首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT

This paper examined the potential of dry north western woodlands of Ethiopia (Adi Goshu, Lemlem Terara, and Gemed) for carbon stocks. Allometry equations were used to determine the aboveground, belowground, and dead woods biomasses; litter and herbaceous biomasses were determined using direct harvesting method. The result showed the estimated mean carbon stocks of the aboveground, belowground, and the dead wood biomass for the Untapped Boswellia Papyrifera Woodland (UW) in Lemlem Terara site were significantly higher (P < 0.05) than that of the Adi Goshu site. In the Gemed site, the mean Herb Biomass Carbon (HBC) stock was 1.2 Mg ha?1, which is significantly highest (P < 0.05) than the other two study sites (Lemlem Terara, 0.42 Mg ha?1 and Adi Goshu, 0.45 Mg ha?1) for the Tapped Boswellia Papyrifera Woodland (TW). In UW, the mean soil carbon stock of the Lemlem Terara site (58.19 Mg ha?1) was significantly (P < 0.05) higher than that of Adi Goshu (33.61 Mg ha?1). In the case of the total carbon stocks in UW stratum, for the Adi Goshu site, the carbon stock was estimated to be about 55.26 Mg ha?1 while 96.74 Mg ha?1 for Lemlem Terara. Therefore, Carbon stock in different carbon pools (aboveground and belowground biomass, dead wood, litter, herbaceous biomass, and soil) has a potential to decrease the rate of enrichment of atmospheric concentration of carbon dioxide.  相似文献   

2.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

3.
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We so...  相似文献   

4.
Abstract

Quercus semecarpifolia, Smith. (brown oak) forests dominate the high altitudes of central Himalaya between 2400 and 2750 m and the timber line areas. The species is viviparous with short seed viability and coincides its germination with monsoon rains in July–August. These forests have large reserves of carbon in their biomass (above and below ground parts) and soil. We monitored the carbon stock and carbon sequestration rates of this oak on two sites subjected to varying level of disturbance between 2004 and 2009. These forests had carbon ranging between 210.26 and 258.02 t ha?1 in their biomass in 2009 and mean carbon sequestration rates between 3.7 and 4.8 t ha?1 yr?1. The litter production in both the sites ranged from 5.63 to 7.25 t ha?1 yr?1. The leaf litter decomposition of species took more than 720 days for approximately 90% decomposition. Even at 1 m soil depth soil organic carbon was close to 1.0%.  相似文献   

5.
There are many uncertainties in the estimation of forest car- bon sequestration in China, especially in Liaoning Province where vari- ous forest inventory data have not been fully utilized. By using forest inventory data, we estimated forest vegetation carbon stock of Liaoning Province between 1993 and 2005. Results showed that forest biomass carbon stock increased from 68.91 Tg C in 1993 to 97.51 Tg C in 2005, whereas mean carbon density increased from 18.48 Mg·ha -1 C to 22.33 Mg·ha -1 C. The carbon stora...  相似文献   

6.
Mangroves offer a number of ecosystem goods and services, including carbon (C) storage. As a carbon pool, mangroves could be a source of CO2 emissions as a result of human activities such as deforestation and forest degradation. Conversely, mangroves may act as a CO2 sink through biomass accumulation. This study aimed to determine carbon stocks, harvest removals and productivity of mangrove forests of mainland Tanzania. Nine species were recorded in mainland Tanzania, among them Avicennia marina (Forssk.) Vierh., Rhizophora mucronata Lam. (31%) and Ceriops tagal (Perr.) C.B.Rob. (20%) were dominant. The aboveground, dead wood, belowground and total carbon were 33.5 ± 5.8 Mg C ha?1, 1.2 ± 1.1 (2% of total carbon), 30.0 ± 4.5 Mg C ha?1 (46% of total carbon) and 64.7 ± 8.4 Mg C ha?1 at 95% confidence level, respectively. Carbon harvest removals accounted for loss of about 4% of standing total carbon stocks annually. Results on the productivity of mangrove forests (using data from permanent sample plots monitored for four years [1995-1998]) showed an overall carbon increment of 5.6 Mg C ha?1 y?1 (aboveground carbon), 4.1 C ha?1 y?1 (belowground carbon) and 9.7 C ha?1 y?1 (total carbon) at 23%, 32% and 27% levels of uncertainty, respectively. Both natural death and tree cutting/harvest removals resulted in significant decline of annual carbon productivity. Findings from this study demonstrate that mangroves store large quantities of carbon and are more productive than other dominant forest formations in southern Africa. Both their deforestation and forest degradation, therefore, is likely to contribute to large quantities of emission and loss of carbon sink functionality. Therefore, mangroves need to be managed sustainably.  相似文献   

7.
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

8.
The establishment of biomass plantations with short-rotation forestry principles is one of the after-use options for cutaway peatlands. We studied biomass production and carbon sequestration in the above- and below-ground biomass of 25 naturally afforested, 10–30 years old downy birch (Betula pubescens Ehrh.) stands located in peat cutaway areas in Finland. Self-thinning reduced the stand density from 122,000 trees ha?1 (stand age of 10 years) to 10,000 trees ha?1 (25–30 years), while the leafless above-ground biomass increased from 17?Mg ha?1 up to 79–116?Mg ha?1. The total leafless biomass (including stumps and roots) varied from 46 to 151?Mg ha?1. The mean annual increment (MAI) of the above-ground biomass increased up to the stand age of 15 years, after which the MAI was on the average 3.2?Mg ha?1a?1. With below-ground biomass, the MAI of the stands older than 15 years was 4.7?Mg ha?1. The organic matter accumulated in the O-layer on the top of the residual peat increased linearly with the stand age, reaching 29.3?Mg ha?1 in the oldest stand. The O-layer contributed significantly to the C sink, and the afforestation with downy birch converted most of sites into C sinks.  相似文献   

9.
《Southern Forests》2013,75(4):305-315
Land-use intensification and declines in vegetative cover are considered pervasive threats to forests and biodiversity globally. The small extent and high biodiversity of indigenous forests in South Africa make them particularly important. Yet, relatively little is known about their rates of use and change. From analysis of past aerial photos we quantified rates of forest cover change in the Matiwane forests of the Wild Coast, South Africa, between 1942 and 2007, as well as quantified above and belowground (to 0.5?m depth) carbon stocks based on a composite allometric equation derived for the area. Rates of forest conversion were spatially variable, with some areas showing no change and others more noticeable changes. Overall, the net reduction was 5.2% (0.08% p.a.) over the 65-year period. However, the rate of reduction has accelerated with time. Some of the reduction was balanced by natural reforestation into formerly cleared areas, but basal area, biomass and carbon stocks are still low in the reforested areas. The total carbon stock was highest in intact forests (311.7 ± 23.7 Mg C ha?1), followed by degraded forests (73.5 ± 12.3 Mg C ha?1) and least in regrowth forests (51.2 ± 6.2 Mg C ha?1). The greatest contribution to total carbon stocks was soil carbon, contributing 54% in intact forests, and 78% and 68% in degraded and regrowth forests, respectively. The Matiwane forests store 4.78 Tg C, with 4.7 Tg C in intact forests, 0.06 Tg C in degraded forests and 0.02 Tg C in regrowth forests. The decrease in carbon stocks within the forests as a result of the conversion of the forest area to agricultural fields was 0.19 Tg C and approximately 0.0003 Tg C was released through harvesting of firewood and building timber.  相似文献   

10.
India launched National Agroforestry Policy on 10th February, 2014 which has the potential to substantially reduce poverty in rural India and revive wood based industry, besides integrating food production with environmental services. The policy is not only crucial to India’s ambitious goal of achieving 33 per cent forest and tree cover but also to mitigate GHG emissions from agriculture sector. Dynamic CO2FIX-v3.1 model has been used to estimate the carbon sequestration potential (CSP) of existing agroforestry systems (AFS) for simulation period of 30 years in twenty six districts from ten selected states of India. The observed number of trees on farmers’ field in these districts varied from 1.81 to 204 per hectare with an average value of 19.44 trees per hectare. The biomass in the tree component varied from 0.58 to 48.50 Mg DM ha?1, whereas, the total biomass (tree and crop) ranged from 4.96 to 58.96 Mg DM ha?1. The soil organic carbon ranged from 4.28 to 24.13 Mg C ha?1. The average estimated carbon sequestration potential of the AFS, representing varying edapho-climatic conditions, on farmers field at country level was 0.21 Mg C ha?1yr?1. At national level, existing AFS are estimated to mitigate 109.34 million tons CO2 annually, which may offsets one-third (33 %) of the total GHG emissions from agriculture sector.  相似文献   

11.
Abstract

The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

12.
Several studies have been conducted in the past on carbon stock measurements in the tropical forests of Indonesia.This study is the first related research conducted in the New Guinea Island.In a degraded logged-over secondary forest in Manokwari Regency (West Papua,Indonesia),carbon stocks were measured for seven parts,i.e.,above-ground biomass (AGB),below-ground biomass (BGB),under-storey biomass (B u),necromass of dead leaves (N l),necromass of dead trees (N t),litter (L) and soil (S) using appropriate equations and laboratory analysis.Total carbon stocks were measured at 642.8 tC·ha-1 in the low disturbance area,536.9 tC·ha-1 in the moderate disturbance area and 490.4 tC·ha-1 in the high disturbance area.B u,N l and N t were not significant in the carbon stock and were collectively categorized as a total biomass complex.The carbon stock of litter was nearly equal to that of the total biomass complex,while the total carbon stock in the soil was eight times larger than the total biomass complex or the carbon stock of the litter.We confirmed that the average ratio of AGB and BGB to the total biomass (TB) was about 84.7% and 15.3%,respectively.Improvements were made to the equations in the low disturbance logged-over secondary forest area,applying corrections to the amounts of biomass of sample trees,based on representative commercial trees of category one.TB stocks before and after correction were estimated to be 84.4 and 106.7 tC·ha-1,indicating that these corrections added significant amounts of tree biomass (26.4%) during the sampling procedure.In conclusion,the equations for tree biomass developed in this study,will be useful for evaluating total carbon stocks,especially TB stocks in logged-over secondary forests throughout the Papua region.  相似文献   

13.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

14.
ABSTRACT

Plantation forests play a critical role in forest management due to their high productivity and large contribution to carbon sequestration (CSE). The purpose of this study was to assess the CSE of plantations containing four important conifer species distributed across Taiwan, namely, the China fir (Cunninghamia lanceolata), Japanese cedar (Cryptomeria japonica), Taiwania (Taiwania cryptomerioides) and Taiwan red cypress (Chamaecyparis formosensis). Data regarding the plantations were obtained from a survey of permanent sample plots (PSPs). We used these data to calculate the CSE in each PSP and adopted CSEmean and CSEperiod as indicators to assess the CSE of the four conifers. According to the CSEmean obtained from analysis of variance and the least significant difference method, two groups were identified among these four conifers: the Japanese cedar (4.03 Mg ha?1 yr?1) and Taiwania (3.52 Mg ha?1 yr?1) yielded higher CSEmean values and the China fir (1.79 Mg ha?1 yr?1) and Taiwan red cypress (2.36 Mg ha?1 yr?1) yielded lower CSEmean values. The same patterns were observed in the CSEperiod values; however, no significant difference in CSEperiod was observed between Taiwan red cypress and either of the two groups. Therefore, Japanese cedar and Taiwania have high CSE potential among conifers.  相似文献   

15.
  • ? In the present study, allometric biomass equations were developed for Nothofagus pumilio natural regeneration relating foliage, stem and branches (aboveground), roots (belowground), and total biomass to basal diameter and total height, based on destructive measurements of 390 naturally regenerated seedlings and saplings.
  • ? Basal diameter was the most important independent variable in all equations and accounted for more than 88% of the variability of the different biomass components. The addition of height as a second independent variable slightly improved the predictions.
  • ? The best-fit biomass components equations that were based on combinations of basal diameter and height as independent variables had adjusted R 2 values between 0.80 and 0.95 and a mean percent standard error between 21.3% and 26.6%.
  • ? Based on the best-fit biomass equations and the natural regeneration development in a 14-years chronosequence in forests managed under shelterwood cuts, the total biomass varied from 0.9 Mg ha?1 (0.5 Mg ha?1 above and 0.4 Mg ha?1 belowground) for the primary forest, before the shelterwood cuts, to 19.5 Mg ha?1 (13.6 Mg ha?1 above and 5.9 Mg ha?1 belowground) 14 years after the seed cut. In the same period, carbon storage varied, from 0.5 Mg ha?1 to 9.8 Mg ha?1.
  •   相似文献   

    16.
    Tree removal in Latin American coffee agroforestry systems has been widespread due to complex and interacting factors that include fluctuating international markets, government-supported agricultural policies, and climate change. Despite shade tree removal and land conversion risks, there is currently no widespread policy incentive encouraging the maintenance of shade trees for the benefit of carbon sequestration. In facilitation of such incentives, an understanding of the capacity of coffee agroforests to store carbon relative to tropical forests must be developed. Drawing on ecological inventories conducted in 2007 and 2010 in the Lake Atitlán region of Guatemala, this research examines the carbon pools of smallholder coffee agroforests (CAFs) as they compare to a mixed dry forest (MDF) system. Data from 61 plots, covering a total area of 2.24 ha, was used to assess the aboveground, coarse root, and soil carbon reservoirs of the two land-use systems. Results of this research demonstrate the total carbon stocks of CAFs to range from 74.0 to 259.0 Megagrams (Mg)?C ha?1 with a mean of 127.6?±?6.6 (SE)?Mg?C ha?1. The average carbon stocks of CAFs was significantly lower than estimated for the MDF (198.7?±?32.1?Mg?C?ha?1); however, individual tree and soil pools were not significantly different suggesting that agroforest shade trees play an important role in facilitating carbon sequestration and soil conservation. This research demonstrates the need for conservation-based initiatives which recognize the carbon sequestration benefits of coffee agroforests alongside natural forest systems.  相似文献   

    17.
    Carbon sequestration is important in studying global carbon cycle and budget. Here, we used the National Forest Resource Inventory data for China collected from 2004 to 2008 and forest biomass and soil carbon storage data obtained from direct field measurements to estimate carbon (C) sequestration rate and benefit keeping C out of the atmosphere in forest ecosystems and their spatial distributions. Between 2004 and 2008, forests sequestered on average 0.36 Pg C yr?1 (1 Pg = 1015g), with 0.30 Pg C yr?1 in vegetation and 0.06 Pg C yr?1 in 0–1 meter soil. Under the different forest categories, total C sequestration rate ranged from 0.02 in bamboo forest to 0.11 Pg C yr?1 in broadleaf forest. The southwest region had highest C sequestration rate, 30% of total C sequestration, followed by the northeast and south central regions. The C sequestration in the forest ecosystem could offset about 21% of the annual C emissions in China over the same period, especially in provinces of Tibet, Guangxi, and Yunnan, and the benefit was similar to most Annex I countries. These results show that forests play an important role in reducing the increase in atmospheric carbon dioxide in China, and forest C sequestration are closely related to forest area, tree species composition, and site conditions.  相似文献   

    18.
    This study assessed the net above-ground carbon stock in six community forests in the Dolakha district, Nepal. A survey was conducted of above-ground timber species, using random sampling. A tree-ring chronology for Pinus roxburghii was created to construct a growth model representative of the various mainly-pine species. The allometric model combined with tree ring analysis was used to estimate carbon stock and annual growth in the above-ground tree biomass. The out-take of forest biomass for construction material and fuelwood was estimated on the basis of interviews and official records of community forest user groups. The average annual carbon increment of the community forests was 2.19 ton/ha, and the average annual carbon out-take of timber and fuelwood was 0.25 ton/ha. The net average carbon balance of 1.94 ton/ha was equivalent to 117.44 tons of carbon per community forest annually. All the community forests were actively managed leading to a sustainable forest institution, which acts as a carbon sink. It is concluded that community forests have the potential to reduce emissions by avoiding deforestation and forest degradation, enhance forest carbon sink and improve livelihoods for local communities.  相似文献   

    19.
    In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool.  相似文献   

    20.
    The effect of six plantation species in comparison to natural forest (NF) on soil organic carbon (SOC) and total nitrogen (TN) stocks, depth-wise distribution, biomass carbon (C), and N was investigated on plantations and cultivated lands on an Andic paleudalf soil in Southern Ethiopia. The SOC, N, and bulk density were determined from samples taken in 4 replicates from 10-, 20-, 40-, 60-, and 100-cm depth under each site. Similarly, the biomass C and N of the plantation species and understory vegetation were also determined. The SOC and N were concentrated in the 0- to 10-cm depth and decreased progressively to the 1-m depth. Next to the NF, Juniperous procera accrued higher SOC and N in all depths than the corresponding plantations. No evidence of significant difference on SOC and N distribution among plantations was observed below the 10-cm depth with minor exceptions. The plantations accrue from 133.62 to 213.73 Mg ha–1 or 59.1 to 94.5% SOC, 230.4 to 497.3 Mg ha–1 or 6.9 to 14.9% TBC and 420.37 to 672.80 Mg ha–1 or 12.5 to 20% total C-pool of that under the NF. The N stock under Juniperous procera was the highest, while the lowest was under Eucalyptus globulus and Cupressus lusitanica. We suggest that SOC and N sequestration can be enhanced through mixed cropping and because the performance of the native species Juniperous procera is encouraging, it should be planted to restock its habitat.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号