首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   

2.
Exudation of low molecular weight organic acids by fungi was studied in a project focusing on bioremediation of metal-contaminated soils. The production of acids (mainly oxalic and citric acid) as a response to nutrient variations and presence of metals has recently been reported (Arwidsson et al. 2009). A significant release of metals was observed and was related not only to the production of organic acids but also to the resulting pH decrease in the systems. The processes governing the release and redistribution of metals in the soil–water fungus system were the focus of the present continuation of the project, based on observations of Aspergillus niger, Penicillium bilaiae, and a Penicillium sp. The release of lead was 12% from the soil with the second highest initial load (1,600 mg kg?1), while the release of copper was 90% from the same soil (140 mg kg?1). The dominating mechanism behind the release and subsequent redistribution was the change in pH, going from near neutral to values in the range 2.1–5.9, reflecting the production of organic acids. For some of the systems, the formation of soluble complexes is indicated (copper, at intermediate pH) which favors the metal release. Iron is assumed to play a key role since the amount of secondary iron in the soils is higher than the total load of secondary heavy metals. It can be assumed that most of the heavy metals are initially associated with iron-rich phases through adsorption or coprecipitation. These phases can be dissolved, or associated metals can be desorbed, by a decrease in pH. It would be feasible to further develop a process in technical scale for remediation of metal-contaminated soil, based on microbial metabolite production leading to formation of soluble metal complexes, notably with copper.  相似文献   

3.
Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) were studied in plastic vessels containing (i) non-contaminated soil, (ii) copper-contaminated soils at concentrations of 75.0 and 125.0 mg kg?1, (iii) zinc-contaminated soils at concentrations of 1200 and 2400 mg kg?1, and (iv) soil enriched with swine manure. Copper and zinc concentrations in lettuce leaves were determined by flame atomic absorption spectrometry during 42 days of growth. Copper concentrations from 0.92 to 13.06 mg kg?1 were found in lettuce leaves grown in copper-contaminated soils and zinc concentrations from 58.13 to 177.85 mg kg?1 were found in lettuce leaves grown in zinc-contaminated soils. Copper and zinc concentrations in lettuce leaves grown in swine manure-enriched soils ranged from 0.82 to 8.33 and 0.68 to 13.27 mg kg?1, respectively. Copper and zinc bioaccumulation caused a decrease in lettuce growth in metal-contaminated soils and an increase in phytotoxicity effects when compared to growth in non-contaminated and manure-enriched soils. These findings were confirmed by measuring leaf areas and biomasses. Copper was less toxic to lettuce than zinc due to the different concentrations in the soil. Lettuce growth and development was better in the swine manure-enriched soil than non-contaminated soil, which indicates that swine manure is a safe agricultural biofertilizer when used in appropriate amounts to avoid metal bioaccumulation in soil and plants.  相似文献   

4.
Acute toxicity of Pb to the water flea; (Daphnia sp) and Copepod, (Cyclop sp) both important component of zooplankton diet of fish was determined by static assay. A positive relationship between percentage mortality and exposure concentration was found in all tests. Mean 24-h LC50, 48-h LC50 and 96-h LC50 values were 2.51?±?0.0.04 mg l?1, 1.88?±?0.06 mg l?1 and 1.65?±?0.19 mg l?1 for Daphnia spp and 3.11?±?0.03 mg l?1, 2.97?±?0.05 mg l?1 and 2.61?±?0.09 mg l?1 for Cyclop spp, respectively. For all tested species did the LC50 values decrease with time; the decrease was more marked for Daphnia spp. Observed symptoms include spiral movement followed by change of body colour to white and rapid disintegration of the skin. The Daphnia spp. appear to be more sensitive to Pb poison than Cyclop spp. The results showed that concentrations of Lead (Pb) in excess of 0.19 mg l?1 and 0.30 mg l?1 can be potentially harmful to Daphnia magna and Cyclop spp respectively.  相似文献   

5.
The effects of copper pollution on the soil fungal flora was investigated. Soils treated with 100, 200, 400, 800 or 1600 μg Cu g?1 were used for experiments to study changes in fungal populations, especially the development and dominance of copper-tolerant fungi. Fungi were sampled 1, 3 and 5 months after copper treatment.All the correlation coefficients between the copper contents and the number of fungal colonies plated were positive. The higher the copper concentration in soil, the more 1000 μ Cu ml?1 tolerant fungi were isolated. The relative number of 1000 μg Cu mr?1 tolerant fungi from the soil treated with 1600 μg Cu g?1 was about 30% of those of the control 14 days after treatment. Within the limits of this experiment, the increase in fungal populations was directly correlated with the increase of dominant Cu-tolerant fungi.From control soils, containing low quantities of copper, 1000 μg Cu ml?1 tolerant fungi were also isolated; whereas, from soils containing high amounts of copper, some Cu-sensitive fungi were isolated. Most of the 1000 μg Cu ml?1 tolerant fungi were Penicillium spp. It was concluded that the genus Penicillium may be dominant in soils polluted with copper.  相似文献   

6.
A neutrophilic, autotrophic bacterium that couples iron oxidation to nitrate reduction (iron-oxidizing bacteria [IOB]) under anoxic conditions was isolated from a working bioremediation site in Trail, British Columbia. The site was designed and developed primarily to treat high concentrations of Zn and As that originate from capped industrial landfill sites. The system consisted of two upflow biochemical reactor cells (BCR) followed by three vegetated wetland polishing cells with sub-surface flow and a holding pond. During a 5-year period (2003–2007), the system treated more than 19,100 m3 of contaminated water, removing and sequestering more than 10,700 kg of As, Zn and sulfate at average input water concentrations of: As, 58.6 mg?l?1 (±39.9 mg?l?1); Zn, 51.9 mg?l?1 (±35.4 mg?l?1) and SO4 2?, 781.5 mg?l?1 (±287.8 mg?l?1). The bacterium was isolated in order to better understand the mechanisms underlying the consistent As removal that took place in the system. Analysis using Basic Local Alignment Search Tool (BLAST) database showed that the closest homologies are to Candidatus accumulibacterphosphatis (95 % homology), Dechloromonas aromatica (94 %), and Sideroxydans lithotrophicus ES-1 (92 %) Within the BCR cells, the IOB oxidized Fe2+ generated by iron-reducing bacteria (IRB); the source of the iron was most likely biosolids and coatings of iron oxide on locally available sand used in the matrix. We have provisionally designated the novel bacterium as TR1.  相似文献   

7.
This study evaluated the copper ion adsorption capacity of sugarcane bagasse in natura and chemically modified with citric acid and sodium hydroxide. Adsorption analyses in batch system were carried out in function of contact time with the adsorbent and adsorbate concentration. Flame atomic absorption spectrometry was used to determine the copper concentrations. Adsorption experimental data were fitted to Langmuir and Freundlich linear models, and the maximum adsorption capacity was estimated for copper ions in function of modifications. The chemical modifications were confirmed at 1,730 cm?1 peak in infrared spectra, referring to the carboxylate groups. The required time for the adsorption to reach equilibrium was 24 h and the kinetics follows the behavior described by the pseudo-second order equation. Besides, a significant improvement of the copper adsorption has been observed after the bagasse treatment, where the maximum adsorption capacity was 31.53 mg g?1 for copper using modified bagasse with nitric acid according to Langmuir isotherm linear model. The high uptake of copper ions from aqueous medium verified by chemically modified sugarcane bagasse makes this material an attractive alternative for effluent treatment and avoids environmental contamination.  相似文献   

8.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g?1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g?1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g?1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g?1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   

9.
The contamination of hazardous metal(loid) is one of the serious environmental and human health risks. This study isolated a total of 40 cadmium (Cd)- and arsenic (As)-resistant bacterial isolates from coastal sediments by pour plate technique using tryptic soy agar supplemented with Cd or As (50 mg l?1) for use as metal(loid) bioremediation agents. Out of 40, 4 isolates, RCd3, RCd6, RAs7, and RAs10, showed a relatively higher growth rate in Cd- or As-supplemented culture media which were selected for further study. The selected isolates showed a high minimum inhibitory concentration (60–400 mg l?1 for Cd and 400–2200 mg l?1 for As), which demonstrated their remarkable Cd and As resistance capabilities. The metal(loid) removal efficiencies (0.032–0.268 μg Cd h?1 mg?1 and 0.0003–0.0172 μg As h?1 mg?1 [wet weight cell]) of selected isolates indicated their greater magnitude in absorbing Cd compared to As from water. Phylogenetic analysis of the 16S rDNA sequences revealed that isolates RCd3, RCd6, RAs7, and RAs10 were closely related to Acinetobacter brisouii, Pseudomonas abietaniphila, Exiguobacterium aestuarii, and Planococcus rifietoensis, respectively. Because of high Cd and As resistance and removal efficiency, the selected isolates can survive in a high metal(loid)-contaminated environment and could be a potential tool for bioremediation of high metal(loid)-contaminated effluents to protect the aquatic environment.  相似文献   

10.
Poly(acrylamide-acrylic acid-dimethylaminoethyl methacrylate) P(AAm-AA-DMAEMA) resin was prepared by the template copolymerization. PAAm was used as a template for the copolymerization of DMAEMA and AA in aqueous solution using gamma rays. The adsorption of indigo carmine and eriochrome black-T anionic dyes from aqueous media on P(AAm-AA-DMAEMA) has been investigated. The adsorption behavior of this resin has been studied under different adsorption conditions: dye concentrations (50?C500 mg l?1), contact times, temperature (30?C55°C), and pH values (2?C7). The amount of dye adsorbed increased with increasing resin content, but it had a little change with temperature and decreased slightly with increasing pH. Adsorption data of the samples were modeled by the pseudo-first-order and pseudo-second-order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of the resin followed a pseudo-second-order model with rate constant (k 2) of 2.5?×?10?3 and 1.8?×?10?2 g (mg?1 min?1) for indigo carmine and eriochrome black-T, respectively. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Freundlich model fits the adsorption data better than the Langmuir model.  相似文献   

11.
Perfluorooctane sulfonate (PFOS), which has numerous uses besides being an ingredient in the formulation of aqueous film-forming foams, is considered as an emerging pollutant of increasing public health and environmental concern due to recent reports of its worldwide distribution, environmental persistence and bioaccumulation potential. In an attempt to recommend a ‘risk-based’ remediation strategy, this study investigates the removal of PFOS from impacted waters and fixation of PFOS in impacted soils using a novel modified clay adsorbent (MatCARE?, patent number 2009905953). Batch adsorption tests demonstrated a much faster adsorption kinetics (only 60 min to reach equilibrium) and remarkably higher PFOS adsorption capacity (0.09 mmol g?1) of the MatCARE? compared to a commercial activated carbon (0.07 mmol g?1). Treatability studies, performed by treating the PFOS-contaminated soils with the MatCARE? (10 % w/w) and then incubating at 25 and 37 °C temperatures maintaining 60 % of the maximum water holding capacity of the soils for a period of a year, demonstrated a negligible release (water extractable) of the contaminant (only 0.5 to 0.6 %). The fixation of PFOS in soils by the new adsorbent was exothermic in nature. Soils with higher clay and organic matter content, but lower pH values, retained PFOS to a much greater extent. A cost analyses confirmed that the MatCARETM could be an economically viable option for the ‘risk-based’ remediation of PFOS in contaminated waters and soils.  相似文献   

12.
The effects of phosphate processing wastewater (PPWW) on heavy metal accumulation in a Mediterranean soil (Tunisia, North Africa) were investigated. Moreover, the residual toxicities of PPWW-irrigated soils extracts were assessed. Results showed that heavy metal accumulation was significantly higher in PPWW-irrigated soil extracts than in control soil. The heavy metal accumulation increased over time in treated soil samples and their average values followed the following order: Iron (Fe 252.72 mg l?1) > Zinc (Zn 152.95 mg l?1) > Lead (Pb 128.35 mg l?1) > Copper (Cu 116.82 mg l?1) > Cadmium (Cd 58.03 mg l?1). The residual microtoxicity and phytotoxicity of the various treated soil samples extracts were evaluated by monitoring the bioluminescence inhibition (BI %) of Vibrio ficheri and the measurement of the germination indexes (GI %) of Lepidium sativum and Medicago sativa seeds. The results showed an important increase of residual toxicities of PPWW-treated soil extracts over time.  相似文献   

13.
The influence of culture medium composition on chromium(VI) quantification according to diphenylcarbazide (DPC) colorimetric determination was evaluated. Considering the eventual biospeciation of Cr(VI) as a mechanism of microbial bioremediation, the possibility to quantify Cr(III) in culture medium was also explored. Yeast nitrogen base (YNB) was identified as the least interferent culture medium for Cr(VI) quantification by DPC and it was applied to compare different strategies for Cr(III) oxidation. The most appropriate oxidation protocol consisted in the reaction with 80 mM KIO4 at room temperature for 30 min prior to DPC. Parameters like basal culture medium (vitamins + salts + oligoelements), C and N source were systematically evaluated, either independently or in combination. Results demonstrated that C source was the most interferent culture medium component, being the use of sucrose preferable to glucose. A medium arbitrarily named as YNB′ (YNB without amino acids and ammonium sulfate plus 50 g L?1 sucrose and 0.6 g L?1 (NH4)2SO4) was defined for Cr(VI)-amended fungal cultures. Kinetics of growth, Cr(VI) removal, and nutrient consumption for isolates A. pullulans VR-8, filamentous fungus PMF-1, and Lecythophora sp. NGV-1 were obtained. The order of Cr(VI) removal efficiency was as follows: A. pullulans VR-8 > Lecythophora sp. NGV-1 > filamentous fungus PMF-1, and a similar trend was observed for biomass yield and nutrients consumption. Studies on biospeciation by means of the selected Cr(III) oxidation protocol were unsuccessful, leading to Cr(VI) values much lower than expected. It revealed that this kind of protocols should be cautiously evaluated when studying microbial Cr(VI) bioremediation.  相似文献   

14.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

15.
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h?1, which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l?1 h?1], specific rate [0.95 mg Cr(VI) g?1 biomass h?1] and capacity [44.38 mg Cr(VI) g?1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents.  相似文献   

16.

Purpose

The choice and timing of microorganisms added to soils for bioremediation is affected by the dominant bioavailable contaminants in the soil. However, changes to the concentration of bioavailable PAHs in soil are not clear, especially when several PAHs coexist. This study investigated the effects of PAH concentration and chemical properties on desorption in meadow brown soil after a 1-year aging period, which could reflect changes of PAH bioavailability during bioremediation.

Materials and methods

Based on the percentage of different molecular weights in a field investigation, high-level contaminated soil (HCS) and low-level contaminated soil (LCS) were prepared by adding phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (BaP) to uncontaminated meadow brown soil. The concentrations of HCS and LCS were 250 mg?kg?1 (PHE, PYR, and BaP: 100, 100, and 50 mg?kg?1) and 50 mg?kg?1 (PHE, PYR, and BaP: 20, 20, and 10 mg?kg?1) respectively. The soils were aged for 1 year, after which desorption was induced by means of a XAD-2 adsorption technique over a 96-h period.

Results and discussion

The range of the rapidly desorbing fraction (F rap) for PHE, PYR, and BaP in HCS and LCS was from 1.9 to 27.8 %. In HCS, desorption of PYR was most difficult, and the rate constant of very slow desorption (K vs) of PYR was 8 orders of magnitude lower than that of BaP, which had similar very slow desorbing fractions (49.8 and 50.5 %, respectively). However, in LCS, desorption of PYR was the easiest; the Kvs of PYR was 8–10 orders of magnitude higher than those of PHE and BaP. In HCS, the time scale for release of 50 % of the PAHs was ranked as BaP?>?PYR?>?PHE, while in LCS this was BaP?>?PHE?>?PYR.

Conclusions

The combined effect of PAH concentrations and properties should be taken into account during desorption. The desorption of PAH did not always decrease with increasing molecular weight, and the desorption of four-ring PAHs might be special. These results are useful for screening biodegrading microbes and determining when they should be added to soils based on the dominant contaminants present during different periods, thus improving the efficiency of soil bioremediation.  相似文献   

17.
The application of magnetite-immobilized chitin in pentachlorophenol (PCP) removal was demonstrated in this study. The physicochemical parameters for immobilization of chitin by magnetite, and for PCP adsorption using magnetite-immobilized chitin were optimized. For chitin immobilization, the optimized conditions were: magnetite to chitin (m:c) ratio at 1:2, initial pH 6, 25°C, 200 rpm and 60 min in batch system. The immobilization efficiency (IE) was 99.4% and immobilization capacity (IC) was 2.0 mg chitin mg?1 magnetite. High initial pH (pH?>?11) and temperature (>30°C) lowered the IE and IC. For PCP (10 mg l?1) adsorption, the optimized conditions were: 1,500 mg l?1 immobilized chitin, initial pH 6, 25°C, 200 rpm and 60 min in batch system. The removal efficiency (RE) was 57.9% and removal capacity (RC) was 5.4 mg g?1. The adsorption ability of immobilized chitin decreased with pH and temperature increased. However, increasing the amount of immobilized chitin (24,000 mg l?1) can increase the RE up to 92%. Both chitin immobilization and PCP adsorption exhibited Langmuir and Freundlich adsorption isotherms. Results in this study indicated that magnetite-immobilized chitin was a cost-effective and environmental friendly adsorbent to remove environmental pollutants such as PCP.  相似文献   

18.
Interactions between Zn and Cd on the accumulation of these metals in coontail, Ceratophyllum demersum were studied at different metal concentrations. Plants were grown in nutrient solution containing Cd (0.05–0.25 mg l?1) and Zn (0.5–5 mgl?1). High concentrations of Zn caused a significant decrease in Cd accumulation. In general, adding Cd solution decreased Zn accumulation in C. demersum except at the lowest concentration of Zn in which the Zn accumulation was similar to that without Cd. C. demersum could accumulate high concentrations of both Cd and Zn. The influence of humic acid (HA) on Cd and Zn accumulation was also studied. HA had a significant effect on Zn accumulation in plants. 2 mg l?1 of HA reduced Zn accumulation at 1 mg l?1 level (from 2,167 to 803 mg kg?1). Cd uptake by plant tissue, toxicity symptoms and accumulation at 0.25 and 0.5 mg l?1, were reduced (from 515 to 154 mg kg?1 and from 816 to 305 mg kg?1, respectively) by addition of 2 mg l?1 of HA. Cd uptake reached a maximum on day 9 of treatment, while that of Zn was observed on day 15. Long-term accumulation study revealed that HA reduced toxicity and accumulation of heavy metals.  相似文献   

19.
Abstract

Nonexchangeable potassium (K) release kinetics of six major benchmark soil series of India as affected by mineralogy of clay and silt fractions, soil depth and extraction media was investigated. The cumulative release of nonexchangeable K was greater in smectitic soils (353 mg K kg?1 at 0‐ to 15‐cm depth and 296 mg K kg?1 at 15‐ to 30‐cm depth, averaged for 2 soils and 3 extractants) than in illitic (151 mg K kg?1 at 0‐ to 15‐cm depth and 112 mg K kg?1 at 15‐ to 30‐cm depth) and kaolinitic (194 mg K kg?1 at 0‐ to 15‐cm depth and 167 mg K kg?1 at 15‐ to 30‐cm depth) soils. Surface soils exhibited larger cumulative K release in smectitic and illitic soils, whereas subsurface soils had larger K release in kaolinitic soils. Among the extractants, 0.01 M citric acid extracted a larger amount of nonexchangeable K followed by 0.01 M CaCl2 and 0.01 M HCl. The efficiency of citric acid extractant was greater in illitic soils than in smectitic and kaolinitic soils. Release kinetics of nonexchangeable K conformed fairly well to parabolic and first‐order kinetic models. The curve pattern of parabolic diffusion model suggested diffusion controlled kinetics in all the soils, with a characteristic initial fast rate up to 7 h followed by a slower rate. Greater nonexchangeable K release rates in smectitic soils, calculated from the first‐order equation (b=91.13×10?4 h?1), suggested that the layer edge and wedge zones and swelling nature of clay facilitated the easier exchange. In contrast to smectitic soils, higher release rate constants obtained from parabolic diffusion equation (b=39.23×10?3 h?1) in illitic soils revealed that the low amount of exchangeable K on clay surface and larger amount of interlayer K allowed greater diffusion gradients, thus justifying the better fit of first‐order kinetic equation in smectitic soils and parabolic diffusion equation in illitic soils.  相似文献   

20.
High phosphate (Pi) sorption in soils is a serious limiting factor for plant productivity and Pi fertilization efficiency, particularly in highly weathered and volcanic ash soils. In these soils, the sorbed Pi is so strongly held on the surfaces of reactive minerals that it is not available for plant root uptake. The use of phosphate-solubilizing microorganisms (PSM) capable of Pi desorption seems to be a complementary alternative in the management of these soils. The aim of this study was to evaluate the effectiveness of the soil fungus Mortierella sp., a known PSM, to desorb Pi from four soil minerals differing in their Pi sorption capacity. The fungus was effective in desorbing Pi from all tested minerals except from allophane, and its desorption depended on the production of oxalic acid. The effectiveness of the fungus to desorb Pi was ranked as montmorillonite > kaolinite > goethite > allophane. The quantity of desorbed Pi increased by increasing the amount of sorbed Pi. The Pi sorption capacity expressed as P0.2 value (amount of P required to increase a solution P concentration up to 0.2 mg L?1) was a good indicator of the effectiveness of Mortierella sp. to desorb Pi from soil minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号