首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spread of antibiotic-resistant bacteria in the environment is raising serious public health concerns, and manure is being increasingly recognized as a major source of antibiotic-resistant bacteria. In this research, we isolated Escherichia coli and enterococci from manure produced in a Wisconsin, USA family dairy farm to determine their resistance to six representative antibiotics. The average densities for E. coli and enterococci were 6.37(±4.38)?×?107 colony formation units (CFU)?g?1 and 1.60(±1.57)?×?104 CFU g?1, respectively. The E. coli isolates were found to be resistant to cephalothin, ampicillin, tetracycline, and erythromycin. In addition to these four antibiotics, the Enterococcus isolates were also resistant to gentamicin and ciprofloxacin. Additionally, we examined the survival and growth of E. coli and enterococci in dairy manure over a period of ~3 days. While the densities of enterococci remained stable over the study period, the concentrations of E. coli on average increased by 1.5 log10 units. Further tests of the bacterial antibiotic resistance over time showed no significant changes in the prevalence of antibiotic resistance. This result indicated that slightly aged manure could represent a larger source of antibiotic-resistant E. coli than fresh manure and the accumulation of antibiotic-resistant E. coli and enterococci in the agricultural fields must be accounted for in the modeling of the spread of antibiotic-resistant bacteria in the environment.  相似文献   

2.
The risk of enteropathogens to food and water is highly dependent on their survival in soil environments. Here, the effects of soil type, particle size, the presence of natural organic matter (NOM) or Fe/Al (hydro)oxides on pathogenic Escherichia coli O157:H7 survival in sterilized soil particles were assessed through survival, attachment, metabolic activity, and qRT-PCR analyses. The abundance of inoculated E. coli O157:H7 in Brown soil (Alfisol) particles increased 0.6–1.4 log10 CFU/g within 3 days (except for NOM-stripped clay), while that in Red soil (Ultisol) particles decreased rapidly in 8 days post-inoculation. Additionally, survival of bacteria was significantly enhanced when Fe/Al (hydro)oxides had been removed from Red soil particles. For the two soils, E. coli O157:H7 survived the longest in NOM-present clays and the bacterial adenosine 5′-triphosphate (ATP) levels were 0.7–2.0 times greater in clays than in sands and silts on day 8. Moreover, clays were more effective than silts and sands in binding cells and changing the expressions of acetate pathway-associated genes (pta and ackA). For silts and sands, E. coli O157:H7 decayed more rapidly in the presence of NOM and similar trends of bacterial ATP levels were observed between NOM-stripped and NOM-present soil particles, indicating that the primary role of NOM was not as a nutrient supply. These findings indicate that soil particles function mainly through attachment to change the metabolic pathway of E. coli O157:H7 and ultimately impact the survival of bacterial pathogens in soils.  相似文献   

3.

Purpose

This article analyzed the survival of Escherichia coli, total coliforms, and Salmonella spp. in a soil amended with urban sewage sludge due to its potential use in soil rehabilitation and to the risk of microbial pollution.

Materials and methods

The survival of E. coli, total coliforms, and Salmonella spp. was determined in a soil amended with different doses of four different urban sewage sludge based on equivalent nitrogen fertilization of 0, 85, 170, and 340 kg N/ha. After the topsoil/sludge mixtures were made, they were wet to 18% moisture and analyzed for 2 months to determine the presence of bacteria, and then again after 1 year.

Results and discussion

The results indicate that the presence of microorganisms was strongly conditioned by the type of biosolid and the dose applied. Soil moisture diminished as the experiment progressed and seemed to play a role in controlling the presence of the bacteria.

Conclusions

The initial concentrations of bacteria depend on the sewage sludge treatment. The evolution of E. coli had a similar trend as total coliforms, and Salmonella spp. was absent after 8 weeks although a positive presence was detected in some soils after a year. As a conclusion, long periods of time reduce the risk from the presence of pathogens in soils, and the persistence may be closely related to the treatment of sewage sludge and the initial amount of microorganisms in the sewage sludge.
  相似文献   

4.
Environmental problems many times could evolve when manure-containing pathogens are distributed into an open environment with no effort made to reduce the content of pathogens or limit their movement in the environment. Wind, surface flow, and subsurface flow can all carry enough pathogens to receiving waters to exceed water quality standards. This study was conducted to assess the microbiological quality of water associated with animal-based agriculture in the sub-basin of Pinhal River located in the rural area of Concordia, Santa Catarina, Brazil. Six sampling points representing different agricultural land uses (LU1—dairy cattle; LU2—without animals; LU3—dairy + pigs + poultry + crops; LU4—pigs + poultry + crops; LU5—dairy + pigs + poultry + crops + human; and LU6—dairy+pigs+crops) along the Pinhal River sub-basin (north to south) were sampled biweekly from August 2006 to December 2008. Concentrations of fecal coliforms and Escherichia coli varied significantly (p?≤?0.05) with land use (LU), but there was no interaction effect of LU, season, and time. Water samples from the catchment area of LU1 had the highest concentration of fecal coliforms (4,479?±?597 CFU ml?1) when compared with other catchment areas. Catchment area associated with LU2 (no animal) had the lowest concentrations of fecal coliforms (39.2?±?5.2 CFU ml?1). With the exception of LU2 (control site), all the maximum concentrations of E. coli exceeded the single maximum allowable concentration for E. coli (100 CFU ml?1). When LU1 was compared with other catchment areas (LU3, 50%; LU4, 67%; LU5, 58%; and LU6, 44%), it had the lowest counts (39%) of Salmonella sp. Our results suggest that spatial pattern of bacterial water quality is evident, which can be linked to the different land uses and associated practices (present or absent of animal activities). Therefore, varying responses associated with the different land uses would be critical in identifying the importance of different sources of bacteria in the catchment area and the mechanisms transferring them.  相似文献   

5.
In the present study, during a period of 16 months Colilert 3000 was validated in laboratory and field tests and compared to standard laboratory methods for monitoring of coliforms and E. coli. No false positive/negative results for coliforms/E. coli were found in 80 potable well water samples monitored with the Colilert 3000 and compared to standard methods. Although usage of Colilert 3000 to monitor raw water is not recommended by the manufacturer, the E. coli results of 100 samples were 100% positive by membrane filtration, Colilert 18 and MPN and only 80% positive by the Colilert 3000. In addition, in all positive samples, Colilert 3000 and Colilert 18 showed higher results of two to three orders of magnitude compared to MF and MPN. This significant difference was probably due to the presence of Aeromonas spp. and Vibrio spp. (natural inhabitants of the raw surface water) known to interfere with the Colilert test. Treated surface water was monitored by Colilert 3000 for the presence of coliforms and E. coli. Among the 100 samples tested in parallel by membrane filtration all were negative, while with Colilert 3000 only 76% were negative. Post-test identification of the positive samples did not reveal the presence of E. coli but interfering microorganisms. The last application was to evaluate Colilert 3000 to monitor accidental or deliberate pollution of drinking water with sewage sources. Among 20 samples spiked with raw sewage (0.1 and 1%) all results were positive for both coliforms and E. coli. The time span required for Colilert 3000 to detect positive samples was 6–10 h compared to 24 h with the standard membrane filtration.  相似文献   

6.
Penguins can bioaccumulate metals, a portion of which can be deposited in the environment through organic remains such as excrement, carcasses, and eggshells. In order to determine Cu and Pb concentrations and their relationship to soil, organic matter and grain size were determined in 27 samples collected in zones without penguins, penguin transit zones, and Adelie (Pygoscelis adeliae), Chinstrap (P. antarctica), and Gentoo penguin (P. papua) colonies on the Ardley Peninsula, Maritime Antarctica. An atomic absorption spectrophotometry analysis was carried out, organic matter was determined by loss on ignition, and grain size was measured with a laser diffraction particle size analyzer. The principal component analysis shows a relationship between the variables Cu, Pb, and grain size and areas with penguin presence. Cu concentrations in soils varied among areas (χ2, 15.707; p =?0.0004), with higher concentrations in transit zones and penguin colonies (142.63 and 140.79 mg/kg, respectively) than in zones without penguins (83.33 mg/kg). Pb concentrations in soils also varied among areas (χ2, 6.5029; p =?0.0387), and were higher in transit zones (5.92 mg/kg) than in the penguin colonies (4.45 mg/kg). Grain size differed significantly among areas (χ2, 13.506; p =?0.0012), with higher values in transit zones (avg. 37.38 μm) than in penguin colonies (avg. 26.93 μm) and zones without penguins (avg. 20.72 μm). Organic matter did not differ significantly among the studied zones (χ2, 2.0882; p =?0.3520). There is a positive correlation between Cu-Pb (Rho, 0.5532; p =?0.0028), Cu-grain size (Rho, 0.4756; p =?0.0130) and Pb-grain size (Rho, 0.4879; p =?0.0098). The presence of penguins increases Cu concentrations in Antarctic soils due to its bioaccumulation and elimination through excrement; however, the presence of penguins has a minor influence on Pb concentration in soil, probably because this metal is stored efficiently in bones, feathers, and eggshells.  相似文献   

7.
Land applications of manure from confined animal systems and direct deposit by grazing animals are both major sources of bacteria in streams. An understanding of the overland transport mechanisms from land applied waste is needed to improve design of best management practices (BMPs) and modeling of nonpoint source (NPS) pollution. Plots were established on pasturelands receiving phosphorus-based livestock waste applications to measure the concentrations of Escherichia coli (E. coli), fecal coliform (FC), and Enterococcus present in overland flow at the edge of the field. The flow-weighted bacteria concentrations were highest in runoff samples from the plots treated with cowpies (1.37×105 colony forming units (cfu)/100 ml of E. coli) followed by liquid dairy manure (1.84×104 cfu/100 ml of E. coli) and turkey litter (1.29×104 cfu/100 ml of E. coli). The temporal distribution of fecal bacterial concentrations appeared to be dependent upon both the animal waste treatment and the indicator species, with peak concentrations occurring either at the beginning of the runoff event or during peak flow rates. BMPs could be selected to reduce peak flows or first flush effects depending upon the litter or manure applied to the land. The commercial Biolog System was used to identify the dominant species of Enterococcus present in the cowpie source manure (Enterococcus mundtii 55%) and in the runoff collected from the transport plots treated with cowpies (Enterococcus faecalis 37%). The identification of predominant species of Enterococcus that are associated with specific sources of fecal pollution could greatly assist with identifying the origins of NPS pollution.  相似文献   

8.
An improved understanding of factors that influence the survival and/or growth of Escherichia coli (E. coli) in soil is essential to allow the formation of land management practices to control the spread of the pathogenic strains of the bacteria, whose transmission to fresh produce is a threat to food safety. Persistence of E. coli in soils held at different water potentials and with carbon additions then subjected to post-freezing incubation temperatures and in the presence of Klebsiella terrigena (K. terrigena) were investigated. Soil samples adjusted to different water potentials (?0.03, ?0.1 and ?1.5 MPa) were inoculated with a multi-antibiotic resistant strain of E. coli (E. coli 2+), which allowed recovery of the organism from soil samples. In addition to manipulation of water content, different C levels were added and samples were frozen for varying lengths of time, thawed and incubated. In freezing studies, initial soil moisture content significantly affected E. coil 2+ survival in soils following thawing, resulting in lower survival rate (k) at water potential of ?0.03 than at ?0.1 and ?1.5 MPa. The effect of length of freezing time was significant only at ?0.03 MPa. Glucose addition at 1.25 mg C g?1 improved survival rate versus glucose at 0.125. The low level glucose increased die-off rate versus no addition, suggesting that unless amendments provide C above a certain threshold level, they might facilitate the death of the bacteria. E. coli 2+ survival improved in the presence of K. terrigena at 6°C but not at 23°C. Persistence of E. coli under the interactive influence of various environmental factors highlights the urgency and importance of understanding its potential for transmission to fresh produce and water bodies.  相似文献   

9.
Faecal contamination of drinking water extracted from alluvial aquifers can lead to severe problems. River water infiltration can be a hazard for extraction wells located nearby, especially during high discharge events. The high dimensionality of river?Cgroundwater interaction and the many factors affecting bacterial survival and transport in groundwater make a simple assessment of actual water quality difficult. The identification of proxy indicators for river water infiltration and bacterial contamination is an important step in managing groundwater resources and hazard assessment. The time resolution of microbial monitoring studies is often too low to establish this relationship. A proxy-based approach in such highly dynamic systems requires in-depth knowledge of the relationship between the variable of interest, e.g. river water infiltration, and its proxy indicator. In this study, continuously recorded physico-chemical parameters (temperature, electrical conductivity, turbidity, spectral absorption coefficient, particle density) were compared to the counts for faecal indicator bacteria, Escherichia coli and Enterococcus sp. obtained from intermittent sampling. Sampling for faecal indicator bacteria was conducted on two temporal scales: (a) routine bi-weekly monitoring over a month and (b) intense (bi-hourly) event-based sampling over 3 days triggered by a high discharge event. Both sampling set-ups showed that the highest bacterial concentrations occurred in the river. E. coli and Enterococcus sp. concentrations decreased with time and length of flow path in the aquifer. The event-based sampling was able to demonstrate differences in bacterial removal between clusters of observation wells linked to aquifer composition. Although no individual proxy indicator for bacterial contamination could be established, it was shown that a combined approach based on time-series of physico-chemical parameters could be used to assess river water infiltration as a hazard for drinking water quality management.  相似文献   

10.
We studied the isotopic composition of organic matter in the sediments of eight mountain lakes located in the Tatra Mountains (Western Carpathians, Poland). The sediments of the lakes were fine and course detritus gyttja, mud, and sand. The total organic carbon content varied from 0.5 to 53 %. The C/N ratio indicated that in-lake primary production is the major source of the organic matter in the lakes located above the treeline, whereas terrestrial plant fragments are the major organic compounds in the sediments of dystrophic forest lakes. We also found that a clear trend of isotopic curves toward lower values of δ 13C and δ 15N (both ~3 ‰) began in the 1960s. This trend is a sign of the deposition of greater amounts of NO x from the combustion of fossil fuels, mainly by vehicle engines. The combustion of fossil fuels in electric plants and other factories had a smaller influence on the isotopic composition. This trend has been weaker since the 1990s. Animal and human wastes from pastures and tourism had a surprisingly minor effect on lake environments. These data are contrary to previous data regarding lake biota and suggest the high sensitivity of living organisms to organic pollution.  相似文献   

11.
This study reports on the attachment preference of a faecally derived bacterium, Escherichia coli, to soil particles of defined size fractions. In a batch sorption experiment using a clay loam soil it was found that 35% of introduced E. coli cells were associated with soil particulates >2 μm diameter. Of this 35%, most of the E. coli (14%) were found to be associated with the size fraction 15–4 μm. This was attributed to the larger number of particles within this size range and its consequently greater surface area available for attachment. When results were normalised with respect to estimates of the surface area available for bacterial cell attachment to each size fraction, it was found that E. coli preferentially attached to those soil particles within the size range 30–16 μm. For soil particles >2 μm, E. coli showed at least 3.9 times more preference to associate with the 30–16 μm than any other fraction. We report that E. coli can associate with different soil particle size fractions in varying proportions and that this is likely to impact on the hydrological transfer of cells through soil and have clear implications for our wider understanding of the attachment dynamics of faecally derived bacteria in soils of different compositions.  相似文献   

12.

Purpose

The management of sediments from stormwater infiltration basins is nowadays a key issue for local authorities to ensure long-term performance. Speciation of pollutants is particularly required in view of reuse of these materials. If fractionation of trace metals in sediments is relatively well described, polycyclic aromatic hydrocarbons (PAHs) speciation was only studied using particle size distribution. Therefore, this study aims at the characterization of the PAHs-bearing fractions in sediments.

Materials and methods

Three sediments with various physicochemical properties were sampled in the west and north of France to characterize the distribution of PAHs among organic and inorganic components. Respective organic and inorganic matrixes were obtained by alkaline extraction and methyl isobutyl ketone (MIBK) fractionation procedure. The nature of the solid fractions was assessed through microanalyses: infrared spectroscopy (Fourier transform infrared spectroscopy), X-ray diffraction (XRD), and scanning electron microscopy with X-ray spectroscopy. Bulk sediments and extracted fractions were analyzed for organic matter parameters: elemental analysis (C, N, and H), total organic matter, total organic carbon, hydrocarbons (C10–C40), and PAHs.

Results and discussion

The characterization of bulk sediments highlighted that they were mainly composed of single particles, originating from the geological background, and aggregates (10 to 300 μm) composed of minerals and large organic matter content. The C/N ratio and PAH ratios were shown to be helpful for the determination of the natural or anthropogenic origin of organic matter or to evaluate additional contribution of industrial activities. The fractionation results underlined the role of the aggregates on the distribution of PAHs. Humin fraction and bound-humic acids were mainly composed of aggregates (10 to 150 μm) and accounted for 60 to 70 % of sample mass. The PAHs are mainly sequestrated in these fractions. Only up to 1 % of PAHs are adsorbed on the mineral fraction.

Conclusions

Both alkaline extraction and MIBK procedure demonstrated that PAH residues were readily sequestrated in humin and bound-humic acids fractions and that fulvic acids, humic acids, and mineral fractions contained poor concentrations of PAHs. Microanalyses underlined the high level of aggregation of particles in sediments and their mixed inorganic and organic nature. In case of stormwater sediments, the location of PAHs in highly organic aggregates is consistent with their sources, being both oil products and debris from vehicles and road.  相似文献   

13.
《Applied soil ecology》1999,11(1):79-90
Escherichia coli K12 strain (J5-3/RP4) persisted in sandy loam for more than 70 days when incubated at 10°C or 4°C. It decreased to below the level of detection within 20 days when incubated at 25°C. No loss of multi-resistance plasmid RP4 from the E. coli cells was detected during incubation in soil. There was a positive relation between the bacterial inoculum size and the following increase of the protozoan numbers in the soil. When soil microcosms were amended with an eukaryotic inhibitor, the period of survival was increased. These observations indicate a direct involvement of protozoa in the decline of E. coli in soil. Transfer of plasmid RP4 from E. coli donor bacteria to indigenous bacteria in soil was detected already 24 h after addition of the E. coli K12 donor strain. The efficiency of transfer during the first 48 h was approximately 10−6 transconjugants per donor. Inhibition of protozoan predation increased the number of transconjugants appearing in the soil, but the transfer efficiency per donor was not affected by the decreased predation. No transfer could be detected when the donor strain was washed and resuspended in saline before addition to the soil, but transconjugants were detected in this experiment when nutrients (LB) were supplemented after two days of incubation. Plasmid RP4 was maintained in the transconjugant soil bacteria throughout the experiment. The data presented here indicate that the indigenous bacteria in soil may serve as a sink for plasmidborne traits.  相似文献   

14.
Water samples of the Passaúna River, Curitiba/Paraná (Brazil), were analyzed to determine total and thermotolerant coliform counts and Escherichia coli in order to provide information on human impacts on the water supply. Samples were collected and analyzed monthly, from March 2006 to February 2007, at five different locations along the river, and the multiple tube method was used to obtain total and thermotolerant coliform counts. The results varied from 130 MPN/100 mL to 1.6?×?106 MPN/100 mL for total coliforms, while for thermotolerant coliforms the variation was between 40 MPN/100 mL and 5?×?105 MPN/100 mL. The E. coli strains isolated from the samples were tested with 13 different antibiotics to determine their antibiotic resistance. The isolated strains were constantly sensitive to seven of the 13 antibiotics tested, and resistant to at least one of the other antibiotics. The results indicated that two factors could influence the increased contamination on this river, viz., seasonality parameters and domestic wastewater discharges. The determination of antibiotic resistance indices aimed to provide information on the anthropogenic influence. Only one of the locations investigated was considered critical due to the anthropogenic influence, with significant impacts from irregular domestic wastewater discharges.  相似文献   

15.
Subsurface-flow constructed wetlands technology (SSFW) has been used successfully for treating sanitary wastewater throughout North America and Europe. However, treatment wetland technologies have not been used extensively in the tropics. To advance tropical studies, a pilot-scale SSFW was constructed on the campus of the University of the Atlantic in Barranquilla, Colombia. The systems performance was monitored from January to July of 2009. The treatment system consisted of a 760-L septic tank followed by three mesocsom-scale subsurface-flow constructed wetlands in parallel arrangement. Clarified wastewater was batch loaded to each unit at a rate of 53 L/m2/day to affect a hydraulic retention time of approximately 3 days. One of the treatment units served as a non-planted control (gravel only), while the other two treatment units were planted with either Eriochloa aristata or Eleocharis mutata. The objective of this study was to evaluate the comparative efficacy of the treatment units (planted vs. unplanted), with respect to their abilities to augment treatment of septic tank effluent (sanitary wastewater). Monitored parameters included plant biomass, oxidation?Creduction potential, chemical oxygen demand (COD), temperature, dissolved oxygen, pH, ammonia?Cnitrogen (NH 4 + ?CN) nitrate?C and nitrite?Cnitrogen (NO3?CN, NO2?CN), phosphates (PO 4 ? ), and coliform bacteria. Total biomass (dry matter) was 2.84 and 0.87 Kg/m2 for E. aristata and E. mutata, respectively. Redox potential in the plant rizospheres averaged ?172 mV (±164.1) in E. aristata, 29 mV (±251.1) in E. mutata, and 32 mV (±210.5) in the unplanted control. COD removal was superior in planted vs. non-planted systems (>75% vs. 47%). Ammonia and total phosphorus removal averaged 69% and 85%, respectively, in planted systems versus 31% and 59% in the unplanted system. Removal of total and fecal coliforms averaged 96%. Results of this pilot study revealed that SSFW technology in the tropics can provide significant removal of organic matter, nutrients, and bacteria from clarified sanitary wastewater.  相似文献   

16.
The influence of particle size distribution and organic matter on the toxicity of copper was investigated using the nematodeCaenorhabditis elegans as testorganism. Sediments taken at various depths from three lakes of different trophic status and artificial sediments were spiked with sublethal concentrations of CuSO4. After an exposure of 72 h to spiked sediment or liquid medium, body length of the nematodes was determined. Both artificial and natural sediments reduced the effect of copper, with natural sediments being more effective. In natural sediments worms grew normally at concentrations of copper up to 63.5 mg/L, whereas in artificial sediments body length was reduced at concentrations of 11.3 mg Cu/L or higher. Body length was positively correlated with content of fine particles and organic matter, indicating that particle size distribution and organic matter are determinant factors for the ecotoxicology of sediments.  相似文献   

17.
While the presence of fecal indicator bacteria such as Escherichia coli in urban stormwater has been widely documented, their occurrence and persistence in sediments are not as well understood. Recent investigations suggest that E. coli can accumulate in drainage basin sediments and act as a fecal bacterial reservoir within a watershed. We investigate the prevalence of E. coli populations in a tidal creek stormwater catchment and examine their interaction with overlying stormwater under wet and dry weather conditions. Two rain events are sampled more intensively with samples collected prior to, during, and after rainfall to profile bacteria in each matrix throughout a storm. Results of profile sampling and estimates of sediment resuspension provide evidence for E. coli accumulation during dry conditions and entrainment in overlying waters during storm conditions. Profile results suggest the occurrence of steady-state E. coli populations in drainage basin sediments.  相似文献   

18.
In order to observe the spatial phosphorus (P) fractions transformations in sediments in relation to bacterial abundance and enzyme hydrolysing organic P-alkaline phosphatase (APA), samples from 35 stations from eutrophic Sulejow Reservoir were taken in spring after flood and in summer after cyanobacterial bloom breakdown. The results show pronounced fluctuations: decrease of average total P in sediments, despite organic matter delivery after cyanobacterial bloom, in parallel with increase of labile P (8.3%) and Ca-bounded P (16.6%) fractions and decline of organic P fraction (28.5%). Higher alkaline activity in sediments in the spring delivered nutrients to water column and supported cyanobacterial bloom development during the summer. Positive correlation between APA and organic P (r?=?0.37, p?<?0.01, n?=?70) and negative with labile inorganic P (r?=??0.44, p?<?0.01, n?=?70) in sediments proved significant role of the APA in phosphorus transformation in sediments and internal loading in the reservoir. During summer, APA was significantly related to bacterial number (r?=?0.36, p?<?0.01, n?=?35) and bacterial abundance was correlated to organic matter content (r?=?0.36, p?<?0.01, n?=?35). Such pattern of temporal variations of P transformation in sediments indicates order of solutions for enhancement of recultivation effects of eutrophic dam reservoirs: (1) reduction of organic matter supply in spring and (2) sediment inactivation during summer.  相似文献   

19.

Purpose

This study addresses the feasibility of a flotation technique, using a lab-scale flotation cell, to simultaneously remove both metals and polyaromatic hydrocarbons (PAHs) from fine sediment fractions (<250 μm) that are potentially contaminated with copper (Cu).

Materials and methods

A multiple flotation process with three consecutive flotation stages was performed on three sediments (13S, 14B, and 24A) with different particle size distributions, Cu and PAH concentrations, and organic matter contents.

Results and discussion

Flotations performed under selected conditions allowed for significant removal of both Cu (61–70 %) and PAHs (75–83 %) with acceptable froth recoveries of approximately 23–29 %. Removal rates for arsenic, lead, and zinc were 48–61, 40–48, and 32–36 %, respectively. Flotation selectivity of Cu was greatly influenced by the contents of fine particles and organic matter of the sediments. The maximum flotation selectivity was obtained for the 53–125-μm size fraction. The high flotation selectivity of Cu (2.5–3.2) and PAHs (3.0–3.6) demonstrated the feasibility of flotation to treat soils or sediments containing both organic and inorganic pollutants.

Conclusions

Overall, the flotation results showed a high selectivity for both Cu and PAHs and demonstrated the feasibility of flotation to treat media contaminated with organic and inorganic contaminants.  相似文献   

20.
Understanding the survival and persistence of Escherichia coli in soil with different microbial composition is essential for the accuracy of water quality assessment and microbial source tracking. This microcosm experiment was conducted to investigate the survival pattern of three E. coli strains (originated from soil, dog feces and human feces, separately) in soil with modified microbial community composition. Bile salt No. 3 (BS3) of progressively increased density (0.05%, 0.15%, 0.30% and 0.50%) was added into sandy loam soils and incubated for 90 days. Laboratory cultured E. coli were then inoculated into soil and incubated for another 150 days to monitor their survival pattern. Change of bacterial community diversity by BS3 was detected by both cultivation based and cultivation independent (PCR-Denaturing Gradient Gel Electrophoresis) methods. In general, progressively increased BS3 concentration resulted in decreased CFU counts both at 10 days and 90 days incubation. DGGE analysis indicated only a slight change in bacterial community composition at 10 days but a significant change at 90 days. Cluster analysis suggested that BS3 treatment grouped separately from controls. Survival of E. coli in soil was significantly influenced by the complexity of the microbial community, as die-off rate of E. coli progressively declined with the reduction of microbial community diversity. Differential survival of E. coli under different soil microbial stress highlights the importance of incorporating biotic factors in predictive models for water quality management and microbial source tracking study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号