首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of low-cost materials (teakwood bark, ricehusk, coal, bentonite clay, hair and cotton waste) have been used as adsorbents for dyestuffs in aqueous solutions. Four red and four blue dyes have been studied; each color group consisted of an acidic, a basic, a disperse and a direct dye. The equilibrium isotherm for each dye-adsorbent system was determined and adsorption capacities from zero to 200 mg dye g?1 of adsorbent was obtained. In general basic dyes adsorbed to a greater extent than the other dye classes but no single characteristic of the dye or adsorbent seemed responsible for such dye-adsorbent interactions and adsorption capacities.  相似文献   

2.
Colour Removal from Synthetic Dye Wastewater Using a Bioadsorbent   总被引:1,自引:0,他引:1  
Removal of dyes (Crystal Violet, Methylene Blue, Malachite Greenand Rhodamine B) from aqueous solutions at differentconcentrations, pH and temperatures by Neem sawdust has beencarried out successfully. The percentage of the dye adsorbed byNeem sawdust decreased from 91.56 to 78.94 and 84.93 to 71.25 for Crystal Violet and Malachite Green, respectively, when the concentration of the dye was increased from 6 to 12 mg L-1 at atemperature 30 ± 1 °C and pH 7.2. Adsorption ofother dyes (Methylene Blue and Rhodamine B) also decreased withincreasing concentration of the dye in solutions. The values ofthe rate constant of adsorption (k ad) of Crystal Violet at25, 35 and 45 °C were found to be 10.80, 10.52 and 10.25 × 10-2 min-1, respectively. The values of the Langmuir constant for adsorption capacity (Q o) of Crystal Violet on the adsorbent varied from 4.44 to3.99 mg g-1, respectively, with the increase of temperaturebetween 25 to 45 °C. The equilibrium data followed theLangmuir model of adsorption. The variation in the extent ofremoval with pH has been explained on the basis of surfaceionisation and complexation. Thermodynamic parameters(ΔG, ΔH and ΔS) have also been determinedto explain the results.  相似文献   

3.
The ability of Fuller's earth to adsorb a basic dye (Astrazone Blue — Basic Blue 69) and an acidic dye (Telon Blue - Acid Blue 25) has been studied. The equilibrium saturation adsorption capacities were 1200 mg dye g?1 Fuller's earth and 220 mg dye g?1 Fuller's earth for Astrazone Blue and Telon Blue, respectively. The kinetics of the adsorption processes were studied in an agitated batch adsorber. The time to reach 90% equilibrium value was achieved in less than 1 h. The variables investigated were agitation, adsorbent mass, initial dye concentration and temperature. A limited number of studies were undertaken using a fired clay but significantly lower saturation capacities were obtained, namely, 7 mg dye g?1 fired clay and 40 mg dye g?1 fired clay for Telon Blue and Astrazone Blue, respectively.  相似文献   

4.
稻壳基生物炭对生菜Cd吸收及土壤养分的影响   总被引:14,自引:1,他引:14  
探讨稻壳基生物炭对Cd污染土壤上叶菜吸收Cd和土壤Cd形态的影响作用,明确稻壳基生物炭对土壤Cd污染的调控效应,可为合理利用稻壳基生物炭降低叶菜Cd含量提供参考。采用盆栽试验,研究了稻壳基生物炭在不同用量水平下对2茬生菜地上部Cd含量、土壤养分含量及Cd赋存形态的影响。结果表明,在5~25 g-kg-1用量范围内,稻壳基生物炭显著降低了2茬生菜地上部和根系Cd含量,且在最大用量25 g-kg-1时效果最好,地上部Cd含量分别比未施稻壳基生物炭的对照处理降低了19.6%和45.8%,根系Cd含量分别降低了36.8%和28.0%。在25 g-kg-1用量水平下,稻壳基生物炭对土壤p H、有效磷、速效钾及有机质含量提升效果明显,但显著降低了土壤碱解氮含量。施加稻壳基生物炭对土壤有效态Cd含量及Cd化学形态也有不同影响。随着稻壳基生物炭用量的增加,土壤NH4OAc提取态Cd含量和弱酸提取态Cd含量显著降低,在用量为25 g-kg-1时,分别比对照降低17.9%和10.4%,可还原态Cd含量无显著变化,可氧化态Cd含量呈减低趋势,残渣态Cd含量增加17.6%。因此推测,提升土壤p H、降低土壤有效态Cd含量、增加残渣态Cd含量可能是稻壳基生物炭降低生菜体内Cd含量的主要原因。稻壳基生物炭可以作为土壤改良剂,抑制Cd污染土壤上叶菜对Cd的吸收,改善土壤养分状况。  相似文献   

5.
Subtropical recent alluvial soils are low in organic carbon (C). Thus, increasing organic C is a major challenge to sustain soil fertility. Biochar amendment could be an option as biochar is a C-rich pyrolyzed material, which is slowly decomposed in soil. We investigated C mineralization (CO2-C evolution) in two types of soils (recent and old alluvial soils) amended with two feedstocks (sugarcane bagasse and rice husk) (1%, weight/weight), as well as their biochars and aged biochars under a controlled environment (25 ±2 ℃) over 85 d. For the recent alluvial soil (charland soil), the highest absolute cumulative CO2-C evolution was observed in the sugarcane bagasse treatment (1 140 mg CO2-C kg-1 soil) followed by the rice husk treatment (1 090 mg CO2-C kg-1 soil); the lowest amount (150 mg CO2-C kg-1 soil) was observed in the aged rice husk biochar treatment. Similarly, for the old alluvial soil (farmland soil), the highest absolute cumulative CO2-C evolution (1 290 mg CO2-C kg-1 soil) was observed in the sugarcane bagasse treatment and then in the rice husk treatment (1 270 mg CO2-C kg-1 soil); the lowest amount (200 mg CO2-C kg-1 soil) was in the aged rice husk biochar treatment. Aged sugarcane bagasse and rice husk biochar treatments reduced absolute cumulative CO2-C evolution by 10% and 36%, respectively, compared with unamended recent alluvial soil, and by 10% and 18%, respectively, compared with unamended old alluvial soil. Both absolute and normalized C mineralization were similar between the sugarcane bagasse and rice husk treatments, between the biochar treatments, and between the aged biochar treatments. In both soils, the feedstock treatments resulted in the highest cumulative CO2-C evolution, followed by the biochar treatments and then the aged biochar treatments. The absolute and normalized CO2-C evolution and the mineralization rate constant of the stable C pool (Ks) were lower in the recent alluvial soil compared with those in the old alluvial soil. The biochars and aged biochars had a negative priming effect in both soils, but the effect was more prominent in the recent alluvial soil. These results would have good implications for improving organic matter content in organic C-poor alluvial soils.  相似文献   

6.
A novel activated carbon has been prepared by the activation of ground pine cones using phosphoric acid activation, and the nitrogen Brunauer?CEmmett?CTeller surface area was 869 m2 g?1. Equilibrium isotherms were performed to assess the capacity of the activated carbon using two acidic dyes, namely Acid Blue 113 and Acid Black 1. The monolayer equilibrium isotherm capacities of Acid Blue 113 and Acid Black 1 were 286 and 458 mg dye/g C, respectively. These capacities are significantly higher than commercial carbons and other literature carbons. For the first time, these carbons were tested in fixed bed experimental systems and data analysed using the bed depth service time model (BDST) and the carbon usage rate (CUR) model. In the fixed bed studies, the key parameters for a 20-cm bed depth for the BDST model at 50% breakthrough capacity are (a) for Acid Black, the BDST capacity is 149 mg dye/g carbon and operating time is 1,530 min and (b) for Acid Blue, the breakthrough capacity is 9 mg of dye/g of carbon and operating time is 195 min. The fixed bed study indicates that the BDST design models can be applied satisfactorily, and the pine cone carbon has significant potential but a more mesoporous pine cone carbon is preferable for the larger Acid Black dye. The CUR design method was not successful.  相似文献   

7.
以川楝树皮残渣为原料进行纤维素酶解研究,测定了不同培养时间培养基质中主要胞外酶活性的变化,并对发酵前后残渣结构进行扫描电镜观察和红外光谱分析。结果表明:瓦克青霉F10-2具有木质纤维素降解能力,酶解液中纤维素酶、半纤维素酶、木质素过氧化物酶和锰过氧化物酶活性在发酵的8~16d内分别达到最大值6.42U·g-1、7.62U·g-1、6.55U·g-1和3.33U·g-1。利用扫描电镜对降解后底物表面结构进行观察,可看到残渣表面变得疏松、柔软,且具有部分微孔。底物残渣傅立叶红外光谱分析表明,该菌株对残渣中各组分均有一定降解。固态发酵培养试验表明,培养24d后残渣中纤维素、半纤维素和木质素的降解率分别达到42.70%、33.96%和24.62%。  相似文献   

8.
Nitrogen (N) and phosphorus (P) concentrations were determined in sediment samples along the bed of Catatumbo river in both Colombian and Venezuelan territories until the river outlet in Maracaibo lake. Total phosphorus was determined by digestion with HCl followed by analysis using the ascorbic acid method and total nitrogen was done using the standard microkjeldahl method plus nitrate-nitrite. Ammonium, orthophosphate and nitrate were determined using standard methods after extraction steps. The mean concentrations along the river bed were found in an interval of 0.035 and 1.492 mg g-1 dry sed. for nitrogen and 0.027 and 1.039 mg g-1 dry sed. for phosphorus at 95% confidence level. The mean molar ratio N/P in the river bed was 4.42 and 3.46 for river outlet zones in the lake, which indicates that nitrogen is the limiting nutrient. For comparison with previous results of lake sediments from sites near the river outlet it was concluded that Catatumbo river is a significant source of nutrients to the Maracaibo Lake system because sediment nutrients concentrations from Catatumbo river were higher than the ones in Maracaibo Lake. Statistic studies showed significant differences between countries, zones and similar behaviour in the river bed as related to the affluent rivers.  相似文献   

9.
The objective of the present study was to identify the limiting factors in biomass productivity of new tropical rice lines (panicle weight type) by analyzing the relationship between root and shoot activity. Five field experiments using three new lines, IR65598-112-2, IR65600-42-5-2, and IR68544-29-2-1-3-1-2, and one of the highest-yielding indica rice varieties (panicle number type), IR72, were conducted at the International Rice Research Institute from 1997 to 2002. Specific absorption rate of N (SARN , mg N g-1 root dry weight d-1), specific stem sap exudation rate (sap exudation rate, g exudate g-1 root dry weight 12 h-1) and specific root respiratory rate (root respiratory rate, μmol O2 g-1 root dry weight h-1) were determined as indices of root activity. Relative growth rate (RGR, mg g-1 d-1) was used as an index of shoot activity. Compared with IR72, the new lines showed lower RGR and SARN values during the early growth stages. In contrast, during the late growth stages, these activities were higher in the new lines than in IR72. The SARB and sap exudation rate showed a linear correlation with RGR at successive growth stages, regardless of the genotypes and growth conditions. These findings indicated that active root-shoot interaction was maintained throughout the growth period in high-yielding tropical rice, including the new lines and IR72. Therefore, it was considered that SARN and the sap exudation rate are useful indices of root activity regulating RGR in the new lines. However, the root respiratory rate could not be used for selection, because the relationship between RGR and the root respiratory rate changed with the growth conditions. Our findings support the hypothesis that root and shoot activities during maturation are important factors affecting the productivity of the new lines, which have not yet been able to attain the targeted yield.  相似文献   

10.
本文主要以稻壳和木粉为原料在内循环流化床气化炉中进行气化实验的研究,测试了温度对当量比的反影响,及对气体成分、气体热值等的影响,并比较内循环流化床气化炉中气化效率与碳转化率的影响。结果表明:在一定温度范围内,温度与当量比呈一定的线性关系,且床温中密相区温度对当量比的影响最大,是其它两温度的斜率的2倍;一旦内循环流化床结构固定,同一高度温度将在一定范围内变化,而不随着当量比的变化而变化;床层密相区温度影响着一氧化碳、氢气、甲烷等气体的组成,同时影响着气体的热值。稻壳与木粉在内循环流化床气化炉中的气化效率最大值相近,接近60%,但木粉的相对稳定。  相似文献   

11.
To assess the pollution effects of detergents in Tehran ground water aquifer, from December 1974 to September 1975, out of 3756 wells within metropolitan Tehran, 316 wells were selected according to simple random sampling without replacement. Samples from the ground water were analyzed for concentration of detergents by Methylene Blue Colorimetric Method. The conclusion asserted is that with a confidence limit of 95%, standard error of 2, and permissible error of ± 0.005, the average concentration of detergents in Tehran ground water aquifer is within 0.1593 to 0.1163 mg 1?1 as MBAS.  相似文献   

12.
Poultry litter is widely used as a fertilizer for lowland rice in Taiwan and China. However, the organic‐arsenic compound roxarsone (additive of poultry feed) in poultry litter can be absorbed by the plants and the resulting arsenic (As) contamination may pose a serious threat to human health. This study used various amounts of poultry litter contaminated with roxarsone in pot experiments to evaluate the effect of roxarsone on rice agronomic parameters and the bioaccumulation of total and inorganic As in rice‐plant tissues. Rice‐grain yield decreased significantly with increasing As content of the soil, and the critical threshold that killed rice was 200 mg roxarsone (kg soil)–1. The As concentrations in root, straw, leaf, husk, and grain increased with increasing soil As (p < 1%). At 100 mg roxarsone per kg of soil, the As concentration in the rice grain exceeded the statutory permissible limit of 1.0 mg As (kg dry weight)–1 and at 25 mg roxarsone (kg soil)–1, the inorganic As concentrations in grains exceeded the statutory limit of 0.15 mg of inorganic As kg–1 in China. For all treatments, the As concentrations in various plant tissues at maturity follow the order: root > stem > leaf > husk > grain. Arsenite was the predominant species in root, straw, and grain, while arsenate was the predominant species in leaf and husk. No significant difference existed between the amounts of arsenite and arsenate when various amounts of poultry litter were applied. This result illustrates that large amounts of added roxarsone are not only toxic to rice but also accumulate in grains in the inorganic As forms, potentially posing a threat to human health via the food chain.  相似文献   

13.
Abstract

Biochar application has been recognized as an effective option for promoting carbon (C) sequestration, but it may also affect the production and consumption of methane (CH4) and nitrous oxide (N2O) in soil. A 1-year field experiment was conducted to investigate the effects of rice husk charcoal application on rice (Oryza sativa L.) productivity and the balance of greenhouse gas exchanges in an Andosol paddy field. The experiment compared the treatments of rice husk charcoal applied at 10, 20 and 40 Mg ha?1 (RC10, RC20 and RC40, respectively), rice husk applied at 20 Mg ha?1 (RH20), and the control (CONT). Rice straw and grain yields did not significantly differ among the treatments. The seasonal cumulative CH4 emissions were 38–47% higher from RC10, RC20 and RC40 than from the CONT. However, the increases were not in proportion to the application rates of rice husk charcoal, and their values did not significantly differ from the CONT. On the contrary, the RH20 treatment significantly increased the cumulative CH4 emission by 227% compared to the CONT. The N2O emissions during the measurement were not affected by the treatments. As a result, the combined global warming potential (GWP) of CH4 and N2O emissions was significantly higher in RH20 than in the other treatments. There was a positive linear correlation between C storage in the top 10 cm of soil and the application rate of rice husk charcoal. The increases in soil C contents compared to the CONT corresponded to 98–149% of the C amounts added as rice husk charcoal and 41% of the C added as rice husk. Carbon dioxide (CO2) fluxes in the off season were not significantly different among RC10, RC20, RC40 and CONT, indicating that C added as rice husk charcoal remained in the soil during the fallow period. The CO2 equivalent balance between soil C sequestration and the combined GWP indicates that the rice husk charcoal treatments stored more C in soil than the CONT, whereas the RH20 emitted more C than the CONT. These results suggest that rice husk charcoal application will contribute to mitigating global warming without sacrificing rice yields.  相似文献   

14.
Laboratory experiments were conducted with sodic soils of varying exchangeable sodium percentage (ESP) (82, 65, 40, and 22) and a normal soil (ESP 4) to study the changes with time in soil pH, pCO2, Fe2+ and Mn2+ under submerged conditions with and without 1.0 per cent rice husk. In all the soils pCO2, Fe2+ and Mn2+ increased after flooding, reached the maximum value and then either maintained or declined slightly. The release of Fe2+ and Mn2+ was maximum in normal soil and decreased with increase of ESP in sodic soils. Addition of rice husk brought about a conspicuous increase in Fe2+ and Mn2+, the maximum increase being in lowest ESP soil. Flooding reduced the pH of all soils. The effect was more pronounced in the presence of rice husk. The kinetics of pCO2 indicated that accumulation of CO2 was higher in normal soil and least in highest ESP soil. The addition of rice husk showed an average increase of 0.0074 atm pCO2 in comparison to rice husk untreated soils.  相似文献   

15.
Persistent organic pollutants (POPs) immobilization in farm land is an important issue to solve the residue in crop, and char has been considered for the remediation. In here, three commercially available chars like powdered oak char (POC), granulated oak char (GOC), and rice husk char (RHC) including powdered activated carbon (PAC) were investigated for their potential to adsorb and immobilize endosulfan in the soil. The maximum adsorption capacities (mg g?1) of the applied chars as POC, GOC, and RHC were 714.8, 322.6, and 181.8, respectively, and the capacity of POC was similar with PAC (713.8). In addition, the pore volume (0.138 cm3 g?1) and the surface area (270.3 m2 g?1) of POC were over 3-fold higher than GOC and RHC. The bioconcentration factor (BCF) reducing effect of α-, β-endosulfan, and endosulfan sulfate in oriental radish (Raphanus sativus var. sativus) was investigated by amendment of three commercially available chars to the contaminated soils. The BCF of total endosulfan was 0.025 in the radish root. POC treatments effectively suppressed the endosulfan uptake (BCF 0.002). However, GOC and RHC showed little BCF reducing effect of endosulfan in radish.  相似文献   

16.
Black rice husk ash (BRHA) was obtained by means of thermal degradation of raw rice husks (RRH) on a pilot plant fluidized bed reactor. BRHA was characterized using chemical analyses, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. The kinetics was studied using batch adsorption technique and on the basis of prior characterization by X-ray diffraction patterns and scanning electron microscopy. The adsorption capacities of diesel fuel at 288, 293 and 298?K onto BRHA were determined. Results showed that the material studied has very high adsorption capacity and low cost and may successfully be used as an effective adsorbent to clean up spills of oil products in water basins. The adsorption of diesel fuel onto BRHA proceeds rapidly to reach adsorption equilibrium in about 10?min. The saturated BRHA can be burnt in incinerators, industrial ovens or steam generators, and through this way ecological and economic benefits are attained.  相似文献   

17.
Virgin fir trees have been dying on Mt. Oyama, which is located in the southwestern part of Kanto Plain, although the frequency of death seems to be reducing recently. We report elevational patterns of acid deposition in precipitation and throughfall under fir and cedar canopies and nitrogen saturation in the forest ecosystem on Mt. Oyama. The deposition fluxes of major inorganic ions in precipitation were nearly constant regardless of elevation except for hydrogen and ammonium ions, whereas the deposition fluxes of all major inorganic ions in throughfall among cedar increased. The 5-year average of annual nitrate deposition in precipitation from 1994 to 1998 showed 19.3 – 23.5 kg ha?1 yr?1 (annual inorganic total N deposition: 9.6 – 10.7 kgN ha?1 yr?1) at four sites ranging in elevation from 500 to 1252 m, whereas the deposition in both cedar and fir throughfall was over 6 times greater than that in precipitation. The average soil surface nitrate concentration in 1998 was 140 µg g?1 (the range: 21.1 – 429 µg g?1, n=80) and the 7-year average of nitrate concentration in stream water from 1992 to 1998 was 4.81 mg L?1 (the range: 2.38 – 20.6 mg L?1, n=317). Our results indicate that nitrogen saturation is occurring in the forest ecosystem because of high N deposition, probably via acid fog, on Mt. Oyama.  相似文献   

18.
复合改良剂对盐碱土改良及植物生长的影响   总被引:1,自引:1,他引:1  
唐雪  尚辉  刘广明  姚宇阗  张凤华  杨劲松  周龙祥  储睿 《土壤》2021,53(5):1033-1039
为探寻更加高效的复合型改良剂,本研究通过田间试验,对土壤理化性质和植物生长指标进行分析,探讨了脱硫石膏、黄腐酸钾和稻壳三种物料不同配比施用对盐碱土理化性质及植物生长状况的影响,筛选出最佳复合物料添加比例,旨在为盐碱地改良与合理利用提供参考依据。结果表明:与对照组相比,不同处理下0-20和20-40 cm土壤pH均有显著降低,分别降低了4.2%~9.6%和4.5%~9.4%。0-20 cm土层的土壤盐分含量也显著降低,土壤中〖HCO〗_3^-、〖Cl〗^-、〖Na〗^+含量分别降低了6.1~39.4%、18%~43.1%和6.2%~33.2%,其中稻壳、黄腐酸钾和脱硫石膏配比为5-1.2-9 t/hm2和15-0.4-9 t/hm2时对〖HCO〗_3^-、〖Cl〗^-、〖Na〗^+降低效果最为明显。复合改良剂均能提高土壤有机质、碱解氮和有效磷含量与景天植株生物量。与对照组相比,有机质增加了3%~46%、碱解氮增加了16.1%~111.8%、有效磷增加了59.5%~154.8%和景天生物量增加了7.1%~47.6%。效应综合评价的主成分分析结果表明,稻壳、黄腐酸钾和脱硫石膏配比为5-1.2-9 t/hm2时是滨海盐碱土壤最适宜的生物化学复合改良剂组分。  相似文献   

19.
Abstract

A field experiment was conducted in Hangzhou, Zhejiang Province, P.R. of China in 1999 to investigate the quantitative caloric energy characteristics of two rice cultivars (Oryza sativa L.), early crop rice Jia yu 948 and late crop rice Jia yu 93390 were grown in different nitrogen levels and climate conditions. The two cultivars were grown with 0, 80, 120, 160, and 200 kg ha?1 of nitrogen fertilizer and in ample water and farming management activities. Analysis of caloric energy showed that significant differences occurred among treatments and plant organs in both rice cultivars. However, no significant differences occurred among same organs under different nitrogen treatments in both cultivars except for the panicles. The mean caloric energy of both cultivars increased with nitrogen fertilizer application. However, no optimal level of nitrogen fertilizer treatment with caloric energy was established, as there was still an increase in caloric energy even at 200 kg N ha?1 fertilizer treatment. Cultivar Jia yu 948 had a higher mean caloric energy of 4172 cal g?1 compared to 4117 cal g?1 of cultivar Jia yu 93390. There were significant differences in caloric energy among the plant organs. The ascending order of energy distribution was as follows; root, stem, husk, leaf, grains, and panicles. Of great interest is the relatively high amount of energy invested in the husks. This amount was similar to that of the leaf. There was a linear relationship between caloric energy and nitrogen application levels. The basic rice caloric values are 4058 cal g?1, an increase in 1 kg N ha?1 of nitrogen (pure) resulted in an increase of 0.41 cal g?1 and 0.29 cal g?1 of dry weight in the cultivar Jia yu 948 and cultivar Jia yu 93390 respectively. Thus Jia yu 948 had a better utilization efficiency of nitrogen nutrient than Jia yu 93390 considering the caloric value increase.  相似文献   

20.
ABSTRACT

Silicon (Si) provides extra strength to plants against lodging. A hydroponic study was conducted to compare Si requirements of three high yielding, nitrogen (N) responsive, coarse varieties of rice (KSK-133, PK-3717-12, and IRRI-6) with four low yielding, lodging susceptible, fine varieties of rice (BAS-191, BAS-385, BAS-370, and PK-3300). Two-week-old uniform seedlings were grown in half strength Johnson's nutrient solution containing 0, 25, 75, and 150 mg Si kg? 1 as sodium silicate. The plants were allowed to grow for 45 days after transplanting. Silicon application significantly (P ≤ 0.01) increased root and shoot dry matter production in all the rice varieties. The maximum shoot dry matter production occurred at 75 mg Si kg?1 and decreased uniformly in all the rice varieties at 150 mg Si kg? 1. However, growth response to Si application varied significantly (P ≤ 0.01) among various rice varieties. Root: shoot growth ratio, varying from 0.11 to 0.15, did not follow any trend. Different rice varieties and Si addition had a significant (P ≤ 0.01) main and interactive effect on concentration and total uptake of Si in rice root and shoot. Relative increases in Si content, both in shoot and root, were gradual and several fold with increasing rates of Si application. The effect was more pronounced in Basmati varieties (BAS-198, BAS-385, and BAS-370) than other varieties. A 0.91 mg Si g? 1 plant tissue was optimum for growth of KSK-133 (coarse), which was significantly higher than the optimum level, 0.62 mg Si g? 1 plant tissue, for Bas-370 (fine). However, further verification of the results is warranted under field situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号