein cows were treated subcutaneously with rbTNF‐α (2.5 µg/kg) or saline twice (at 11.00 and 23.00 hours). At 11.00 hours the next day, the cows were given growth hormone‐releasing hormone (GHRH, 0.25 µg/kg), thyrotrophin‐releasing hormone (TRH, 1.0 µg/kg), thyroid‐stimulating hormone (TSH, 10 µg/kg) or adrenocorticotropic hormone (500 µg/head) via the jugular vein. In the growth hormone‐releasing hormone challenge, the plasma growth hormone concentration was lower in the rbTNF‐α group than in the control (saline) group. The growth hormone and TSH responses to TRH were also smaller in the rbTNF‐α group than in the control. The plasma prolactin response to TRH was not affected by the rbTNF‐α treatment. In the TSH challenge, the rbTNF‐α‐treated cows had lower responses, as measured by plasma triiodothyronine and thyroxine, than the control cows. The rbTNF‐α treatment produced an increase in the basal plasma cortisol level, but the cortisol response to adrenocorticotropic hormone was the same level in both groups. The plasma concentrations of TNF‐α and interleukin‐1β in the cows were elevated by the rbTNF‐α treatment. The milk yield was reduced by the rbTNF‐α administration during 4 days. These data demonstrate that TNF‐α alters the secretion of pituitary and thyroid hormones in lactating cows. This effect may contribute to the suppression of the lactogenic function of the mammary gland observed in cases of coliform mastitis with high circulating TNF‐α levels.  相似文献   

4.
The effects of three growth hormone secretagogues (GHSs), ghrelin, growth hormone-releasing peptide-6 (GHRP-6), and growth hormone-releasing hormone (GHRH), on the release of adenohypophyseal hormones, growth hormone (GH), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), luteinising hormone (LH), prolactin (PRL) and on cortisol were investigated in young and old healthy Beagle dogs. Ghrelin proved to be the most potent GHS in young dogs, whereas in old dogs GHRH administration was associated with the highest plasma GH concentrations. The mean plasma GH response after administration of ghrelin was significantly lower in the old dogs compared with the young dogs. The mean plasma GH concentration after GHRH and GHRP-6 administration was lower in the old dogs compared with the young dogs, but this difference did not reach statistical significance. In both age groups, the GHSs were specific for GH release as they did not cause significant elevations in the plasma concentrations of ACTH, cortisol, TSH, LH, and PRL. It is concluded that in young dogs, ghrelin is a more powerful stimulator of GH release than either GHRH or GHRP-6. Ageing is associated with a decrease in GH-releasing capacity of ghrelin, whereas this decline is considerably lower for GHRH or GHRP-6.  相似文献   

5.
An attempt was made to induce precocious puberty in gilts approximately 164 days of age by stimulating a luteinizing hormone (LH) secretory pattern similar to that which occurs before normal onset of puberty. Hourly iv administration of 1 μg synthetic gonadotropin releasing hormone (GnRH) for 7 or 8 days resulted in a mean serum LH concentration of 1.7 ± .3 ng/ml in three treated gilts compared with .9 ± .1 ng/ml in three control gilts (P<.08). Serum LH peak frequency was also greater (P<.05) in treated (3.4 ± .5 peaks/4 hr) than in control gilts (1.2 ± .1 peaks/4 hr), but serum LH peak amplitude was not altered (P>.33) by GnRH treatment. All treated gilts displayed estrus and ovulated within 6 days after treatment began, and all control gilts remained prepuberal throughout the study (P=.05). Only one of the three treated gilts displayed a normal estrous cycle and reovulated after treatment. Precocious ovulation but not puberty was induced in gilts by hourly administration of 1 μg synthetic GnRH, indicating that the pituitary and ovaries of 164-day-old gilts are competent and that final sexual maturation occurs at the hypothalamic level.  相似文献   

6.
Physiology of ghrelin and related peptides   总被引:4,自引:0,他引:4  
Growth hormone (GH) released from pituitary under direct control of hypothalamic releasing (i.e., GHRH) and inhibiting (i.e., sst or SRIF) hormones is an anabolic hormone that regulates metabolism of proteins, fats, sugars and minerals in mammals. Cyril Bowers' discovery of GH-releasing peptide (GHRP-6) was followed by a search for synthetic peptide and nonpeptide GH-secretagogues (GHSs) that stimulate GH release, as well as a receptor(s) unique from GHRH receptor. GHRH and GHSs operate through distinct G protein-coupled receptors to release GH. Signal transduction pathways activated by GHS increase intracellular Ca2+ concentration in somatotrophs, whereas GHRH increases cAMP. Isolation and characterization of ghrelin, the natural ligand for GHS receptor, has opened a new era of understanding to physiology of anabolism, feeding behavior, and nutritional homeostasis for GH secretion and gastrointestinal motility through gut-brain interactions. Other peptide hormones (i.e., motilin, TRH, PACAP, GnRH, leptin, FMRF amide, galanin, NPY, NPW) from gut, brain and other tissues also play a role in modulating GH secretion in livestock and lower vertebrate species. Physiological processes, such as neurotransmission, and secretion of hormones or enzymes, require fusion of secretory vesicles at the cell plasma membrane and expulsion of vesicular contents. This process for GH release from porcine somatotrophs was revealed by atomic force microscopy (AFM), transmission electron microscopy (TEM) and immunohistochemical distribution of the cells in pituitary during stages of development.  相似文献   

7.
Thirty-five ovariectomized pony mares were used to study the relationships among luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) concentrations in blood (secretion), in pituitary (storage) and in blood after secretagogue administration, as well as the content of gonadotropin releasing hormone (GnRH) in hypothalamic areas, under various conditions of steroidal and nonsteroidal treatment. Five mares each were treated daily for 21 d with vegetable shortening (controls), testosterone (T; 150 micrograms/kg of body weight, BW), dihydrotestosterone (DHT; 150 micrograms/kg BW), estradiol (E2; 35 micrograms/kg BW), progesterone (P4; 500 micrograms/kg BW), dexamethasone (DEX; 125 micrograms/kg BW) or charcoal-stripped equine follicular fluid (FF; 10 ml). Secretagogue injections (GnRH and thyrotropin releasing hormone, TRH, at 1 and 4 micrograms/kg of BW, respectively) were given one d prior to treatment and again after 15 d of treatment. Relative to controls, treatment with T, DHT and DEX reduced (P less than .05) LH secretion, storage and response to exogenous GnRH, whereas treatment with E2 increased (P less than .05) these same characteristics. Treatment with P4 reduced (P less than .05) only LH secretion. Treatment with T, DHT, E2 and DEX reduced (P less than .05) FSH secretion, whereas treatment with P4 increased (P less than .05) it and FF had no effect (P greater than .1). All treatments increased (P less than .05) FSH storage, whereas only treatment with T and DHT increased (P less than .05) the FSH response to exogenous GnRH. Other than a brief increase (P less than .05) in PRL secretion in mares treated with E2, secretion of PRL did not differ (P greater than .1) among groups. Only treatment with E2 increased (P less than .01) PRL storage, yet treatment with T or DHT (but not E2) increased (P less than .05) the PRL response to exogenous TRH. Content of GnRH in the body and pre-optic area of the hypothalamus was not affected (P greater than .1) by treatment, whereas treatment with T, E2 and DEX increased (P less than .1) GnRH content in the median eminence. For LH, secretion, storage and response to exogenous GnRH were all highly correlated (r greater than or equal to .77; P less than .01). For FSH, only storage and response to exogenous GnRH were related (r = .62; P less than .01). PRL characteristics were not significantly related to one another. Moreover, the amount of GnRH in the median eminence was not related (P greater than .1) to any LH or FSH characteristic.  相似文献   

8.
Eight mature light-breed stallions with normal testes size, sperm output and semen quality were used to evaluate response to 3 GnRH challenge regimens in the summer in southeast Texas. Gonadotropin releasing hormone (50 μg) was administered intravenously once to each of eight stallions after three days of sexual rest (50 μg GnRH-1X). The same stallions were administered either 5μg GnRH intravenously once hourly for three injections (5 μg GnRH-3X) and 15μg GnRH intravenously once (15μg GnRH-1X) one and two weeks later. Blood samples were collected prior to and at intervals after GnRH administration. Plasma was immediately separated from blood samples and was frozen until assayed for LH, FSH, estradiol and testosterone concentrations. Percentage changes in hormone concentrations from pre-treatment values (baseline) were analyzed by paired studient'st-test to detect significant rises in hormone concentrations. Group mean percentage changes in hormone concentrations were analyzed by analysis of variance to compare responses among treatments. A computerized peak-detection algorithm (PC Pulsar) was used to detect peaks in LH and testosterone concentrations following 5 μg GnRH-3X and 15 μg GnRH-1X treatment.No differences (P>0.10) were detected in percentage change from baseline concentration for LH, FSH, or testosterone at one or two hours after administration of any of the three regimens of GnRH. When more frequent sampling intervals were analyzed for 5 μg GnRH-3X or 15 μg GnRH-1X treatments, no differences were detected in percentage change from baseline concentration for any hormone at 15, 30 or 60 minutes. Thereafter, percentage changes in concentrations of LH and FSH remained increased for 5μg GnRH-3X compared to 15 μg GnRH-1X treated stallions (P<0.05). Percentage changes in concentrations of testosterone were increased for 5μg GnRH-3X compared to 15 μg GnRH-1X treated stallions from 180–300 min (P<0.05), while no differences (P>0.10) were detected between 5 μg GnRH-3X and 15 μg GnRH-1X treated stallions for changes in concentrations of estradiol throughout the experiment.For 15 μg GnRH-1X treated stallions, maximum concentrations of LH in PC Pulsar-detected peaks occurred most commonly at 15 to 30 minutes (7/8 treatment periods) after GnRH injection. Maximum concentrations of testosterone in PC Pulsar-detected peaks occurred most commonly at 60–120 min (7/8 treatment periods) after GnRH injection.A protocol of blood sampling prior to, and 15, 30, 60 and 120 minutes after, intravenous administration of small doses of GnRH would be practical for challenge testing of stallions during the breeding season. In order to reduce cost of hormone assays, we suggest assay of the pre-challenge blood sample (baseline) could include LH, FSH, testosterone and estradiol concentrations (to assess overall hypothalamic-pituitary-testicularfunction), while only LH and testosterone concentrations need be determined after GnRH administration (to assess pituitary and testicular responsiveness). Assay for LH could be done on only the 15 and 30 minute post-GnRH samples, and assay for testosterone could be done on only the 60 and 120 minute post-GnRH samples. Failure to achieve approximately a 50% increase in LH concentration by 30 minutes after GnRH administration, and/or failure to achieve approximately a 100% increase in testosterone concentration by two hours after GnRH administration, could be further pursued either by treatment with increasing dosages of GnRH, or repeated administration of GnRH at hourly intervals, as has been suggested by other workers.  相似文献   

9.
Several different amino acids and peptides control secretion of adenohypophysial hormones and this control may be indirect, via the modulation of hypothalamic hormone secretion. Indeed, classical hypothalamic hormones (e.g., gonadotropin-releasing hormone [GnRH], growth hormone-releasing hormone [GHRH], somatostatin, etc.) may be released into the hypothalamo-hypophysial portal vasculature, travel to the adenohypophysis and there stimulate or inhibit secretion of hormones. Alternatively, some amino acids and peptides exert direct stimulatory or inhibitory effects on the adenohypophysis, thereby impacting hormone secretion. In swine, the most extensively studied modulators of adenohypophysial hormone secretion are the excitatory amino acids (ExAA), namely glutamate and aspartate, and the endogenous opioid peptides (EOP). In general, excitatory amino acids stimulate release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), and prolactin (PRL). Secretion of adenohypophysial hormones induced by ExAA is primarily, but perhaps not exclusively, a consequence of action at the central nervous system. By acting primarily at the level of the central nervous system, EOP inhibit LH secretion, stimulate GH release and depending on the animal model studied, exert either stimulatory or inhibitory influences on PRL secretion. However, the EOP also inhibited LH release by direct action on the adenohypophysis. More recently, peptides such as neuropeptide-Y (NPY), orexin-B, ghrelin, galanin, and substance P have been evaluated for possible roles in controlling adenohypophysial hormone secretion in swine. For example, NPY, orexin-B, and ghrelin increased basal GH secretion and modulated the GH response to GHRH, at least in part, by direct action on the adenohypophysis. Secretion of LH was stimulated by orexin-B, galanin, and substance P from porcine pituitary cells in vitro. Because the ExAA and various peptides modulate secretion of adenohypophysial hormones, these compounds may play an important role in regulating swine growth and reproduction.  相似文献   

10.
From case studies in humans it is known that primary hypothyroidism (PH) may be associated with morphological and functional changes of the pituitary. There is no insight into the time scale of these changes. In this study, seven beagle dogs were followed up for 3 years after the induction of primary hypothyroidism. Three of these dogs were followed up for another 1.5 years while receiving l-thyroxine. Adenohypophyseal function was investigated at 2-month intervals with the combined intravenous injection of CRH, GHRH, GnRH, and TRH, and measurement of the plasma concentrations of ACTH, GH, LH, PRL, and TSH. In addition, after 2 years of hypothyroidism a single TRH-stimulation test and a somatostatin test were performed, with measurements of the same pituitary hormones. Every 6 months the pituitary gland was visualized by computed tomography (CT). Induction of PH led to high plasma TSH concentrations for a few months, where after concentrations gradually declined to values no longer significantly different from pre-PH values. A blunted response to stimulation of TSH release preceded this decline. Basal plasma GH concentrations increased during PH and there was a paradoxical hyperresponsiveness to TRH stimulation. Basal GH concentrations remained elevated and returned only to low values during l-thyroxine treatment. Basal PRL concentrations decreased significantly during PH and normalized after several months of l-thyroxine treatment. The pituitary gland became enlarged in all dogs. Histomorphology and immunohistochemical studies in 4 dogs, after 3 years of PH, revealed thyrotroph hyperplasia, large vacuolated thyroid deficiency cells, and decreased numbers of mammotrophs. Several cells stained for both GH and TSH. In conclusion, with time PH led to a loss of the TSH response to low T4 concentrations, hypersecretion of GH, and hyposecretion of PRL. The enlarged pituitaries were characterized by thyrotroph hyperplasia, large vacuolated thyroid deficiency cells, and double-staining cells, which are indicative of transdifferentiation.  相似文献   

11.
The aim of this study was to determine the effects of gonadotrophin releasing hormone (GnRH) administration on the plasma concentrations of reproductive hormones in intact and ovariectomized (OVX) bitches. Therefore, blood samples were collected at multiple times before and after the administration of 10 microg/kg GnRH (Fertagyl)) for the determination of the plasma concentrations of luteinizing hormone (LH), oestradiol, progesterone and testosterone in six anoestrus and in six OVX bitches. The mean plasma LH concentrations before and 60 min after GnRH administration were significantly lower in the anoestrous bitches than in the OVX bitches. In both groups GnRH administration resulted in a significant increase in the plasma LH concentration. The highest plasma LH concentrations were found at 10 min after GnRH administration and these values did not differ significantly between the two groups. Only in the anoestrous bitches a significant increase in plasma oestradiol concentrations was found after GnRH administration and these values were significantly higher than those in the OVX bitches. The plasma concentrations of progesterone and testosterone were low (close to or below the limit of quantitation) both before and after GnRH administration and the differences between anoestrous and OVX bitches were not significant. It can be concluded that (i) basal plasma LH concentration is significantly higher in OVX bitches than in anoestrous bitches, (ii) plasma LH concentration increases after GnRH administration in both anoestrous and OVX bitches, (iii) GnRH administration causes a significant rise in plasma oestradiol concentration only if ovarian tissue is present and (iv) measurement of plasma progesterone and testosterone concentrations before and after GnRH administration does not aid in distinguishing between anoestrous and OVX bitches. The results of this study may provide a basis for the diagnosis of remnant ovarian tissue and verification of neuter status in the bitch.  相似文献   

12.
The control of growth is a complex mechanism regulated by several metabolic hormones including growth hormone (GH) and thyroid hormones. In avian species, as well as in mammals, GH secretion is regulated by hypothalamic hypophysiotropic hormones. Since thyrotropin-releasing hormone (TRH) and growth hormone-releasing factor (GRF) are potent GH secretagogues in poultry, we were interested in determining the influence of daily intravenous administration of either peptide or both simultaneously on circulating GH and IGF-I concentrations and whether an improvement in growth rate or efficiency would be obtained.

Male broiler chicks were injected once daily for a period of 21 days with either GRF (10 μg/kg), TRH (1 μg/kg) or both GRF and TRH (10 and 1 μg/kg respectively) between four and seven weeks of age. On the last day of the experiment, following intravenous injection of TRH, GRF or a combination of GRF and TRH, plasma GH levels were significantly (P<.05) increased to a similar extent in control chicks and in those which had received daily peptide injections for the previous 21 days. Circulating GH levels between 10 and 90 min post-injection were significantly (P<.05) greater and more than additive than GH levels in chicks injected with both GRF and TRH when compared to those injected with either peptide alone. Mean plasma T3 concentrations during that same time period were significantly elevated (P<.05) above saline-injected control chick levels in birds treated with TRH or GRF and TRH respectively, regardless of whether the chicks had received peptide injections for the previous 21 days. There was no evidence of pituitary refractoriness to chronic administration of either TRH or GRF injection in terms of growth or thyroid hormone secretion.

Despite the large elevation in GH concentration each day, growth rate, feed efficiency and circulating IGF-I concentrations were not enhanced. Thus the quantity or secretory pattern of GH secretion induced by TRH or GRF administration was not sufficient to increase plasma IGF-I concentration or growth.  相似文献   


13.
Grouping of sows is a stressful event until the ranking is established. The purpose of this study was to simulate stress by repeated administration of porcine corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH)/tetracosactide and to study its influence on endocrine profile and ovulation. Four multiparous sows were used and blood was collected every 2 h from the onset of pro-oestrus until 12 h after ovulation. The first oestrus after weaning was used to check ovulation and acclimate the sows to their environment. The second oestrus after weaning was used as control. At their third oestrus CRH (0.6 microg/kg) and at their fourth oestrus ACTH (5 microg/kg) were given every 4 h from onset of oestrus until ovulation. The total 'area under the curve' of cortisol was twofold larger in two of four sows during the CRH treatment period, and two- to fourfold larger (p < or = 0.05) during the ACTH treatment period, compared with the corresponding control period. In three sows, there was no clear effect of either CRH or ACTH on the levels of oestradiol 17beta, luteinizing hormone (LH) or on the timing of ovulation. One sow was different in all hormonal patterns and also in the timing of ovulation. In all four sows, ACTH treatment lowered the baseline level of prostaglandin F(2 alpha)-metabolite. Therefore, we conclude that stage of the oestrous cycle seems to be of importance when investigating the influence of exogenous administration of CRH/ACTH on hormonal pattern and ovulation time in the sow.  相似文献   

14.
GnRH (gonadotrophin releasing hormone) is a key hormone of reproductive function in mammals; agonist forms have been largely developed, and data concerning their use in small animal reproduction are now abundant. GnRH agonists act by a two-step mechanism. First, their agonist properties on the pituitary will cause marked LH (luteinizing hormone) and FSH (follicle-stimulating hormone) secretion into the bloodstream, accompanied by an increase in the concentrations of sex steroid hormones. Then, in case of constant administration, GnRH agonists will lead to pituitary desensitization, and FSH and LH levels will collapse. These two effects have been widely documented, and these compounds have many potential benefits in a clinical context, capitalizing both on their stimulating and sterilizing effects.  相似文献   

15.
Twelve long-term ovariectomized (OVX) pony mares were used to determine the effects of dexamethasone (DEX) or progesterone (PR) on concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in daily blood samples and after administration of gonadotropin releasing hormone (GnRH). All mares were subsequently administered dihydrotestosterone (DHT) to determine if DEX or PR treatment altered the FSH or LH response to this androgen. Daily blood sampling was started on day 1. After a pretreatment injection of GnRH on day 5, four mares were administered DEX at 125 micrograms/kg of body weight (BW), four mares were administered PR at 500 micrograms/kg of BW and four mares were administered vehicle. Injections were given subcutaneously in vegetable shortening daily through day 14. After a second injection of GnRH on day 15, all mares were administered DHT in shortening at 150 micrograms/kg of BW. Injections of DHT were given daily through day 24. A final injection of GnRH was given on day 25. Treatment of mares with DEX 1) reduced (P less than .01) daily LH secretion and briefly increased (P less than .05) daily FSH secretion and 2) increased (P less than .01) the FSH response to exogenous GnRH. Treatment of mares with PR had no effect on daily LH secretion but increased (P less than .05) daily FSH secretion and increased (P less than .01) the FSH response to exogenous GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study investigated possible integrated links in the neuroanatomical pathways through which the activity of neurones in the paraventricular nucleus and arcuate nucleus may modulate suppression of gonadotrophin‐releasing hormone (GnRH) secretion during stressful situations. Double‐label immunofluorescence and laser scanning confocal microscopy were used to examine the hypothalamic sections from the follicular phase ewes. Noradrenergic terminals were in close contact with 65.7 ± 6.1% corticotrophin‐releasing hormone (CRH) and 84.6 ± 3.2% arginine vasopressin (AVP) cell bodies in the paraventricular nucleus but not with β‐endorphin cell bodies in the arcuate nucleus. Furthermore, γ‐amino butyric acid (GABA) terminals were close to 80.9 ± 3.5% CRH but no AVP cell bodies in the paraventricular nucleus, as well as 60.8 ± 4.1%β‐endorphin cell bodies in the arcuate nucleus. Although CRH, AVP and β‐endorphin cell terminals were identified in the medial pre‐optic area, no direct contacts with GnRH cell bodies were observed. Within the median eminence, abundant CRH but not AVP terminals were close to GnRH cell terminals in the external zone; whereas, β‐endorphin cells and terminals were in the internal zone. In conclusion, neuroanatomical evidence is provided for the ewe supporting the hypothesis that brainstem noradrenergic and hypothalamic GABA neurones are important in modulating the activity of CRH and AVP neurones in the paraventricular nucleus, as well as β‐endorphin neurones in the arcuate nucleus. These paraventricular and arcuate neurones may also involve interneurones to influence GnRH cell bodies in medial pre‐optic area, whereas the median eminence may provide a major site for direct modulation of GnRH release by CRH terminals.  相似文献   

17.
A series of experiments was performed to determine the factor(s) responsible for an apparent inhibition of GH secretion in mares administered the GH secretagogue EP51389 in combination with GnRH, thyrotropin-releasing hormone (TRH), and sulpiride. Experiment 1 tested the repeatability of the original observation: 10 mares received EP51389 at 10 microg/kg BW; five received TRH (10 microg/kg BW), GnRH (1 microg/kg BW), and sulpiride (100 microg/kg BW) immediately before EP51389, and five received saline. The mixture of TRH, GnRH, and sulpiride reduced (P = 0.0034) the GH response to EP51389, confirming the inhibitory effects. Experiment 2 tested the hypothesis that sulpiride, a dopamine antagonist, was the inhibitory agent. Twelve mares received EP51389 as in Exp. 1; six received sulpiride before EP51389 and six received saline. The GH responses in the two groups were similar (P > 0.1), indicating that sulpiride was not the inhibitory factor. Experiment 3 tested the effects of TRH and(or) GnRH in a 2 x 2 factorial arrangement of treatments. Three mares each received saline, TRH, GnRH, or the combination before EP51389 injection. There was a reduction (P < 0.0001) in GH response in mares receiving TRH, whereas GnRH had no effect (P > 0.1). Given those results, Exp. 4 was conducted to confirm that TRH was inhibitory in vivo as opposed to some unknown chemical interaction of the two compounds in the injection solution. Twenty mares received TRH or saline and(or) EP51389 or saline in a 2 x 2 factorial arrangement of treatments. Injections were given separately so that the two secretagogues never came in contact before injection. Again, TRH reduced (P < 0.0001) the GH response to EP51389. In addition, TRH and EP51389 each resulted in a temporary increase in cortisol concentrations. Experiment 5 tested whether TRH would alter the GH response to GHRH itself. Twelve mares received porcine GHRH at 0.4 microg/kg BW; six received TRH prior to GHRH and six received saline. After adjustment for pretreatment differences between groups, the GHRH-induced GH response was completely inhibited (P = 0.068) by TRH. Exp. 6 was a repeat of Exp. 5, except geldings were used (five per group). Again, pretreatment with TRH inhibited (P < 0.0001) the GH response to GHRH. In conclusion, TRH inhibits the GH response not only to EP51389 but also to GHRH in horses, and in addition to its known secretagogue action on prolactin and TSH it may also stimulate ACTH at the dosage used in these experiments.  相似文献   

18.
The objective of this study was to determine the effect of a subtherapeutic level of chlortetracycline (CTC) fed to growing beef steers under conditions of limited and adequate dietary protein on plasma concentrations of GH, thyroid-stimulating hormone (TSH), and thyroid hormones before and after an injection of thyrotropin-releasing hormone (TRH) + GHRH. Young beef steers (n = 32; average BW = 285 kg) were assigned to a 2x2 factorial arrangement of treatments of either a 10 or 13% crude protein diet (70% concentrate, 15% wheat straw, and 15% cottonseed hulls) and either a corn meal carrier or carrier + 350 mg of CTC daily top dressed on the diet. Steers were fed ad libitum amounts of diet for 56 d, and a jugular catheter was then placed in each steer in four groups (two steers from each treatment combination per group) during four consecutive days (one group per day). Each steer was injected via the jugular catheter with 1.0 microg/kg BW TRH + .1 microg/kg BW GHRH in 10 mL of saline at 0800. Blood samples were collected at -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 120, 240, and 360 min after releasing hormone injection. Plasma samples were analyzed for GH, TSH, thyroxine (T4), and triiodothyronine (T3). After 84 d on trial, the steers were slaughtered and the pituitary and samples of liver were collected and analyzed for 5'-deiodinase activity. Feeding CTC attenuated the GH response to releasing hormone challenge by 26% for both area under the response curve (P<.03) and peak response (P<.10). Likewise, CTC attenuated the TSH response to releasing hormone challenge for area under the response curve by 16% (P<.10) and peak response by 33% (P<.02), and attenuated the T4 response for area under the curve by 12% (P<.08) and peak response by 14% (P<.04). Type II deiodinase activity in the pituitary was 36% less (P<.02) in CTC-fed steers than in steers not fed CTC. The results of this study are interpreted to suggest that feeding subtherapeutic levels of CTC to young growing beef cattle attenuates the release of GH and TSH in response to pituitary releasing hormones, suggesting a mechanism by which CTC may influence tissue deposition in cattle.  相似文献   

19.
Twenty ovariectomized pony mares were used to determine if dihydrotestosterone propionate (DHTP) administration, with or without estradiol benzoate (EB) pretreatment, would have the same effects on follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion as testosterone propionate (TP) administration. All mares were given an initial injection of gonadotropin releasing hormone (GnRH) to characterize their LH and FSH response, and then two groups of mares (n = 4/group) were administered EB (22 micrograms/kg of body weight), two groups were administered vehicle (safflower oil) and a fifth group was administered TP (175 micrograms/kg of body weight) daily for 10 days. Following a second injection of GnRH, one group of EB-treated mares and one group of oil-treated mares were administered DHTP (175 micrograms/kg of body weight) daily for 10 days; the other EB- and oil-treated mares were administered oil and the TP-treated mares were continued on the same dose of TP for 10 days. A final injection of GnRH was then given. Treatment with EB increased (P less than .01) concentrations of LH in daily blood samples and increased (P less than .05) the LH response to exogenous GnRH. Administration of TP or DHTP reduced (P less than .05) both daily LH concentrations and the LH response to exogenous GnRH. Concentrations of FSH in daily blood samples were reduced (P less than .05) and the FSH response to exogenous GnRH was increased (P less than .05) by administration of EB alone, DHTP alone or TP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
作者从促性腺激素释放激素(G nRH)、促卵泡素(FSH)、促黄体素(LH)、抑制素(INH)、孕酮、雌二醇等方面综述了绵羊高繁殖力内分泌学机制的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号