首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast-growing hybrid poplar trees (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) were compared with slower-growing parental types in both field and laboratory experiments to determine physiological components of leaf growth that could be closely related to biomass production. Stem volume was correlated with individual leaf area (r = 0.81) and leaf growth rate (r = 0.82). Hybrids had a greater total leaf area, not because they produced more leaves, but because they had larger leaves than either parental type. The greater leaf size of the hybrids may be explained by inheritance of larger cell number from P. deltoides and larger cell size from P. trichocarpa. Rates of enlargement of isolated leaf discs in liquid culture were approximately 50% of those observed in intact leaves of field-grown plants.  相似文献   

2.
The role of abscisic acid (ABA) in the mediation of stomatal responses to low leaf water potential was examined with intact plants and epidermal strips of Populus trichocarpa Torr. & A. Gray. Clones of this species grown under well-watered conditions maintain a high leaf conductance when the foliage wilts. However, foliar ABA concentration in P. trichocarpa increased manyfold in response to water stress as it did also in P. deltoides Bartr. ex Marsh. and P. trichocarpa x deltoides hybrids. Application of ABA to epidermal strips appeared to cause solute leakage, however stomata of P. trichocarpa remained partially open even when the guard cells were plasmolyzed. Foliar application of ABA induced closure of stomata in young expanding leaves, but not in fully expanded foliage. Ten days after ABA application, stomata on young leaves were open at high water potential but closed at low water potential. These characteristics are discussed with respect to wilty mutants of tomato and potato, which also have stomata unresponsive to leaf wilting.  相似文献   

3.
To test if some leaf parameters are predictors of productivity in a range of Populus deltoides (Bartr.) Marsh. x P. nigra L. clones, we assessed leaf traits and productivity in 2-month-old rooted cuttings from 31 clones growing in 4-l pots in a greenhouse, under conditions of controlled temperature and optimal irrigation. We evaluated four groups of variables describing (1) productivity (total biomass), (2) leaf growth (total leaf number increment and total leaf area increment rate), (3) leaf structure (specific leaf area and nitrogen and carbon contents) and (4) carbon isotope discrimination (delta), which is negatively correlated with time-integrated water-use efficiency. High-yielding clones did not necessarily display high leaf growth rates, but they displayed a larger total leaf area, lower specific leaf area and lower leaf nitrogen concentration than clones with low productivity. Total leaf area was mainly controlled by maximal individual leaf area and total leaf area increment rate (r = 0.51 and 0.56, respectively). Carbon isotope discrimination did not correlate with total biomass, but it was associated with total number of leaves and total leaf area increment rate (r = 0.39 and 0.45, respectively). Therefore, leaf area and specific leaf area were better indicators of productivity than leaf growth traits. The observed independence of delta from biomass production provides opportunities for selecting poplar clones combining high productivity and high water-use efficiency.  相似文献   

4.
During the summers of 1986 and 1987, stem and leaf growth were measured on coppiced plants of Populus trichocarpa Torr. & A. Gray, P. deltoides Bartr. ex Marsh, and P. trichocarpa x deltoides growing in the field in Puyallup, WA. The trees were either irrigated periodically throughout the season, or grown without irrigation. In both treatments, stem volume at the end of the growing season was directly proportional to total leaf area in all three genotypes. The rate of individual leaf growth was reduced by lack of irrigation more in the parental species than in the hybrid. Only in the parental species did unirrigated trees have lower leaf water potentials (predawn and midday) than irrigated trees. However, stomatal conductances of all three genotypes were lower in unirrigated trees than in irrigated trees. Osmotic potentials of growing leaves of all three genotypes were also lower in unirrigated trees than in irrigated trees. As a consequence, turgor of growing leaves was as great in unirrigated trees as in irrigated trees, which indicates that turgor differences cannot explain the lower rates of leaf growth in the unirrigated trees. However, cell wall extensibility of leaves was lower in unirrigated trees than in irrigated trees, and the difference was greater in the parental species than in the hybrid. Unlike its effect on leaf area growth, irrigation increased stem volume growth of the hybrid and the parental species by a similar amount (12-16%).  相似文献   

5.
Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.  相似文献   

6.
We compared the physiological and morphological responses of rooted cuttings of Populus trichocarpa Torr. & Gray and P. trichocarpa x P. deltoides Bartr. ex Marsh. grown in either near-ambient solar ultraviolet-B (UV-B; 280-320 nm) radiation (cellulose diacetate film) or subambient UV-B radiation (polyester film) for one growing season. Midday biologically effective UV-B radiation was 120.6 and 1.6 mJ m(-2) s(-1) under the cellulose diacetate and polyester films, respectively. Gas exchange, leaf chlorophyll, light harvesting efficiency of photosystem II, and foliar UV-B radiation-absorbing compounds (i.e., flavonoid derivatives) were measured in expanding (leaf plastochron index (LPI) 5), nearly expanded (LPI 10), and fully expanded mature (LPI 15) leaves of intact plants of plastochron index 30 to 35. Plants were then harvested and height, diameter, biomass allocation and leaf anatomical attributes determined. Net photosynthesis, transpiration, and stomatal conductance were significantly greater in mature leaves exposed to subambient UV-B radiation than in mature leaves exposed to near-ambient UV-B radiation. Concentrations of UV-B radiation-absorbing compounds (measured as absorbance of methanol-extracts at 300 nm) were significantly greater in mature leaves exposed to near-ambient UV-B radiation than in mature leaves exposed to subambient UV-B radiation. The UV-B radiation treatments had no effects on chlorophyll content or intrinsic light harvesting efficiency of photosystem II. Height, diameter, and biomass were not significantly affected by UV-B radiation regime in either clone. Leaf anatomical development was unaffected by UV-B radiation treatment in P. trichocarpa x P. deltoides. For P. trichocarpa, leaf anatomical development was complete by LPI 10 in the near-ambient UV-B radiation treatment, but continued through to LPI 15 in the subambient UV-B radiation treatment. Mature leaves of P. trichocarpa were thicker in the subambient UV-B radiation treatment than in the near-ambient UV-B radiation treament as a result of greater development of palisade parenchyma tissue. We conclude that exposure to near-ambient UV-B radiation for one growing season caused shifts in carbon allocation from leaf development to other pools, probably including but not limited to, UV-B absorbing compounds. This reallocation curtailed leaf development and reduced photosynthetic capacity of the plants compared with those in the subambient UV-B radiation treatment and may affect growth over longer periods of exposure.  相似文献   

7.
In rhythmically growing woody species such as common oak (Quercus robur L.), stem growth is discontinuous and a bud forms at regular intervals at the shoot apex. These buds are composed of different types of leaves: laminate, aborted lamina and scale. The change in heteroblastic leaf shape from laminate to aborted lamina leaves is regarded as one of the events marking shoot growth arrest. To better understand the determinism of heteroblastic leaf shape change and thus, of rhythmicity, we studied morphogenetic events during the early days of the second flush of growth in oak, as well as changes in sucrose metabolism and abscisic acid (ABA) concentrations in control plants expressing the heteroblastic leaf shape change and in defoliated plants showing no heteroblastic leaf shape change and producing only laminate leaves. In control plants, the leaf shape change was underway on Day 5 of the second flush with the differentiation of the first two aborted lamina leaves. Sucrose concentration in the apices of control plants decreased between Days 3 and 5 during differentiation of the aborted lamina leaves. An inverse pattern was observed in defoliated plants, suggesting that sucrose acts as a signal triggering heteroblastic leaf shape changes. During the same period, acid cell wall invertase activity was high in young stem and laminate leaves of control plants, whereas the activity remained constant and low in the apices. If the laminate leaves were removed, the increase in apical sucrose concentration was proportionally higher than the decrease in apical acid vacuolar invertase activity, suggesting that, in the absence of young leaves, sucrose is imported to the apex. The sucrose concentration in the apex is therefore likely to be affected by trophic competition with the expanding laminate leaves. The decrease in apex sucrose concentration may be one of the mechanisms driving heteroblastic leaf shape change. Differentiation of aborted lamina leaves was followed by a decrease in the organogenic activity of the shoot apical meristem (SAM) between Days 7 and 9. High concentrations of ABA are associated with differentiation of aborted lamina and scale leaves and with low SAM organogenic activity. Shoot apical meristem organogenic activity remained high and ABA concentration in the apex remained low in defoliated plants producing only photosynthetic leaves. These results suggest that (1) ABA is involved in the gradual conversion of embryonic leaves to abnormal leaves, thereby regulating heteroblastic leaf shape changes and (2) changes in ABA concentration influence the intensity of SAM organogenic activity. Heteroblastic development and therefore rhythmic growth could be the result of competition between apices and laminate leaves, with competition first involving sucrose and thereafter ABA.  相似文献   

8.
以美国不同区域引种的美洲黑杨为材料建立基因库,通过对基因库资源物候期和生长调查发现,基因库资源内存在普遍的遗传变异,遗传多样性丰富。落叶晚的系号比落叶早的系号最长可多60 d左右的生长期;相关分析发现,叶片长、宽、叶宽基距等决定叶片大小的指标与树高和胸径呈负相关,甚至达到显著或极显著水平,说明单个叶片越大越不利于植株材积量增加。正态分布检验结果为树高、叶片长、叶柄长呈显著正态分布(P0.05),而其他特征虽然不呈显著正态分布(P0.05),但峰度和偏度值也较低,接近正态分布;基因库资源中不同性状变异系数从11%到29%不等。胸径超出群体均值25%的系号有32个,占到总数的7.13%。总体上,引进的美洲黑杨资源变异丰富,选育潜力巨大。  相似文献   

9.
We developed a fertilization technique that results in the control, and maintenance at defined rates and levels, of growth and tissue composition of plants of different sizes and developmental stages growing at exponential and nonexponential rates in solid media under naturally fluctuating light and temperature regimes. Clonal cottonwood (Populus deltoides Bartr.) saplings were grown in sand. Low concentrations of nutrient solution were added daily at different constant exponentially increasing rates for 20-30 days to produce plants with different growth rates and tissue nutrient composition. Matching nutrient supply to measured growth demand by bootstrapping, where bootstrapping is the use of an iterative equation that calculates demand from either actual or desired growth rates, maintained these differences for 20-40 days. Nutrient additions controlled growth of saplings with growth rates between 2.0 and 4.0% day(-1), heights between 13.9 and 37.5 cm, dry weights between 0.70 and 3.90 g, leaf nitrogen contents between 1.2 and 3.9%, and leaf carbon/nitrogen ratios between 42.1 and 12.5. The technique was reproducible in a greenhouse without temperature, humidity, or light control, and is easily modified to suit different plant species, plants of various sizes, and various growing conditions.  相似文献   

10.
Effects of N and K nutrition on drought and cavitation resistance were examined in six greenhouse-grown poplar clones: Populus trichocarpa (Torr. & Gray) and its hybrids with P. deltoides Bartr. and P. euramericana (Dole) Guinier, before and after preconditioning to water stress. Both tendency to cavitate and water-use efficiency (WUE) increased when N supply was increased, whereas K supply had little impact on cavitation. Mean xylem vessel diameters increased from 36.6 &mgr;m at low-N supply to 45.2 &mgr;m at high-N supply. Drought-hardy clones, which were relatively resistant to cavitation, had the smallest mean vessel diameters. Vulnerability to cavitation had a weakly positive relationship with vessel diameter, and a negative correlation with transpiration. Drought hardening offered no protection against cavitation in a subsequent drought. Under drought conditions, increasing N supply increased leaf loss and decreased water potentials, whereas increasing K supply decreased leaf loss. Drought-resistant clones exhibited similar WUE to drought-susceptible clones, but had smaller, more numerous stomata and greater leaf retention under drought conditions.  相似文献   

11.
The growth performance of twenty poplar(Populus deltoides Bartr.) clones,planted in the central-plain region of Punjab in north-western India,was evaluated using a randomized block design with three replications and plot size of four plants.Significant differences among clones were observed for diameter at breast height(DBH),height and volume per tree at age five,six and eight years.Clone L-48/89 recorded significantly superior volume than the control(G-48) at all ages,with superiority of 51.4,43.9 and 48.5 per cent at age five,six and eight years,respectively.The phenotypic and genotypic coefficients of variation were the highest for volume(26.55-34.66% and 15.84-26.00%) and the minimum for tree height(8.43-12.13% and 4.71-7.59%).The broad sense heritability was relatively higher for DBH(0.42-0.55) and genetic advance as per cent of mean was highest for volume(19.48-40.18).All genetic parameters increased with age.All traits showed significant positive correlation with each other.  相似文献   

12.
Funk JL  Jones CG  Lerdau MT 《Tree physiology》2007,27(12):1731-1739
Phenotypic plasticity in response to environmental variation occurs at all levels of organization and across temporal scales within plants. However, the magnitude and functional significance of plasticity is largely unexplored in perennial species. We measured the plasticity of leaf- and shoot-level physiological, morphological and developmental traits in nursery-grown Populus deltoides Bartr. ex Marsh. individuals subjected to different nutrient and water availabilities. We also examined the extent to which nutrient and water availability influenced the relationships between these traits and productivity. Populus deltoides responded to changes in resource availability with high plasticity in shoot-level traits and moderate plasticity in leaf-level traits. Although shoot-level traits generally correlated strongly with productivity across fertilization and irrigation treatments, few leaf-level traits correlated with productivity, and the relationships depended on the resource examined. In fertilized plants, leaf nitrogen concentration was negatively correlated with productivity, suggesting that growth, rather than enhanced leaf quality, is an important response to fertilization in this species. With the exception of photosynthetic nitrogen-use efficiency, traits associated with resource conservation (leaf senescence rate, water-use efficiency and leaf mass per area) were uncorrelated with short-term productivity in nutrient- and water-stressed plants. Our results suggest that plasticity in shoot-level growth traits has a greater impact on plant productivity than does plasticity in leaf-level traits and that the relationships between traits and productivity are highly resource dependent.  相似文献   

13.
几个杨树优良品种光合净生产力的测定   总被引:2,自引:0,他引:2  
通过半叶法,测定了小黑杨、黑林1号杨、拟青杨×山海关杨、中黑防1号杨、银中杨等5个杨树优良品种的光合速率、净生产力,结果表明:几个品种光合净生产力差异明显,生长量最优的品种为拟青杨×山海关杨。  相似文献   

14.
6个杨树无性系木材性质的研究*   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

15.
Zhang B  Su X  Zhou X 《Tree physiology》2008,28(6):929-934
A MADS-box gene (PdPI) was isolated from a cDNA library constructed from male flower buds of Populus deltoides Bartr. ex Marsh. According to an analysis of genomic DNA structure and putative protein structure, and a phylogenetic study, PdPI is an ortholog of the Arabidopsis PI gene. Relative-quantitative real-time polymerase chain reaction analysis showed that PdPI has a broader expression pattern than PI in Arabidopsis. PdPI was strongly expressed in floral buds and roots and weakly expressed in immature xylem, leaves and apical buds of the male P. deltoides tree. In male inflorescences, PdPI expression was abundant in the perianth and anther, and weak in the peduncle and mature pollen. The large differences in PdPI expression at various phases of male floral bud development were closely related to the development of flower organs (perianth and stamen) and pollen. PdPI was also expressed in female inflorescences. Our results suggest that PdPI has multiple functions in the development of P. deltoides.  相似文献   

16.
[目的]研究6个欧美杨无性系生长及光合特性对不同光强的响应差异,为欧美杨苗期快速选育高光效优良品种提供一定的理论依据。[方法]在大田用遮阴网设置CK(100%自然光强)、L1(55%自然光强)和L2(20%自然光强),测定欧美杨的苗高增长量、叶片形态、光合速率、叶绿素荧光特性、叶绿素含量及矿质元素含量。[结果]除11-26-9外,无性系的苗高总生长量随着光强的降低呈下降趋势;随着光强的降低,不同无性系的叶片形态变化趋势不一致,3个光强下无性系间的单叶面积、叶形指数和比叶面积存在差异;无性系在L2处理下的净光合速率(Pn)最低,胞间CO2浓度(Ci)最高;3个处理下,11-26-8的气孔导度均最大;在L1与L2下,11-26-9的F1/F0值均最大;无性系的叶绿素b含量与叶绿素总含量呈现相同的变化趋势;11-26-4、11-26-8和11-36-26的钾、钙、镁元素含量随着光强的降低而增加。[结论]不同无性系对光强变化的适应策略不同,部分无性系的高生长和净光合速率随着光强的降低而减小,降低光强没有破坏无性系的PSⅡ结构。多数无性系的总叶绿素含量、矿质元素含量随着光强的降低而升高。11-36-26无性系的生长势及抗弱光能力较弱。  相似文献   

17.
用快速称重法测定杨树蒸腾速率的技术研究*   总被引:11,自引:1,他引:11       下载免费PDF全文
蒸腾速率是杨树水分状况最重要的水分生理指标,它携带着耗水的信息。由于杨树形体高大,测定工作十分困难。国外的大棚、蒸渗仪、树干液流、微气候等测定方法,花钱多,不易操作,难以推广。迄今为止,还数、Huber和Arland等改进的快速称重法(Quick-weighing method,以下简称快称法)简便易行,在苏联、中国及欧洲国家广泛应  相似文献   

18.
West, Brown and Enquist (1999a) modeled vascular plants as a continuously branching hierarchical network of connected links (basic structural units) that ends in a terminal unit, the leaf petiole, at the highest link order (WBE model). We applied the WBE model to study architecture and scaling between links of the water transport system from lateral roots to leafy lateral branches and petioles in Populus deltoides Bartr. ex Marsh. trees growing in an agroforestry system (open-grown trees) and in a dense plantation (stand-grown trees). The architecture of P. deltoides violates two WBE model assumptions: (1) the radii of links formed in a branching point are unequal; and (2) there is no terminal unit situated at the end of a hierarchical network, rather, petioles are situated at any link order greater than 1. Link cross sections were taken at various link orders and morphological levels in roots and shoots of open-grown trees and shoots of stand-grown trees. Scaling of link radii was area-preserving. From roots to branches, vessel diameters were scaled with link order in accordance with a 1/6-power, as predicted by the WBE model indicating general vessel tapering. However, analysis of the data at the morphological level showed that vessel radius decreased intermittently with morphological level rather than continuously between successive link orders. Estimation of total water conductive area in a link is based on conducting area and petiole radius in the WBE model. The estimation failed in P. deltoides, probably because petioles are not a terminal unit. Biomass of stand-grown trees scaled with stem basal radius according to the 3/8-power predicted by the WBE model. Thus, the WBE model adequately described vascular allometry and biomass at the whole-tree level in P. deltoides despite violation of Assumption 1, but failed in predictions where the leaf petiole was used as a terminal unit.  相似文献   

19.
Quenching analysis in poplar clones exposed to ozone   总被引:1,自引:0,他引:1  
Effects of ozone (O(3)) on photo-inhibition of photosynthesis were investigated in two poplar clones (Populus deltoides Bartr. ex Marsh. x maximowiczii A. Henry clone Eridano, O(3)-sensitive, and P. x euramericana (Dode) Guinier clone I-214, O(3)-resistant) by using pulse amplitude modulation chlorophyll fluorescence. After a 15-day exposure to O(3) at 60 nl l(-1) for 5 h day(-1), the effective photosynthetic quantum yield of photosystem II (PSII), as indicated by the ratio of variable to maximum chlorophyll fluorescence, significantly declined in both young and mature leaves of the two clones. Compared with control samples, mature leaves of both clones showed differences in fluorescence quenching and quantum yield of PSII when exposed to ozone fumigation. We conclude that photo-inhibition is caused by transformation of active reaction centers to photochemically inactive centers that dissipate excitation energy into heat, thus causing non-photochemical fluorescence quenching. The changes observed in chlorophyll a fluorescence of O(3)-treated young leaves in both clones are consistent with O(3) having a negligible effect on photosynthetic performance, but inducing a premature decrease in chlorophyll a concentration. A possible role of O(3) pollution on chlorophyll fluorescence yield is discussed.  相似文献   

20.
五种杨树叶绿体DNA的提取及RFLP分析   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号