首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Concentrations of methyl mercury (MeHg) and total mercury (THg) in precipitation were measured at the Experimental Lakes Area (ELA), a remote field station in northwestern Ontario. We found that precipitation was a source of both MeHg and THg to boreal ecosystems, but at lower rates than in industrialized regions of North America and Scandinavia. MeHg concentrations in precipitation ranged from 0.010 to 0.179 ng L?1 and were highest when events originated west of the ELA. THg concentrations in precipitation ranged from 0.95 to 9.31 ng L?1 and were highest when the events came from the southeast. There was no relationship between THg and MeHg over time in precipitation. Inputs of both MeHg and THg to ecosystems were highest during summer months.  相似文献   

2.
Allan  C. J.  Heyes  A. 《Water, air, and soil pollution》1998,105(3-4):573-592
Results from a preliminary sampling program designed to investigate total (THg) and methyl Hg (MeHg) deposition, cycling and transport at the Coweeta Hydrologic Laboratory western North Carolina are presented. Wet deposition samples were collected in June and July 1994 and throughfall, seep and streamwaters were intensively collected during and after a rainfall event in June 1994. All water samples were collected using ultra clean trace sampling protocol. Low elevation Watershed 18 streamwater THg concentrations peaked with discharge, increasing 6 fold to 9 ng L-1. High elevation Watershed 27 which received less than one half the precipitation Watershed 18 received during the event, exhibited THg concentrations only 1.3 times over base flow conditions. Methyl Hg concentrations remained near detection limits (≤ 0.025 ng L-1) in both streams. Dissolved MeHg concentrations were higher in shallow seep (0.097 ng L-1), throughfall (0.135 ng L-1) and precipitation (0.16 – 0.035 ng L-1) than streamwaters. Initial estimates of annual THg and MeHg deposition and transport indicate >90% retention of Thg and a >80% retention or demethylation of wet deposition MeHg is occurring in these low order watersheds.  相似文献   

3.
The purpose of this study was to gather information on the spatial and temporal variation of stream water total mercury concentrations ([THg]) and to test the hypothesis that stream water [THg] increases as stream pH decreases in the Shenandoah National Park (SNP). We based our hypothesis on studies in lakes that found mercury methylation increases with decreasing pH, and studies in streams that found total mercury and other trace metal concentrations increase with decreasing pH. Stream water was collected at baseflow in SNP in April, July, and October 2005 and February 2006. Contrary to our hypothesis, stream water [THg] decreased with decreasing pH and acid neutralizing capacity. In SNP, stream pH and acid neutralizing capacity are strongly influenced by bedrock geology. We found that bedrock also influences stream water [THg]. Streams on basaltic bedrock had higher [THg] (0.648 ng L?1?±?0.39) than streams on siliciclastic bedrock (0.301 ng L?1?±?0.10) and streams on granitic bedrock (0.522 ng L?1?±?0.06). The higher pH streams on basaltic bedrock had the highest [THg]. The variation in stream water [THg] occurred despite no known variation in wet deposition of mercury across the SNP. The findings of this study indicate that the SNP can be an important area for mercury research with significant variations in mercury concentrations across the park.  相似文献   

4.
Deposition of methylmercury (MeHg) and mercury (Hg) to a coniferous forest have been investigated using field measurements. Samples of open field (OF) wet deposition, throughfall (TF) and litterfall (LF) have been collected and analyzed for MeHg and Hg during the period November 1991 to April 1994. Average concentrations in TF were 22.8 and 0.38 ng L?1, for Hg and MeHg, respectively. Concentrations in OF precipitation were 11.9 and 0.37 ng L?1, for Hg and MeHg, respectively, during the same period. Considerable differences were found for Hg in TF and OF which was attributed to a dry deposition of Hg. Hg in LF contributes a deposition of equal size as in TF. The relations between OF, TF and total Hg deposition were approximately 1∶1,5∶3. A decrease in OF Hg was found over the three year period studied. MeHg deposition in OF was also found to decrease during the same period whereas the TF MeHg showed a slight increase. Dry deposition of MeHg is also an important process in a coniferous forest although the flux to the forest floor is not via TF but rather as MeHg in LF.  相似文献   

5.
During one year, samples from eight drainage lakes, seven run-off stations and three deposition sites from various geographical areas in Sweden were collected and analyzed for methyl Hg (MeHg) and total Hg (Hg-tot). The MeHg concentrations ranged from 0.04 to 0.64 ng L?1, 0.04 to 0.8 ng L?1, and <0.05 to 0.6 ng L?1 in run-off, lake water and rain water, respectively. The corresponding Hg-tot concentrations were found in the range 2 to 12 ng L?1, 1.35 to 15 ng L?1, and 7 to 90 ng L?1, respectively. A Hg-tot level of about 60 ng Hg L?1 was found in throughfall water. The MeHg and Hg-tot concentrations are positively correlated in both run-off and lake water, but not in rain and throughfall water. A strong positive correlation between the MeHg, as well as the Hg-tot concentration, and the water color is observed in both run-off and lake waters, which suggests that the transport of MeHg and other Hg fractions from soil via run-off water to the lake is closely related to the transport of organic substances; and is a consequence of the biogeochemical processes and the water flow pathway. The ratio between the mean values of MeHg and Hg-tot seems to be an important parameter, with an indicated negative coupling to the mean value of pH for run-off water, but a strong positive correlation to Hg-content in fish, the ratio between the area of the catchment and the lake, as well as to the retention time of lake.  相似文献   

6.
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg?=?44?±?15 ng L?1, DOC?=?63.0?±?31.3 mg L?1, pH?=?4.05?±?0.53) than at the northern site (Hg?=?22?±?6 ng L?1, DOC?=?41.8?±?12.1 mg L?1, pH?=?4.28?±?0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34?±?0.06 μg g?1 dw and 0.76?±?0.14 μg g?1 C, respectively) than at the northern site (0.31?±?0.05 μg g?1 dw and 0.70?±?0.12 μg g?1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.  相似文献   

7.
The upper Great Egg Harbor River watershed in New Jersey’s Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006–2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river’s flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils.  相似文献   

8.
Solute fluxes to the ground in open plots and under the forest canopy of different species were investigated in a number of long-term ecosystem studies in West Germany. From the canopy flux balance, rates of interception deposition and canopy/deposition interactions were assessed. Chemically, both open precipitation and throughfall are dilute solutions of H2SO4 and HNO3 and their salts. For the sites investigated, mean pH in bulk precipitation ranged from 4.1 to 4.6, and in throughfall from 3.4 to 4.7. The increase in acidity after canopy passage at most sites indicates considerable interception deposition of strong acids to the forest stands, exceeding the rate of H+ buffering in the canopy. Evidence for buffering processes can be directly deduced from the fact that on sites with high soil alkalinity and high foliage base status, throughfall pH is usually higher than precipitation pH. Furthermore, the same idea can be concluded from changes in solution composition after canopy passage: the H+/SO inf4 sup2? ratio is decreasing at most sites, while alkali earth cations from exchange processes occur in throughfall (Ca2+/SO inf4 sup2? ratio increases). Solution composition and element flux data are presented for each of the sites, and the regional, orographical and site specific (species composition, ecosystem state) differentiations are discussed. A method for the assessment of total deposition and of canopy interactions such as H+-buffering and cation leaching is described, and results of calculations are shown. From these calculations it is concluded that forest ecosystems in Germany receive mean H+ loads of ca. 1 to 4 keq H+ · ha?1 · a?1 from atmospheric deposition. Acidity deposition rates seem to be related to a few key factors such as regional characteristics and ecosystem characteristics.  相似文献   

9.
Major ion chemistry (2000–2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (mean specific conductance?=?8.0 μS cm?1) and characterized by low acid neutralizing capacity (ANC; mean?=?56.8 μeq L?1). Two variants of the SSWC model were employed: (1) one model used the F-factor and (2) the alternate model used empirical estimates of atmospheric deposition and mineral weathering rates. A comparison between the results from both model variants resulted in a nearly 1:1 slope and an R 2 value of 0.98, suggesting that the deposition and mineral weathering rates used were appropriate. Using an ANClimit of 10 μeq L?1, both models predicted a median critical load value of 149 eq ha?1 year?1 of H+ for granitic catchments. Median exceedances for the empirical approach and F-factor approach were ?81 and ?77 eq ha?1 year?1, respectively. Based on the F-factor and empirical models, 36 (17 %) and 34 (16 %) lakes exceeded their critical loads for acid deposition. Our analyses suggest that high elevation lakes in the Sierra Nevada have not fully recovered from the effects of acid deposition despite substantial improvement in air quality since the 1970s.  相似文献   

10.
Litterfall can be an important flux of mercury (Hg) to soils in forested landscapes, yet typically the only available data to evaluate Hg deposition is from precipitation Hg monitoring. Litterfall was collected at 39 sampling sites in two small research watersheds, in 2003 and 2004, and analyzed for total Hg. Four vegetation classes were designated in this study as hardwoods, softwoods, mixed and scrub. The mean litter Hg concentration in softwoods (58.8 ± 3.3 ng Hg g?1 was significantly greater than in mixed (41.7 ± 2.8 ng Hg g?1 and scrub (40.6 ± 2.7 ng Hg g?1, and significantly lower than in hardwoods (31.6 ± 2.6 ng Hg g?1. In contrast, the mean weighted litter Hg flux was not significantly different among vegetation classes. The lack of a significant difference in litter Hg flux between hardwoods and softwoods was attributable to the large autumnal hardwood litter Hg flux being balanced by the higher softwood litter Hg concentrations, along with the higher chronic litterfall flux throughout the winter and spring in softwoods. The estimated annual deposition of Hg via litterfall in Hadlock Brook watershed (10.1 μg m?2 and Cadillac Brook watershed (10.0 μg m?2 was greater than precipitation Hg deposition and similar to or greater than the magnitude of Hg deposition via throughfall. These results demonstrate that litterfall Hg flux to forested landscapes can be at least as important as precipitation Hg inputs.  相似文献   

11.
An intensive survey of mercury speciation was performed at a site on the Upper St. Lawrence River near Cornwall, Ontario, Canada with a history mercury contamination in sediments. Surface sediments were collected every 1.50 h. Total mercury (Hgtotal), methylmercury (MeHg), organic carbon, inorganic and organic sulphur were determined in the solid fraction. Dissolved Hgtotal, MeHg and dissolved organic carbon (DOC) were measured in pore waters. Concentrations of Hgtotal in the upper layers (first 5 cm) were high, ranging from 1.42 to 25.8 nmol g?1 in solids and from 125 to 449 pM in pore waters. MeHg levels were also high, ranging from 4.34 to 34.1 pmol g?1 in solids and from 40 to 96 pM in pore waters. This amounts to up to 1.4% of Hgtotal present as MeHg in solids and 64% in pore waters. A daily pattern for Hgtotal was observed in the solid fraction. The MeHg distribution in solids and pore waters was not correlated with Hgtotal or DOC, suggesting that the concentrations of MeHg are probably more influenced by the relative rates of methylation/demethylation reactions in the sediment–water interface. Acid volatile sulphide levels and DOC were inversely correlated with organic sulphur (Sorg) levels suggesting that both parameters are involved in the rapid production of Sorg. A positive correlation was also observed between Hgtotal and Sorg in solids (R?=?0.87, p?<?0.01) illustrating the importance of organic sulphur in the retention and distribution of Hg in the solid fraction of the sediments. The results suggest that variations of Hgtotal concentrations in Upper St. Lawrence River surface sediments were strongly influenced by the formation/deposition/retention of organic sulphur compounds in the sediment–water interface.  相似文献   

12.
The processes affecting the concentrations of total mercury (total Hg) and methylmercury (MeHg) in a freshwater system comprising two connected reservoirs in southwest Tasmania were investigated. Surface concentrations of total mercury (total Hg)were temporally and spatially uniform in both Lake Gordon (2.3±0.4 ng L-1, n = 27) and Lake Pedder (2.3±0.3 ng L-1, n = 11). The surface concentrations of MeHg in Lake Gordon (0.35±0.39 ng L-1, n = 25) were more variable than total Hg and MeHg typically comprised 10–20% of total Hg. The relatively high amount of total mercury present as MeHg in Lake Gordon was attributed to the high proportion of wetlandsin the upper catchment (50% of total area) and in-lake contributions (ca. 40% of total MeHg). Despite the close proximity of the two lakes, MeHg concentrations in Lake Pedder were consistently lower than in Lake Gordon. This phenomenon canbe explained in part by the greater contribution of direct rainfall to Lake Pedder leading to the dilution of MeHg. Water column MeHg concentrations were higher in warmer months in bothlakes, reflecting increased net methylation of inorganic mercury.Unlike previous studies of seasonally anoxic lakes, depth profiles of total mercury and MeHg in Lake Gordon were uniform and were not affected by water column stratification occurringin the summer months, and oxygen depletion with depth. This suggests that redox cycling and accumulation of MeHg in the hypolimnion following seasonally-induced anoxia is not a significant part of the mercury cycle in Lake Gordon. The primary location of MeHg production within the lake's water column is not conspicuous. Mercury speciation measurements made above and below the lake system over a period of 19 months indicates that after 20 yr of impoundment, the reservoirs are not significantly affecting MeHg concentrations in the downstreamriverine environment.  相似文献   

13.
The speciation of mercury (Hg) in Minamata Bay (Japan) was studied over a 2-year period (2006?C2008). Concentrations of dissolved total Hg, dissolved methylmercury (MeHg), particulate total Hg, and suspended solids were 0.43?±?0.14 ng/l (mean?±?standard deviation), 0.10?±?0.06 ng/l, 3.04?±?2.96 ng/l, and 5.94?±?2.10 mg/l, respectively. Correlations between concentrations of particulate total Hg and suspended solids at four depths (surface: 0 m; mid-depth: ?6 m, ?10 m; and bottom +1 m layer) were only significant in the bottom +1 m layer. The mean dissolved MeHg concentration and the ratio of dissolved MeHg to dissolved total Hg were considerably higher in summer compared to other seasons. The data suggest that bottom sediment was not the sole source of MeHg, and that MeHg may be produced in the water column by the conversion of divalent Hg eluted from resuspended bottom sediment. The correlation between seawater characteristics such as salinity, temperature, dissolved oxygen (DO), and dissolved MeHg concentration indicates that Hg methylation could be influenced by the heterotrophic activity of microorganisms in the seawater. In particular, inverse correlations were observed between DO, salinity, and MeHg concentration. However, dissolved MeHg concentrations did not correlate with seawater characteristics such as pH or chlorophyll-a.  相似文献   

14.
Food as the Dominant Pathway of Methylmercury Uptake by Fish   总被引:1,自引:0,他引:1  
A field experiment was conducted to determine the degree to which fish accumulated methylmercury (MeHg) via their food or via passive uptake from water through the gills. Finescale dace (Phoxinus neogaeus) were held in 2000 L enclosed pens floating in an undisturbed, oligotrophic lake in northwestern Ontario. Fish were exposed to water containing either low (0.10–0.40 ng L-1), intermediate (0.45–1.30 ng L-1), or high (0.80–2.1 ng L-1) concentrations of MeHg. Zooplankton with either low (0.16–0.18 µg g-1 d.w.) or high (0.28–0.76 µg g-1 d.w.) concentrations of MeHg were added daily to each pen. Fish fed zooplankton with high concentrations of MeHg had significantly higher concentrations of mercury in muscle after 32 days than fish fed zooplankton with low concentrations of MeHg (ANCOVA, P<0.0001). Fish feeding on zooplankton with low concentrations of MeHg had the same amount of Hg in their tissues as fish at the start of the experiment. Uptake from water was at most 15%. This is the first experiment to confirm that food is the dominant pathway of MeHg bioaccumulation in fish at natural levels of MeHg.  相似文献   

15.
Methyl mercury (MeHg) concentrations were compared to total mercury (THg) concentrations in a variety of types of aqueous samples collected at the Experimental Lakes Area during 1991 through 1993. In several streams, an experimentally flooded wetland, and peat pore water, there was no relationship between MeHg and THg concentrations. %MeHg (compared to THg) ranged from < 1% to over 90%. In three ELA lakes, as in groups of lakes from other regions, a linear relationship between MeHg and THg concentration was found. However, these relationships differed by a factor of three from one region to another. This study shows that THg inputs and/or concentrations are not very useful in predicting MeHg concentrations, and that factors within ecosystems are very important in controlling MeHg concentrations.  相似文献   

16.
为了了解北江沉积物中汞污染现状、来源并评价其污染程度,在北江流域共采集19个沉积物样,用原子吸收法(AAS)和冷原子荧光法(CVAFS)分别测定了其总汞(THg)和甲基汞(MeHg)含量,比较了甲基化率,并用污染指数法对测定结果进行了评价。结果表明,北江沉积物THg含量为73.7~3 517 ng·g^-1(干重),均值为607.6 ng·g^-1,MeHg含量为 0.392~2.384 ng·g^-1,均值为1.302 ng·g^-1,韶关冶炼厂为重要污染点源。各采样点甲基化率差异较大,进一步研究影响甲基化的因素具有重要意义。沉积物中THg、MeHg平均污染指数分别为3.04、26.04,表明均为中度污染。  相似文献   

17.

Purpose

The aim of the present study was to investigate the differences of methylmercury (MeHg) formation and distribution between mariculture (aquaculture) sediments (MS) and reference sediments (RS) collected from a site in Hong Kong.

Materials and methods

The MS and RS samples were split into four batches, three of which were spiked with HgCl2 aqueous solution to a concentration of 0.8, ,2 and 8 mg k g?1 in sediment samples SP1, SP2, and SP3, respectively, while the rest served as a control batch (referred to as C).

Results and discussion

The results showed that the highly Hg-polluted sediment produced greater amounts of MeHg. During the culture period, MeHg concentrations in sediments decreased over time. The decreasing percentage increased in the order of SP3?<?SP2?<?SP1, which might be due to the inhibition of MeHg degradation by high Hg concentrations. The mean value of MeHg concentrations and %MeHg of the total Hg (THg) in MS was significantly lower than those in RS, possibly due to the complexation of Hg with organic ligands, leading to lower Hg bioavailability for methylation bacteria. The distribution coefficient of THg (KdT) was relatively high in MS compared to RS, indicating that the former had a greater number of binding sites for Hg adsorption.

Conclusions

Methylmercury formation was inhibited in MS, probably due to increased complexation of Hg2+ with organic matter and adsorption of Hg to MS. Furthermore, the mean value of KdT in MS was relatively high when compared to RS, which illustrates that MS sediments have more binding sites than RS for adsorption of Hg.  相似文献   

18.
Virgin fir trees have been dying on Mt. Oyama, which is located in the southwestern part of Kanto Plain, although the frequency of death seems to be reducing recently. We report elevational patterns of acid deposition in precipitation and throughfall under fir and cedar canopies and nitrogen saturation in the forest ecosystem on Mt. Oyama. The deposition fluxes of major inorganic ions in precipitation were nearly constant regardless of elevation except for hydrogen and ammonium ions, whereas the deposition fluxes of all major inorganic ions in throughfall among cedar increased. The 5-year average of annual nitrate deposition in precipitation from 1994 to 1998 showed 19.3 – 23.5 kg ha?1 yr?1 (annual inorganic total N deposition: 9.6 – 10.7 kgN ha?1 yr?1) at four sites ranging in elevation from 500 to 1252 m, whereas the deposition in both cedar and fir throughfall was over 6 times greater than that in precipitation. The average soil surface nitrate concentration in 1998 was 140 µg g?1 (the range: 21.1 – 429 µg g?1, n=80) and the 7-year average of nitrate concentration in stream water from 1992 to 1998 was 4.81 mg L?1 (the range: 2.38 – 20.6 mg L?1, n=317). Our results indicate that nitrogen saturation is occurring in the forest ecosystem because of high N deposition, probably via acid fog, on Mt. Oyama.  相似文献   

19.
The dynamics of MeHg during rain-driven runoff episodes are important in calculating the output of MeHg from forested catchments. These dynamics may also provide insight into the processes controlling MeHg output from soils to surface waters. The concentrations of MeHg, Hg-tot, TOC and associated chemistry were observed during a rain-driven, July runoff episode on two forested tributaries of the Svartberget Catchment, as well as at the outlet of a mire in the headwaters of that catchment. TOC concentrations in runoff increased during the episode. Hg-tot concentrations also tended to increase (from 3 to between 4 and 7 ng L?1), though the timing of that increase varied. MeHg concentrations, on the other hand, tended to decrease. The decrease was slight in the two forested tributaries (ca. 0.1 ng L?1), but greater in the mire runoff (from 0.8 to ca 0.3 ng L?1). These data are set in relation to a hypothesis about the processes which control MeHg output.  相似文献   

20.
Mercury (Hg) dynamics was evaluated in contaminated sediments and overlying waters from Tagus estuary, in two sites with different Hg anthropogenic sources: Cala Norte (CNOR) and Barreiro (BRR). Environmental factors affecting methylmercury (MMHg) production and Hg and MMHg fluxes across sediment/water interface were reported. [THg] and [MMHg] in solids (0.31–125 μg g?1 and 0.76–201 ng g?1, respectively) showed high variability with higher values in BRR. Porewater [MMHg] (0.1–63 ng L?1, 0.5–86% of THg) varied local and seasonally; higher contents were observed in the summer campaign, thus increasing sediment toxicity affecting the sediment/water Hg (and MMHg) fluxes. In CNOR and BRR sediments, Hg availability and organic carbon were the main factors controlling MMHg production. Noteworthy, an upward MMHg diffusive flux was observed in winter that was inverted in summer. Although MMHg production increases in warmer month, the MMHg concentrations in overlying water increase in a higher proportion compared to the levels in porewaters. This opposite trend could be explained by different extension of MMHg demethylation in the water column. The high concentrations of Hg and MMHg and their dynamics in sediments are of major concern since they can cause an exportation of Hg from the contaminated areas up to ca. 14,600 mg year?1 and an MMHg deposition of up to ca. 6000 mg year?1. The results suggest that sediments from contaminated areas of Tagus estuary should be considered as a primary source of Hg for the water column and a sink of MMHg to the sedimentary column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号