首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy metabolism of broiler breeders housed in groups was measured in large open-circuit respiration chambers. The design, function and calibration of the chambers are described. Each of the three chambers has a capacity for 24 pullets or adult layers, or 16 adult broiler breeders. Control of ventilation rate is by calibrated choked-flow nozzles. Before experiments were started the system was assessed by CO2 infusion and recovery and ethanol combustion studies. Percentage CO2 recoveries were greater than 98 of infused and the mean (+/- SD) quotient of CO2 produced to O2 consumed from the combusion of ethanol was 0.67 (+/- 0.02). Forty-eight broiler breeder hens in lay were placed in the respiration chambers (16 per chamber) and fed at different rates from around maintenance to about twice this value. The energy required for maintenance (MEm) was 365 kJ/kgW0.75 d and the efficiency of utilisation of metabolisable energy (ME) for production (kp) was 0.70. Starvation heat production was about 350 kJ/kgW0.75 d and was shown to affect the derived values of the energetic parameters when included in the relationship between retained energy and metabolisable energy intake. Published results were recalculated and found to support this.  相似文献   

2.
In Exp. 1, six individually fed Hereford steers were exposed to hot (HOT) or thermoneutral (TNL) environmental conditions (ENV) while being adapted (stepped-up) to a finishing diet by decreasing roughage level from 55 to 10% of the diet DM over 17 d. Only at 10% roughage did heat exposure result in reduced (P<0.05) calculated ME intake (MEI) and measured DMI. In the TNL treatment group, pulse rates increased as MEI and diet energy density increased (P<0.05), whereas in the HOT treatment group, pulse rate tended to decline when MEI declined. Body temperature (BT) of steers increased under both TNL and HOT conditions. In Exp. 2, six individually fed feedlot steers were assigned in a replicated (n = 3) 2 × 3 factorial arrangement of treatments and exposed to HOT or TNL ENV, whereas the diet treatments were a 6% roughage diet fed ad libitum (HE), or 90% of ad libitum (RE), or a 28% roughage diet (HR) fed ad libitum such that MEI approximated the MEI of the RE group. Steers fed HR diets had lower (P<0.05) respiratory rate and BT than HE and RE fed steers. Steers fed RE diets had greater (P<0.05) water intake than HE fed steers when averaged across ENV. Lower BT (P<0.05) of cattle fed RE and HR would indicate MEI prior to exposure to excessive heat load (EHL) influences ability of cattle to cope with subsequent exposure to excessive heat load. Data also indicate that adapting cattle to high energy diets partially contributes to EHL.  相似文献   

3.
Thirty-two pigs weighing approximately 50 kg were maintained in respiration chambers to measure their heat production and the partition of energy retention between protein and fat deposition at two environmental temperatures (23 and 13 C) and with two energy levels in the diet: 3.39 (HE) and 2.92 (LE) Mcal ME/kg. From energy balance data, maintenance requirements (MEm) and the efficiency (k) of energy (ME) utilization for energy deposition were calculated for each treatment. For both diets, MEm averaged 122 kcal ME/kg.75 at 23 C, the rate of increase of MEm being 3.7 kcal ME/kg.75 for each 1 C decrease in the environmental temperature. At 23 C, k was higher with the HE diet (.81 vs .55) and similar for both diets (.78) at 13 C. At comparable ME intakes, heat production was higher with the LE diet at 23 C, and the rate of increase of heat production between 23 and 13 C was lower with the LE diet (1 kcal/kg.75) than with the HE diet (3 kcal/kg.75), resulting in similar heat production at 13 C for both diets. This resulted in an interaction (P less than .01) between temperature and diet on heat production. Protein retention was lower (P less than .01) at 13 C but unaffected by diet at both temperatures. This resulted in an interaction (P less than .01) between temperature and diet on fat retention. Consequently, energy of LE and HE diets was similarly utilized at 13 C, while at 23 C, the HE diet was better utilized. The comparison between these results and those obtained in growth experiments is discussed.  相似文献   

4.
An experiment was conducted in which the metabolic utilization of energy was measured in individually penned pigs from seven groups that differed in genotype and(or) sex and ranged in body weight between 20 and 107 kg. The animals were fed a diet containing, on a DM basis, 14.7 MJ ME and at least 21% CP. Heat production was measured in an open-circuit calorimeter, and energy, nitrogen, and fat balances were determined at regular intervals over the growing period; a total of 177 measurements were performed. Body composition of the animals was measured by serial slaughter, and these data were used for estimating the body composition of an animal at a given weight through allometric regression. A factorial analysis procedure was used to estimate the utilization of ME by regressing the ME intake on the observed protein and lipid deposition rates. The intercept of this equation is the maintenance energy requirement (MEm) and was represented either as a function of body weight with group-specific parameters (MEm = a(i) BWb) or as a function of the muscle and visceral mass with an additional additive group effect (MEm = aM muscle(b) + a(v) viscera(b) + G(i)). With BW as dependent variable, the exponent b was close to .60 and differed significantly from .75. The regression coefficient (a(i)) averaged 1.02 MJ ME/kg.60 but it was different for most groups, indicating that different groups of animals have different maintenance requirements. Fixing the exponent to .75 consistently underestimated the maintenance requirement. When the exponent b was not fixed to .75 but estimated, the partial efficiencies for protein and lipid deposition were .62 and .84, respectively. Body muscle and visceral mass could explain a large part of the variation in MEm. Viscera contributed three times more to MEm (per kilogram of mass raised to the .70 power) than did muscle. Even though the muscle mass exceeds to a large extent the visceral mass in animals, the contribution of muscle to MEm was lower than that of viscera for most groups.  相似文献   

5.
Thirty-two beef cows (467 kg) were individually fed native grass hay and supplement for two 14-d periods in each of 2 yr. Supplement treatments and amounts fed (kilograms/day) were negative control (NC), 0, or equal amounts of protein from soybean meal (SBM), .7; a blend of soybean meal and corn gluten feed (SBM/CGF), 1.0; or corn gluten feed (CGF) 1.6. Cows received supplement at 0645 and had ad libitum access to native grass hay from 0700 to 1130 and from 1530 to 2000. Compared with NC, all protein supplements increased (P less than .05) ruminal NH3, propionate and butyrate concentrations at 4 and 25 h postfeeding. Ruminal fluid pH, total VFA and acetate concentrations at 4 and 35 h postfeeding were not affected by supplements. All supplements increased (P less than .01) hay intake as well as hay, acid detergent fiber (ADF) and total diet dry matter (DM) digestibility. Compared to supplemental SBM, feeding CGF reduced (P less than .01) hay intake. Calculated daily intakes of metabolizable energy (ME) were 12, 17, 18, and 17 Mcal for NC, SBM, SBM/CGF and CGF, respectively. Hay intake, DM and ADF digestibility and ME intakes tended to be higher for SBM/CGF than for the average of SBM and CGF fed alone. Intakes of digestible DM and ADF were not altered by protein supplements, suggesting that intake responses were due to increased diet digestibility. Corn gluten feed appears to be an effective source of supplemental protein and energy for cows consuming low-quality roughage.  相似文献   

6.
Fifty-eight purebred castrated male Iberian (IB) piglets (initial BW 9.9 ± 0.1 kg) were used in an experiment to determine the effect of dietary protein content (PC) and feeding level (FL) on the rates of BW gain, whole body protein deposition (PD), and energy utilization between 10 and 25 kg of BW using the serial slaughter method. Treatments followed a 4 × 2 factorial arrangement with 4 PC (201, 176, 149, and 123 g of CP/kg of DM) and 2 FL (0.95 and 0.70 × ad libitum) and 6 or 7 piglets per combination of treatments. All diets were formulated to have an optimal AA pattern. Six piglets were slaughtered at the start of the trial to estimate initial body composition. The experimental pigs were individually housed in an environmentally controlled room (27 ± 2°C) until they reached 25 kg of BW, when they were slaughtered and analyzed for body composition. Positive linear effects of dietary PC on ADG, G:F, and gain:ME intake were observed (P < 0.001). Piglets fed at the highest FL showed greater ADG, G:F, and gain:ME intake (P < 0.001). An average increase was estimated to be 38.0 g of gain/MJ of ME intake. Protein deposition increased linearly from 35.6 to 50.9 g/d with increasing dietary PC (P < 0.001). A daily increase was estimated to be 0.35 g of PD/g of CP intake. Although the maximal genetic potential for PD of the IB piglet was not attained, a maximal value of 59.9 g/d for whole-body PD was achieved when the diet provided 201 g of CP/kg of DM and was fed at 0.95 × ad libitum. Piglets on the highest FL deposited on average 39% more body protein (P < 0.001) than restricted piglets. An average value of 4.39 g increase in PD/MJ of ME intake was obtained for diets containing 201 and 176 g of CP/kg of DM. Maintenance energy requirements and net efficiency of utilization of ME for growth, calculated by linear regression of ME intake on body retained energy, were 427 kJ/kg of BW(0.75)·d(-1) and 0.552, respectively. The corresponding partial efficiencies of utilization of ME for protein and fat deposition were 0.378 and 0.672, respectively, considerably less than the accepted values for conventional pig breeds. Practical diets of the young IB piglet should contain at least 201 g of ideal CP/kg of DM.  相似文献   

7.
Variation among twin beef cattle in maintenance energy requirements   总被引:2,自引:0,他引:2  
The genetic variation in energy expenditures of cattle at fasting (FHP) and maintenance (MEm) was determined by using 12 pairs of monozygous twins at 20 mo of age. The pairs were of two breed types, eight Angus x Hereford (three steers, five heifers) and four Barzona x Hereford (three steers, one heifer). The heifers were 132 +/- 13 d pregnant at the time of measurement. The pairs were fed at 1.15 x maintenance energy requirements for a minimum of 30 d prior to heat production (HP) measurements in dual indirect respiration calorimetry chambers. The diet fed was cracked corn:alfalfa hay (45:55) with a determined ME of 2.47 +/- .02 Mcal/kg DM. This diet was fed individually for 7 d prior to and during two consecutive 22-h HP measurements. The animals then were fasted for 2 d and fasting heat production measurements (FHP) were made on d 3 and 4 of the fast. Metabolizable energy required for MEm was calculated iteratively by assuming a semi-log relationship between HP and metabolizable energy intake. There were no differences (P greater than .10) in measured energy expenditures due to different breed type. The FHP and efficiency of ME use for MEm (Km) were similar between sexes, although heifers had lower (P less than .025) MEm than steers. Twin pair effects were detected for FHP (P less than .005) and MEm (P less than .05) but not for Km. Broad sense heritability estimates were calculated as the intraclass correlation between members of monozygous twin pairs. Heritability estimates for MEm, FHP, and Km were .52 +/- .22, .75 +/- .13, and .34 +/- .27, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To quantify the utilization of ME by growing pigs, a factorial analysis method is often used in which the ME intake is regressed on protein (PD) and lipid deposition (LD) rates. The approach has been criticized because there often is a strong correlation between PD and LD, which makes accurate estimation of model parameters difficult. The current study describes a nonlinear multivariate analysis procedure in which PD and LD are the result of variation in ME intake. The approach requires a hypothesis concerning the partitioning of ME intake above maintenance between PD and LD. The method was evaluated using data for growing pigs of different genotypes and sex and weighing between 20 and 107 kg that were offered a diet close to ad libitum. Energy, nitrogen, and fat balances were determined at regular intervals over the growing period. The maintenance energy requirement was expressed as a function of BW (with group-specific parameters) or as a function of muscle and visceral mass. The maintenance energy requirements ranged from 913 to 1,070 kJ ME/((kg BW).60.d) for obese castrates and boars of a synthetic line, respectively. Viscera contributed 1,558 kJ ME/ ((kg tissue).70.d) to the maintenance energy requirement, whereas muscle contributed only 555 kJ ME/ ((kg tissue).70.d). It was assumed that the proportion of ME intake (above maintenance) designated for PD declined linearly with increasing BW. At 20 kg of BW, 49% of ME intake above maintenance was designated for PD in lean genotypes, whereas this was only 34% in obese genotypes. In general, with increasing BW, less energy was designated for PD, but this relationship depended on genotype and sex. Extremely lean male genotypes maintained a constant partitioning of energy between PD and LD for all BW. The energetic efficiencies varied (depending on the model used to express the maintenance requirement) between .58 and .60 for PD and .77 and .82 for LD. Extrapolation of results suggested that animals fed at maintenance energy level would still deposit protein at the expense of body lipid. It is argued that this finding requires nonbiological efficiencies of lipid catabolism and protein synthesis and illustrates the limitation of the maintenance concept for growing animals. The multivariate analysis method proposed here circumvents many of the problems associated with the factorial regression analysis of ME intake on PD and LD. The method can be used to further refine nutritional models describing growth in pigs.  相似文献   

9.
Data from three comparative slaughter experiments with individually fed Nellore bulls (n = 31) and steers (n = 66) were utilized to determine their NEm and NEg requirements when fed high-forage diets. The experimental design provided ranges in ME intake, BW, and ADG for the development of regression equations to predict NEm and NEg requirements. The Nellore bulls (Trial 1) were divided into two intake levels (ad libitum and 65% of the ad libitum). The steers (Trials 2 and 3) were allocated to three intake levels (ad libitum and 55 and 70% of the ad libitum). In both trials, there were three slaughter groups within each intake level. The three end points for the bulls were different days on treatment (100, 150, and 190 d and 130, 180, and 200 d, respectively, for older and younger animal subgroups). The steers were slaughtered when animals of the ad libitum treatment reached 400, 440, and 480 kg shrunk BW (SBW) on average for the first, second, and third group, respectively. For all body composition determinations, whole empty body components were weighed, ground, and subsampled for chemical analysis. In each of the trials, initial body composition was determined with equations developed from a baseline slaughter group, using SBW and empty BW (EBW), fat (EBF), and protein (EBP) as variables. The NEm was similar for bulls and steers; NEm averaged 77.2 kcal/ kg0.75 EBW. However, the efficiency of conversion of ME to net energy for maintenance was greater for steers than for bulls (68.8 and 65.6%, respectively), indicating that bulls had a greater ME requirement for maintenance than steers (5.4%; P < 0.05). Our analyses do not support the NRC (2000) conclusion that Nellore, a Bos indicus breed, has a lower net energy requirement for maintenance than Bos taurus breeds. An equation developed with the pooled data to predict retained energy (RE) was similar to the NRC (2000) equation. A second equation was developed to predict RE adjusted for degree of maturity (u): RE = (6.45 - 2.58/u) x EWG x e(0.469) x u), where u = current EBW/final EBW in which final EBW was 365 kg for steers and younger bulls and 456 kg for older bulls at 22% EBF, respectively.  相似文献   

10.
Mature geldings at maintenance were fed different diets in a 4 x 4 Latin square design balanced to account for residual effects in an attempt to determine whether differences in the digestibility of the fibrous portions of feedstuffs would influence dietary nitrogen (N) requirements. Diet 1 contained corn and soybean meal (SBM); diet 2, corn, corn oil and urea; diet 3, corn, SBM, straw and urea; diet 4, corn, alfalfa and urea. Urea supplied 50% of the total N in diets 2 and 3 and 39% of the total N in diet 4. The diets were fed in amounts that met National Research Council (NRC) recommendations for daily digestible energy intakes by mature horses at maintenance and met or exceeded total daily N requirements. True absorbed N was calculated by subtracting the fecal N associated with neutral detergent fiber (NDF-N) from total N intakes; true digestibilities of N ranged from 92.4 to 95.9%. Endogenous and metabolic fecal N excretions ranged from .37 to .56 g N/100 g dry matter intake. Although none of the diets as fed were deficient in N, apparent N digestibility was only 64% of N intake when the horses were fed the diet containing straw (diet 3), compared with 72.5 to 79.6% of total N intake among diets 1, 2 and 4 (P less than .01). Fecal excretions of water soluble, bacterial cell-associated and intestinal cell-associated N fractions were greatest when diet 3 was fed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Fourteen mature, nonpregnant, nonlactating Angus cows (498 kg) were individually fed through two consecutive phases (maintenance [M], 80 d and ad libitum [A], 70 to 79 d) to estimate within-herd variation in individual cow ME requirements for maintenance (MEm) and to identify factors contributing to this variation. Body composition was determined at initiation of phase M, at termination of phase M (also initiation of phase A) and at the end of phase A by a two-pool D2O dilution technique. Daily MEm averaged 156.7 kcal/kg BW.75 (SD = 18.4 kcal/kg BW.75) and efficiency of ME use for tissue gain or loss averaged 76% (SD = 30%). Estimates of ME intake to maintain 1 kg of protein or 1 kg of fat were 192.9 (SE = 24.8) or 20.7 (SE = 21.5) kcal. These data indicate that among cows of similar fat masses, those with larger protein masses had higher energy requirements for maintenance. Daily MEm was positively correlated (P less than .16) with liver weight (r = .40) and relative proportions of liver (r = .44; P less than .16) and heart (r = .48; P less than .10) in the empty body. Also, daily MEm was correlated negatively (P less than .05) with weight (r = -.71) and relative proportion of omental and mesenteric fat (r = -.78). Estimates of ME required for deposition of 1 kcal of protein or fat were 5.56 (SE = 1.01) or 1.26 (SE = .09) kcal. Weight of liver and the sum of liver, spleen, kidney and heart weights increased 1.58 (R2 = .47) and 1.95 kg (R2 = .52) per kilogram of daily weight gain during phase A. These results indicate that increased performance caused increased organ mass (liver).  相似文献   

12.
Metabolizable energy for maintenance (MEm) was estimated using 123 mature cows of eight diverse breed groups. Cows in each breed group were allotted at random 1) to limit-feeding to approximate maintenance or 2) to ad libitum access to feed. The MEm values were calculated by regression of change in body energy on ME intake. The MEm values for mature Hereford, Red Poll, Hereford x Red Poll, Red Poll x Hereford, Angus x Hereford, Angus x Charolais, Brahman x Hereford, and Brahman x Angus breed types were as follows: 145, 169, 148, 149, 144, 152, 139, and 143 kcal.kg-.75.d-1, respectively. Bos indicus-cross cows ranked lowest for MEm/kg.75. Angus x Hereford cows averaged highest in terms of grams of calf weaned per mature female exposed divided by yearly MEm requirement. Hereford x Red Poll reciprocal crosses on average required 640 kcal less total daily MEm per animal than Hereford and Red Poll straightbreds.  相似文献   

13.
Energy values and amino acid (AA) digestibility of dried yeast (DY) and soybean meal (SBM) were determined in 2 experiments with growing pigs. Experiment 1 was conducted to determine the digestible energy (DE) and metabolizable energy (ME) in DY and SBM. Thirty barrows with a mean initial body weight (BW) of 20.6 kg (SD = 1.04) were assigned to 5 dietary treatments in a randomized complete block design with period and BW as blocking factors. A reference diet was prepared with corn, canola meal, and soybean oil as energy-contributing ingredients. Four additional diets were prepared by adding 5% and 10% DY or SBM at the expense of energy-contributing ingredients in the reference diet. The ratio of corn, canola meal, and soybean oil was kept consistent across the experimental diets. Each experimental period consisted of 5-d adaptation and 5-d quantitative collection of feces and urine. Test ingredient-associated DE or ME intake (kcal/d) was regressed against test ingredient intake [kg dry matter (DM)/d] to estimate the DE or ME in test ingredients as the slope of linear regression model. The DE in DY was estimated at 3,933 kcal/kg DM, which was not different from the estimated DE in SBM at 4,020 kcal/kg DM. Similarly, there was no difference between DY and SBM in the estimated ME (3,431 and 3,756 kcal/kg DM, respectively). Experiment 2 was conducted to determine the standardized ileal digestibility (SID) of AA in DY and SBM. Twenty-one barrows with a mean initial BW of 20.0 kg (SD = 1.31) were surgically fitted with T-cannulas at the distal ileum and assigned to 3 dietary treatments in a randomized complete block design with BW as a blocking factor. Two semi-purified diets containing DY or SBM as the sole nitrogen source and one nitrogen-free diet (NFD) were prepared. The NFD was used to estimate the basal ileal endogenous losses of CP and AA. Pigs were fed the 3 diets for 5 d as adaptation, followed by 2 d of feeding with ileal digesta collection. The SID of AA, except Gly and Pro, in DY was less (P < 0.05) than in SBM. The SID of indispensable AA in DY ranged from 64.1% for Thr to 85.2% for Arg, and those in SBM ranged from 83.9% for Thr to 91.8% for Arg. In conclusion, energy values of DY are not different from those of SBM, whereas AA in DY is less digestible than in SBM. The estimated DE and ME as well as the SID of AA in DY and SBM can be used in diet formulation for growing pigs using these ingredients.  相似文献   

14.
Four experiments were conducted to determine the effect of adding corn gluten mean (CGM) or soybean meal (SBM) at 24- or 48-h intervals to diets based on corn stalks. In each experiment corn stalks was the primary diet ingredient fed to wethers or steers. Monensin was also fed to determine whether its effects on ruminal fermentation would improve the efficiency of N utilization under these conditions. Evaluation criteria included ruminal fermentation characteristics, DM intake and utilization, N balance in sheep, and steer feedlot performance. Ruminal ammonia nitrogen (NH3 N) concentrations measured over time were higher (P < .05) when diets contained SBM. Diet did not influence (P > .10) total VFA concentrations in ruminal fluid. Differences in diurnal shifts in ruminal NH3 N and total VFA due to protein source resulted in diet x hour interactions (P < .05). Dry matter intake response to protein source and frequency of supplement feeding was variable. Dry matter digestibility and nitrogen digestibility were not affected (P > .10) by protein source or feeding interval. The 48-h interval feeding of CGM was favorable compared with 24-h interval feeding (P < .05). The opposite response occurred with SBM, resulting in a diet x feeding interval interaction (P < .05). Nitrogen retention was greater (P < .05) when CGM was fed and with alternate day feeding. Diets that contained CGM supported higher (P < .05) ADG and gain/feed than diets that contained SBM when fed to steer calves. Alternate day feeding of supplements that contained monensin was detrimental to steer performance under the conditions of these experiments. Corn gluten meal is an effective substitute for SBM when alternate day protein supplementation is practiced.  相似文献   

15.
Effects of genetic changes in reproduction, growth, body composition or lactation on the efficiency of market lamb production depend partly on the associated changes in feed intake requirements for maintenance and for protein and fat deposition. To evaluate these relationships, feed intake and body weight changes were monitored for six pairs of open, dry, mature ewes from each of seven diverse breeds fed pelleted alfalfa (53% TDN) ad libitum (AL) or restricted (MN) to 64% of ad libitum levels, for an average of 41 d. After a 56-h fast, heat production (FHP) was measured calorimetrically for 16 h before slaughter and analysis of empty body composition. The estimated daily metabolizable energy intake/kg(.75) of body weight for no change in body energy (MEm) was 167 kcal for the AL vs 147 kcal for MN ewes, and ranged from 139 to 169 among breeds (P less than .05). Estimated above-maintenance ME requirements, kcal/g tissue deposited, were 30 to 50 for protein and 10 to 14 for fat deposition. Mean FHP/d, adjusted by regression to zero activity, was 72 kcal/kg(.75) weight and was nonsignificantly higher (3.3) for the leaner MN than for AL ewes. Thus, the lower total MEm for MN than for AL ewes was necessarily derived from reduced metabolic and physical activity and(or) higher digestibility. Genetic increases in lean vs fat deposition would reduce above-maintenance feed by one-third to one-fourth because of the high water content of lean, but more lean mass may increase maintenance costs.  相似文献   

16.
1. Mature domestic drakes of 7 genotypes, ranging in live weight from 1.1 to 5.1 kg, were each given a daily allowance of feed just below the level of recorded ad libitum intake. 2. House temperature was maintained at 26 degrees C for 16 weeks and then at 10 degrees C for a further 8 weeks. 3. Under these conditions, live weight quickly adjusted to the level of feed supplied and then remained stable. 4. Regression of metabolisable energy intake on live weight (W) yielded estimates of maintenance requirement of 583 kJ/kgW(0.75).d at 10 degrees C and 523 kJ/kgW(0.75).d at 26 degrees C.  相似文献   

17.
Growing goats, 45 Alpine and 45 Nubian, were used in a 3 x 3 factorial arrangement to quantify the influence of dietary energy and protein levels on daily DM intake and nutrient utilization for growth. Goats had ad libitum access to complete mixed diets containing either 2.46, 2.77 or 3.05 Mcal/kg ME plus 11.2, 12.7 or 15.1% CP for 16 wk. Dry matter intake decreased curvilinearly as dietary ME density increased (P less than .001). Dry matter intake increased linearly (P less than .05) as dietary CP level increased during all growth intervals except wk 25 to 28 of age. Average daily gain was 115, 113 and 99 g/d for goats fed diets containing 2.46, 2.77 and 3.05 Mcal/kg ME, respectively. Average daily gain was 104, 106 and 117 g/d for goats fed diets with 11.2, 12.7 and 15.1% CP, respectively. Dry matter intake was higher (P less than .01) for Alpine than for Nubian goats, whereas ADG was similar between breeds. Intake of ME was 248, 260 and 198 kcal/(kg.75.d) for goats fed the low- medium- and high-energy diets, respectively. Intake of CP was 9.1, 10.7 and 13.2 g/(kg.75.d) for goats fed low-, medium- and high-protein diets, respectively. Average requirements for growth derived from regression analysis of all data points were 4.6 kcal ME and .26 g CP/g ADG. The prediction equation for intake of growing goats of 4 to 8 mo of age was: DMI, g/d = 1,749 - 496 DE, kcal/g + 18 live weight, kg + 3 ADG, g/d; r2 = .73 (Sy.x = 127, P less than .0001, n = 90). The requirement of ME for growth was 33% lower than the value recommended in 1981 by the National Research Council.  相似文献   

18.
Energy balances of cocks and chickens were measured using the nitrogen-carbon-balance method. In Experiment 1 twelve adult White Leghorn cocks were fed alternately on a basal ration or on a supplemental ration composed of 75% basal diet and 25% carbohydrate source as a supplement. In Experiment 2 six groups of 12 male broiler chickens were fed successively on two diets each with different carbohydrate sources (40% of DM) and on two energy levels. The investigated carbohydrate sources were glucose, fructose, sucrose, maize starch, raw and steamed potato starch, dried sugar beet pulp, tapioca, wheat, maize, rye and barley. In both experiments the energy digestibility of the diets with raw potato starch, beet pulp and barley was significantly lower compared to the other diets. Digestibility of those ranged from 88 to 81%. By simple linear regression no significant differences in efficiency of utilisation of ME of the diets between the carbohydrate sources sugars, starches and cereal grains could be proved. The corresponding MEm values agreed very close among the diets (411 to 429 kJ.kg BW-0.75.d-1).  相似文献   

19.
Three trials were conducted to compare acceptance and utilization by growing and finishing pigs of diets containing supplemental protein from either heated, solvent-extracted soybean meal (SBM), raw low-Kunitz trypsin inhibitor soybean (LT) or raw commercially grown Williams cultivar soybean with high Kunitz trypsin inhibitor content (HT). In Trial 1, 36 crossbred pigs, averaging 7 kg in weight, were fed 1) corn-SBM, 2)corn-LT or 3) corn-HT diets for 28 d. Diets were formulated to be isolysinic and to have similar calorie:lysine ratios. Average daily gain and gain/feed were higher (P less than .01) for pigs fed the corn-SBM diet than for pigs fed the corn-LT diet; average daily gain and gain/feed were higher (P less than .01) for the corn-LT diet than for the corn-HT. Average daily feed intake did not differ (P greater than .05) among diets. In Trial 2, 48 crossbred pigs averaging 67 kg were fed diets similar to those in Trial 1 but with lower lysine values. The daily gain (.95 kg) of pigs fed the corn-SBM diet was greater (P less than .05) than for pigs fed the corn-LT diet (.87 kg), which in turn was greater (P less than .05) than for the pigs fed the corn-HT diet (.83 kg). Daily feed intake (kg) and gain/feed were 3.27 and .291, 2.97 and .293, and 3.07 and .270, respectively, for pigs fed the corn-SBM, corn-LT and corn-HT diets. In Trial 3, 18 castrate male pigs averaging 12.4 kg were fed cornstarch-based diets with either SBM, LT or HT as the source of protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A 3 X 3 replicated Latin square design was used to evaluate three isonitrogenous supplements designed to supply 250 g crude protein (CP) daily. Measurements included in situ dry matter (DM) and neutral detergent fiber (NDF) fermentation and ruminal dilution rates. Supplements contained beet pulp plus DL-methionine and urea (MET), ammonium sulfate and urea (U) or soybean meal (SBM). Six mature, ruminally cannulated crossbred beef cows were individually fed supplement and a mixture (63% NDF and 6.1% CP) of chopped 75% grass hay and 25% barley straw in ad libitum. Fermentation rate of DM was increased (P less than .05) by 30% with MET in comparison to SBM or U (9.54 vs 7.28% and 7.74%/h for MET, SBM and U, respectively). Even though MET improved fermentation rate by 30%, particle dilution rate was more important in affecting ruminal digestibility than fermentation rate. Two 90-d heifer growth trials were conducted to evaluate similar supplements. Supplements similar to those used in the in situ trial were mixed with roughage to provide a complete diet balanced for .3 kg daily gain. Heifers consumed 112% of the National Research Council CP requirement. Weight gain, intake and feed conversion were similar (P greater than .10) for all treatments. In heifer trial 2, 90% of the National Research Council CP requirement was fed. The heifers supplemented with MET and SBM had faster (P less than .05) weight gains than heifers receiving U. These studies show that feeding DL-methionine with urea, as compared with feeding an isonitrogenous supplement containing SBM, increased the fermentation rate of DM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号