首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine the relationship between plasma beta-endorphin (EN) concentrations and exercise intensity and duration in horses. ANIMALS: 8 mares with a mean age of 6 years (range, 3 to 13 years) and mean body weight of 450 kg. PROCEDURE: Horses were exercised for 20 minutes at 60% of maximal oxygen consumption (VO2max) and to fatigue at 95% V02max. Plasma EN concentrations were determined before exercise, after a 10-minute warmup period, after 5, 10, 15, and 20 minutes at 60% VO2max or at the point of fatigue (95% VO2max), and at regular intervals after exercise. Glucose concentrations were determined at the same times EN concentrations were measured. Plasma lactate concentration was measured 5 minutes after exercise. RESULTS: Maximum EN values were recorded 0 to 45 minutes after horses completed each test. Significant time and intensity effects on EN concentrations were detected. Concentrations were significantly higher following exercise at 95% VO2max, compared with those after 20 minutes of exercise at 60% VO2max (605.2 +/- 140.6 vs 312.3 +/- 53.1 pg/ml). Plasma EN concentration was not related to lactate concentration and was significantly but weakly correlated with glucose concentration for exercise at both intensities (r = 0.21 and 0.30 for 60 and 95% VO2max, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: A critical exercise threshold exists for EN concentration in horses, which is 60% VO2max or less and is related to exercise intensity and duration. Even under conditions of controlled exercise there may be considerable differences in EN concentrations between horses. This makes the value of comparing horses on the basis of their EN concentration questionable.  相似文献   

2.
OBJECTIVES: To establish maximum oxygen consumption VO2max) in ponies of different body weights, characterize the effects of training of short duration on VO2max, and compare these effects to those of similarly trained Thoroughbreds. ANIMALS: 5 small ponies, 4 mid-sized ponies, and 6 Thoroughbreds. PROCEDURE: All horses were trained for 4 weeks. Horses were trained every other day for 10 minutes on a 10% incline at a combination of speeds equated with 40, 60, 80, and 100% of VO2max. At the beginning and end of the training program, each horse performed a standard incremental exercise test in which VO2max was determined. Cardiac output (Q), stroke volume (SV), and arteriovenous oxygen content difference (C [a-v] O2) were measured in the 2 groups of ponies but not in the Thoroughbreds. RESULTS: Prior to training, mean VO2max for each group was 82.6 = 2.9, 97.4 +/- 13.2, and 130.6 +/- 10.4 ml/kg/min, respectively. Following training, mean VO2max increased to 92.3 +/- 6.0, 107.8 +/- 12.8, and 142.9 +/- 10.7 ml/kg/min. Improvement in VO2max was significant in all 3 groups. For the 2 groups of ponies, this improvement was mediated by an increase in Q; this variable was not measured in the Thoroughbreds. Body weight decreased significantly in the Thoroughbreds but not in the ponies. CONCLUSIONS AND CLINICAL RELEVANCE: Ponies have a lower VO2max than Thoroughbreds, and larger ponies have a greater VO2max than smaller ponies. Although mass-specific VO2max changed similarly in all groups, response to training may have differed between Thoroughbreds and ponies, because there were different effects on body weight.  相似文献   

3.
OBJECTIVE: To compare cardiac output (CO) obtained by the lithium dilution method (LiDCO) with CO calculated from the Fick principle (FickCO), in horses maximally exercising on a high-speed treadmill. ANIMALS: 13 Thoroughbreds. PROCEDURES: In part 1 of the study, 5 horses performed a warm-up (walk, trot, and canter) and exercise test (walk, trot, canter, and gallop [90% to 100% maximum oxygen consumption [{[Formula: see text]O(2)max}]) with measurements of LiDCO and FickCO obtained simultaneously after 60 seconds at each exercise level, for a total of 7 measurements. In part 2 of the study, 8 horses performed a warm-up (walk, trot, and canter) followed by an exercise test (walk and gallop [90% to 100% [Formula: see text]O(2)max], repeated twice). Measurements of LiDCO and FickCO were obtained 60 seconds into the first walk and each gallop of the exercise tests, for a total of 3 measurements. RESULTS: Cardiac output increased significantly with increasing speeds by use of both methods. In part 1, lithium dilution significantly overestimated CO, compared with the Fick principle, during the exercise test (as both injection number and exercise intensity increased). Mean +/- SD bias was 246 +/- 264 mL of blood/min/kg in part 1 and 67 +/- 100mL of blood/kg/min in part 2. Three injections of lithium (part 2) did not result in the same degree of overestimation of LiDCO that was observed with 7 injections (part 1). CONCLUSIONS AND CLINICAL RELEVANCE: Lithium dilution may be an acceptable substitute for the Fick principle as a means to measure CO in maximally exercising client-owned horses.  相似文献   

4.
The purpose of this study was to examine the effects of an external nasal strip (NS), frusemide (FR) and a combination of the 2 treatments (NS + FR) on exercise-induced pulmonary haemorrhage (EIPH) in Thoroughbred horses. It was hypothesised that both the NS and FR would attenuate EIPH as assessed by red blood cell count in bronchoalveolar lavage fluid. In random order, 8 horses completed each of 4 sprint exercise tests on a treadmill: 1) NS; 2) FR (0.5 mg/kg bwt i.v., 4 h pre-exercise); 3) NS + FR; and 4) control (C; no treatment). After a 5 min warm-up (4.5 m/s), horses completed 2 min running at 120% maximum oxygen consumption (VO2max) with the treadmill set at 3 degrees incline. Mean +/- s.d. running speed was 14.2+/-0.2 m/s. In the FR and NS + FR trials, horses carried weight equal to that lost as a result of frusemide administration. During exercise at 120% Vo2max, oxygen consumption (Vo2) and carbon dioxide production (Vco2) were measured at 15 s intervals. Plasma lactate concentration was measured in samples collected before exercise, at the end of the sprint and after 5 min cool-down at the trot. Thirty minutes after the run, bronchoalveolar lavage (BAL) was performed and the red cell count in the fluid quantified. Vo2 and Vco2 were significantly lower in NS and NS + FR trials than in the C and FR trials at the end of the sprint exercise protocol. However, plasma lactate concentrations did not differ among treatments. Compared with the C trial (61.1+/-30.5 x 10(6) red blood cells/ml BAL fluid), pulmonary haemorrhage was significantly (P<0.05) decreased in both the NS (15.9+/-4.0 x 106 RBC/ml) and FR (12.2+/-5.8 x 10(6) RBC/ml) trials. EIPH in the NS + FR trial (7.9+/-1.0 x 10(6) RBC/ml) was further diminished (P<0.05) compared to the NS trial, but not different from the FR trial. We conclude that both the external nasal strip and frusemide attenuate pulmonary haemorrhage in Thoroughbred horses during high-speed sprint exercise. The external nasal strip appears to lower the metabolic cost of supramaximal exertion in horses. Given the purported ergogenic effects of frusemide, the external nasal strip is a valuable alternative for the attenuation of EIPH.  相似文献   

5.
To assess the suitability of sheep for exercise studies, the effect of incremental exercise and conditioning on oxygen consumption (VO2) was studied. Six sheep were adapted to a treadmill and subsequently trained 8 weeks. The sheep were then studied, in random order, using 3 incremental exercise protocols (EX-1, EX-2, and EX-3). The protocols were chosen to approximate high (EX-1), moderate (EX-2), and low (EX-3) intensity exercise by varying treadmill speed and incline. The sheep were then conditioned for an additional 12 weeks and retested on the EX-2 protocol. During exercise, VO2, gas exchange ratio (R), and rectal temperatures (Tb) were recorded. All 3 protocols resulted in significant increases in VO2, R, and Tb (P less than 0.05). Maximum VO2 for EX-1, 49.9 +/- 5.0 ml/min/kg of body weight, was significantly greater than maximum VO2 for EX-2 and EX-3, 37.8 +/- 6.5 and 42.3 +/- 6.0 ml/min/kg, respectively (P less than 0.05), whereas maximum R and maximum Tb were similar. After the additional 12-week conditioning, time on the treadmill increased 40% from 9.58 +/- 0.87 to 13.4 +/- 0.44 minutes, and maximum VO2 increased 27% to 48.1 +/- 9.1 ml/min/kg. These data indicated that maximum VO2 varied with intensity of the exercise, 12 weeks of maximal exercise conditioning was sufficient to produce a measurable training effect (ie, increase endurance and maximum oxygen consumption) and sheep are suitable for maximal exercise studies where VO2 measurements are desired.  相似文献   

6.
High intensity exercise is associated with production of energy by both aerobic and anaerobic metabolism. Conditioning by repeated exercise increases the maximal rate of aerobic metabolism, aerobic capacity, of horses, but whether the maximal amount of energy provided by anaerobic metabolism, anaerobic capacity, can be increased by conditioning of horses is unknown. We, therefore, examined the effects of 10 weeks of regular (4-5 days/week) high intensity (92+/-3 % VO2max) exercise on accumulated oxygen deficit of 8 Standardbred horses that had been confined to box stalls for 12 weeks. Exercise conditioning resulted in increases of 17% in VO2max (P<0.001), 11% in the speed at which VO2max was achieved (P = 0.019) and 9% in the speed at 115% of VO2max (P = 0.003). During a high speed exercise test at 115% VO2max, sprint duration was 25% longer (P = 0.047), oxygen demand was 36% greater (P<0.001), oxygen consumption was 38% greater (P<0.001) and accumulated oxygen deficit was 27% higher (P = 0.040) than values before conditioning. VLa4 was 33% higher (P<0.05) after conditioning. There was no effect of conditioning on blood lactate concentration at the speed producing VO2max or at the end of the high speed exercise test. The rate of increase in muscle lactate concentration was greater (P = 0.006) in horses before conditioning. Muscle glycogen concentrations before exercise were 17% higher (P<0.05) after conditioning. Exercise resulted in nearly identical (P = 0.938) reductions in muscle glycogen concentrations before and after conditioning. There was no detectable effect of conditioning on muscle buffering capacity. These results are consistent with a conditioning-induced increase in both aerobic and anaerobic capacity of horses demonstrating that anaerobic capacity of horses can be increased by an appropriate conditioning programme that includes regular, high intensity exercise. Furthermore, increases in anaerobic capacity are not reflected in blood lactate concentrations measured during intense, exhaustive exercise or during recovery from such exercise.  相似文献   

7.
The purpose of this study was to compare exercise measurements in yearling, two-year-old and adult Thoroughbreds using a standardised treadmill incremental exercise test. Peak oxygen consumption (VO2 peak: 128.0 +/- 2.1, 140.0 +/- 2.1, 163.7 +/- 3.4; ml/kg/min +/- se, P less than 0.05), peak packed cell volume (PCV peak: 0.50 +/- 0.01, 0.58 +/- 0.01, 0.64 +/- 0.01 litres/litre +/- se, P less than 0.05) and the maximum number of steps completed in the exercise test (STEPmax: 7.7 +/- 0.1, 8.1 +/- 0.1, 8.6 +/- 0.1; steps +/- se, P less than 0.05) increased with age and degree of physical activity. Peak venous lactate concentration (LACpeak: 21.3 +/- 1.5, 19.5 +/- 1.7, 14.4 +/- 1.7; mmol/litre +/- se, P less than 0.05) and peak respiratory exchange ratio (Rpeak) were significantly higher in both groups of younger horses compared to the adult racehorses. Peak heart rate (HRpeak: 230 +/- 2, 231 +/- 3, 229 +/- 3; beats/min +/- se) did not change with age or training. The rate of change of VO2 between steps in the exercise test (VO2trans) was significantly lower in the adult racehorses at the highest exercise intensities. The slopes of the linear approximation between R (LinR bx), the natural log transformation of venous lactate concentration (LogLAC bx), and heart rate (HR bx) with velocity were significantly lower in the trained adult racehorses. The slope of venous lactate concentration normalised to per cent VO2peak (LogLAC per cent bx) was significantly lower and R breakpoint (R brkpt) normalised to per cent VO2peak was significantly higher in the trained adult racehorses. There was a more rapid decrease in venous lactate and a more rapid return to initial R values in the adult horses relative to the younger, untrained horses. No significant age or training effects were found in the remainder of the post exercise measurements. These results indicate that aerobic power and exercise capacity increased with age and training. Anaerobic power was already well developed even at a young age.  相似文献   

8.
In a crossover study, either a placebo paste or N,N-dimethylglycine was administered orally at a dose rate of 1.2 mg/kg twice daily for five days to six thoroughbred horses, with bodyweights ranging from 424 to 492 kg. Using previously determined regression equations for oxygen uptake (VO2) against speed for each horse, a standardised exercise test was given with speeds equivalent to fixed percentages of the maximum oxygen uptake (VO2max). The test consisted of two minutes at speeds equivalent to approximately 40 per cent and 50 per cent VO2max, and one minute at speeds that produced approximately 60, 70, 80, 90 and 100 per cent VO2max. During the last five seconds of each exercise stage, the values of VO2, carbon dioxide production (VCO2), heart rate, arterial blood and plasma lactate concentrations, arterial blood gases and pH were measured. Before and immediately after the exercise test, muscle biopsies were collected from the middle gluteal muscle to determine the muscle lactate concentrations. The administration of N,N-dimethylglycine produced no significant differences in any of the measured values, and it is concluded that the compound has no beneficial effects on cardiorespiratory function or lactate production in the exercising horse.  相似文献   

9.
Systemic distribution of blood flow was studied in 11 healthy adult grade ponies, using radionuclide-labeled microspheres (15 micron diameter) that were injected into the left ventricle. Measurements were made at rest, during severe exercise (SE) without furosemide, as well as during SE at 10 minutes and 120 minutes after furosemide administration (1.0 mg/kg, IV). During SE, heart rate, cardiac output, mean aortic pressure, and whole body O2 consumption were 220 +/- 4 beats/min, 720 +/- 44 ml/min/kg, 169 +/- 4 mm of Hg, and 126 +/- 9 ml of O2/min/kg, respectively. With SE performed after furosemide administration, mean aortic pressure decreased from prefurosemide SE value (P less than 0.05), but heart rate, cardiac output, and whole body O2 consumption remained similar to values during SE without furosemide. During SE, blood flow to cerebellar gray matter, pons, and medulla oblongata increased despite marked hypocapnia, but in other regions of the brain, blood flow was unchanged. As arterial O2 content increased by 58% with SE, O2 delivery to all brain regions increased. With SE, adrenal gland blood flow increased, but intense vasoconstriction in the kidneys, spleen, pancreas, small intestine, and colon caused blood flow to plummet. During SE, blood flow in the diaphragm, gluteus medius, biceps femoris (muscles of propulsion), and triceps brachii muscles increased to a similar level, indicating that metabolic requirements of the diaphragm during exercise may not be less than those of other vigorously contracting muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
4 female and 2 male untrained fattening pigs, weighing 43.9 +/- 1.6 kg at the beginning of the experiment underwent continuous measurement of VO2, VCO2, and rectal temperature, prior to, during, and after running on a horizontal exercise belt set to speeds of 0.7, 1.3, and 2.5 m.s-1. The highest values of VO2 and VCO2 (ml-min-1/kg-1) and rectal temperature (degrees C) were usually measured few minutes after running. They were 18.84 +/- 3.65 and 20.4 +/- 4.53 as well as 41.2 +/- 0.4, 28.41 +/- 4.07 and 33.26 +/- 5.92 or 41.3 +/- 0.5, 26.21 +/- 7.7 and 32.32 +/- 7.14 as well as 40.5 +/- 0.7, depending on the above belt speeds. Exercise belt speeds of 1.3 to 1.8 m.s-1 were found to be suitable for testing aerobic metabolic capacity of untrained young pigs.  相似文献   

11.
Continuous measurements were performed on 16 untrained boars for VO2, VCO2, and rectal temperature, prior to, during, and after running exercises on an horizontal exercise belt, with speeds set to 1.3 m.s-1 corresponding to something between 23 and 43 kg of body weight b.wt. or 0.7 and 1.3 m.s-1 corresponding to 76 to 86 kg of b.wt. The highest values of VO2 and VCO2 (ml.min-1/kg-1 b.wt.) and of rectal temperature (degrees C) were 36.78 +/- 3.57, 40.23 +/- 6.17, and 41.9 +/- 0.6 in younger animals or 21.49 +/- 2.46, 22.53 +/- 3.12, 40.8 +/- 0.5, 29.3 +/- 5.15, 30.6 +/- 4.77, and 40.7 +/- 0.45 for somewhat older animals for belt speeds of 0.7 and 1.3 m.s-1. Exercise belt speeds of 0.7 to 1.3 m.s-1 were found to be suitable for testing aerobic metabolic capacity of untrained young boars.  相似文献   

12.
OBJECTIVE: To determine the effect of girth construction and tension on respiratory mechanics and gas exchange during supramaximal treadmill exercise in horses. METHODS: Six healthy detrained Thoroughbred horses were exercised on a treadmill inclined at 10% at 110% VO2max. Horses were instrumented for respiratory mechanics and gas exchange studies, and data were recorded during incremental exercise tests. The animals were exercised for 2 min at 40% VO2max, and samples and measurements were collected at 1 min 45 sec. After 2 min, speed was increased to that estimated at 110% VO2max and data was collected at 45 sec, 90 sec and every 30 sec thereafter at this speed until the horses fatigued. Horses were run on three occasions with the same racing saddle and saddle packing but using two different girths, either an elastic girth (EG) or a standard canvas girth (SCG) which is nonelastic. A run with 5 kg tension applied to a standard canvas girth was the control for each horse, with additional runs at 15 kg using either the standard canvas girth or using the elastic girth. The runs were randomised and tensions applied were measured at end exhalation whilst at rest. RESULTS: Increasing girth tension was not associated with changes in respiratory mechanical or gas exchange properties. Although girths tightened to 15 kg tension had short run to fatigue times this was not found to be significantly different to girths set at 5 kg resting tension. Girth tensions declined at end exhalation in horses nearing fatigue. CONCLUSIONS: Loss in performance associated with high girth tensions is not due to alteration of respiratory mechanics. Loss in performance may be related to inspiratory muscles working at suboptimal lengths due to thoracic compression or compression of musculature around the chest. However, these changes are not reflected in altered respiratory mechanical or gas exchange properties measured during tidal breathing during supramaximal exercise. Other factors may hasten the onset of fatigue when horses exercise with tight girths and further studies are required to determine why excessively tight girths affect performance.  相似文献   

13.
This study was conducted to evaluate the effects of oral tryptophan (Trp) supplementation on exercise capacity and metabolic responses in horses. Three horses had to perform an exercise test: a 15-min warm-up followed by a 60-min walk (1.7 m/s, W1), a 10-min trot (3.1 m/s, T1), a second 60-min walk (1.7 m/s, W2), a second 10-min trot (3.1 m/s, T2) and a final 30-min walk (1.7 m/s, W3) until the horses were unwilling to continue. The horses exercised on a treadmill at a 6% incline and with a constant draught load of 40 kg (0.44 kN). Two hours before exercise horses were given 50 g Trp (9.8-10.7 g Trp/100 kg BW) by nasogastric tube. A control exercise test was conducted without Trp. During the control test, one horse was able to finish the final 30-min walk (W3), whereas two horses finished W3 after Trp administration. Higher plasma Trp levels after Trp administration did not change significantly during exercise (Trp: start exercise, 524 +/- 41 micromol/l; end exercise 547 +/- 20 micromol/l; control: start exercise, 70 +/- 10 micromol/l; end exercise, 58 +/- 21 micromol/l). After Trp supplementation, blood lactate concentrations were significantly lower after the first and second trotting periods. Free fatty acids in plasma increased during exercise without any treatment-related differences. Although experimental plasma Trp levels were seven times higher than the control levels, Trp supplementation had no effect on exercise performance and metabolic responses to draught load exercise.  相似文献   

14.
OBJECTIVE: To evaluate the use of xylazine and ketamine for total i.v. anesthesia in horses. ANIMALS: 8 horses. PROCEDURE: Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, i.v.), guaifenesin (75 mg/kg, i.v.), and ketamine (2 mg/kg, i.v.). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (microg/kg/min) and X and K represent xylazine and ketamine, respectively: X35 + K90 with 100% inspired oxygen (O2), X35 + K120-(O2), X35 + K150-(O2), X70 + K90-(O2), K150-(O2), and X35 + K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated. RESULTS: Heart rate and cardiac index were higher and total peripheral resistance lower in K150-(O2) and X35 + K120-air groups. The mean arterial pressure was highest in the X35 + K120-air group and lowest in the K150-(O2) group (125 +/- 6 vs 85 +/- 8 at 20 minutes, respectively). Mean Pa(O2) was lowest in the X35 + K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-(O2) (23 +/- 6 minutes and 33 +/- 8 minutes, respectively) and longest for those receiving X70 + K90-(O2) (58 +/- 28 minutes and 69 +/- 27 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses.  相似文献   

15.
Six Warmblood horses suffering an acute exacerbation of COPD were tested to investigate whether inhalation of ipratropium bromide (IB) dry powder (2,400 microg) 30 min preexercise would improve their exercise capacity. A cross-over protocol with an inert powder placebo (P) was used. Mechanics of breathing and arterial blood gases were determined before treatment, after treatment but pre-exercise, and during an incremental exercise test. Oxygen consumption (VO2) was also measured before and during exercise, and the time to fatigue recorded. Inhalation of IB reduced total pulmonary resistance (RL) and maximum intrapleural pressure changes (deltaPpl(max)) and increased dynamic compliance before exercise. The onset of exercise was associated with a marked decrease in RL in P-treated horses but not those receiving IB, so that RL during exercise was not affected by treatment. Although deltaPpl(max) was lower at 8,9 and 10 m/s with IB, there were no treatment-related changes in VO2, blood gases, time to fatigue or any other measurement of breathing mechanics. Therefore, although inhalation of IB prior to exercise may have improved deltaPpl(max), it had no apparent impact on the horses' capacity for exercise.  相似文献   

16.
OBJECTIVE: To determine the effect of oral administration of dantrolene sodium on serum creatine kinase (CK) activity after exercise in horses with recurrent exertional rhabdomyolysis (RER). ANIMALS: 2 healthy horses and 5 Thoroughbreds with RER. PROCEDURE: 3 horses received 2 doses of dantrolene (4, 6, or 8 mg/kg, p.o., with and without withdrawal of food) 2 days apart; 90 minutes after dosing, plasma dantrolene concentration was measured spectrofluorometrically. On the basis of these results, 5 Thoroughbreds with RER from which food was withheld received dantrolene (4 mg/kg) or an inert treatment (water [20 mL]) orally 90 minutes before treadmill exercise (30 minutes, 5 d/wk) during two 3-week periods. Serum CK activity was determined 4 hours after exercise. Plasma dantrolene concentration was measured before and 90 minutes after dosing on the first and last days of dantrolene treatment and before dosing on the first day of the inert treatment period, RESULTS: 90 minutes after dosing, mean +/- SEM plasma dantrolene concentration was 0.62 +/- 0.13 and 0 microg/mL in the dantrolene and inert treatment groups, respectively. Serum CK activity was lower in dantrolene-treated horses (264 +/- 13 U/L), compared with activity in water-treated horses (1,088 +/- 264 U/L). Two horses displayed marked muscle stiffness on the inert treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In 5 horses with RER from which food had been withheld, 4 mg of dantrolene/kg administered orally provided measurable, though variable, plasma concentrations and significantly decreased serum CK activity after exercise in 4 of those horses.  相似文献   

17.
The purpose of this study was to test the hypothesis that sucralfate, a gastric ulcer medication, would alter plasma concentrations of total carbon dioxide (tCO2), lactate (LA), sodium (Na+), potassium (K+), chloride (Cl-) and total protein (TP), as well as calculated plasma strong ion difference (SID) and packed cell volume (PCV) in horses subjected to a simulated race test (SRT). Six unfit Standardbred mares (approximately 520 kg, 9-18 years) were used in a randomized crossover design with the investigators blinded to the treatment given. The horses were assigned to either a control (40-50 mL apple sauce administered orally (PO)) or a sucralfate (20 mg/kg bodyweight dissolved in 40-50 mL apple sauce administered PO) group. Each horse completed a series of SRTs during which blood samples were taken via jugular venipuncture at five sampling intervals (prior to receiving treatment, prior to SRT, immediately following exercise, and at 60 and 90 min post-SRT). During the SRTs, each horse ran on a treadmill fixed on a 6% grade for 2 min at a warm-up speed (4 m/s) and then for 2 min at a velocity predetermined to produce VO2max. Each horse then walked at 4 m/s for 2 min to complete the SRT. Plasma tCO2, electrolytes, LA, and blood PCV and TP were analysed at all intervals. No differences (P>0.05) were detected between control and sucralfate for any of the measured variables. There were differences (P<0.05) in tCO2, SID, PCV, TP, LA and electrolyte concentrations relative to sampling time. However, these differences were attributable to the physiological pressures associated with acute exercise and were not an effect of the medication. It was concluded that sucralfate did not alter plasma tCO2 concentration in this study.  相似文献   

18.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

19.
Cardiovascular effects and pulmonary gas exchange were compared during conventional mechanical ventilation (CMV) and interrupted high-frequency, positive-pressure ventilation (IHFPPV) in 6 anesthetized ponies in dorsal recumbency. When the peak airway pressure (Paw) was held constant at control values attained during CMV (18 to 20 cm of H2O), and the ventilator frequency of IHFPPV was varied over the range, 2.5 to 12.5 Hz, significant (P less than 0.05) changes from control values were observed only in the ratio of dead-space volume to tidal volume (VD/VT) and in the respiratory minute volume (VE). The mean (+/- SEM) carbon dioxide excretion (VCO2) was 2.12 +/- 0.1 ml/kg/min during IHFPPV. Dead-space ventilation ranged from 40 to 73.7% of total ventilation and increased directly with increasing frequency. The VE also increased, from 89 ml/kg/min at a ventilatory frequency of 2.5 Hz to 145 ml/kg/min at a frequency of 12.5 Hz. Maintaining the frequency of IHFPPV constant at 12.5 Hz and increasing the Paw over the range of 5 to 30 cm of H2O caused significant (P less than 0.05) changes in arterial partial pressure of O2 (PaO2), VCO2, pulmonary shunt fraction (QS/QT), VE, arterial-alveolar differences in oxygen tension (AaDO2), VD/VT, and cardiac output, compared with CMV. The PaO2 and the VCO2 increased linearly with increasing Paw. With increasing Paw, VD/VT decreased directly with increasing Paw from 98 to 69.3%. Gas exchange at a Paw of 15 cm of H2O during IHFPPV was equivalent to conditions at Paw of 20 cm of H2O during CMV. At a higher Paw during IHFPPV, improvements over control values were observed in gas exchange.  相似文献   

20.
Pharmacokinetics of flunixin meglumine in donkeys, mules, and horses   总被引:6,自引:0,他引:6  
OBJECTIVE: To compare serum disposition of flunixin meglumine after i.v. administration of a bolus to horses, donkeys, and mules. ANIMALS: 3 clinically normal horses, 5 clinically normal donkeys, and 5 clinically normal mules. PROCEDURE: Blood samples were collected at time zero (before) and 5, 10, 15, 30, and 45 minutes, and at 1, 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 8 hours after i.v. administration of a bolus of flunixin meglumine (1.1 mg/kg of body weight). Serum was analyzed in duplicate by the use of high-performance liquid chromatography for determination of flunixin meglumine concentrations. The serum concentration-time curve for each horse, donkey, and mule were analyzed separately to estimate noncompartmental pharmacokinetic variables RESULTS: Mean (+/-SD) area under the curve for donkeys (646 +/- 148 minute x microg/ml) was significantly less than for horses (976 +/- 168 minute x microg/ml) or for mules (860 +/- 343 minute x microg/ml). Mean residence time for donkeys (54.6 +/- 7 minutes) was significantly less than for horses (110 +/- 24 minutes) or for mules (93 +/- 30 minutes). Mean total body clearance for donkeys (1.78 +/- 0.5 ml/kg/h) was significantly different from that for horses (1.14 +/- 0.18 ml/kg/h) but not from that for mules (1.4 +/- 0.5 ml/kg/h). Significant differences were not found between horses and mules for any pharmacokinetic variable. CONCLUSION AND CLINICAL RELEVANCE: Significant differences exist with regard to serum disposition of flunixin meglumine in donkeys, compared with that for horses and mules. Consequently, flunixin meglumine dosing regimens used in horses may be inappropriate for use in donkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号