首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In Sweden, the prevalence of Trichinella infection in domestic pigs has greatly decreased since the 1970s, with no reports in the past 4 years. However, infected wild animals continue to be found. The objective of the present study was to identify the species of Trichinella present in animals of Sweden, so as to contribute to the knowledge on the distribution area and hosts useful for the prevention and control of this zoonosis. In the period 1985-2003, Trichinella larvae were detected in the muscles of 81/1800 (4.5%) red foxes (Vulpes vulpes), 1/6 (16.7%) arctic fox (Alopex lagopus), 1/7 (14.3%) wolf (Canis lupus), 10/200 (5.0%) lynxes (Lynx lynx), 4/8000 (0.05%) wild boars (Sus scrofa), and 27/66 x 10(6) (0.000041%) domestic pigs. All four Trichinella species previously found in Europe were detected (Trichinella spiralis, T. nativa, T. britovi and T. pseudospiralis). The non-encapsulated species T. pseudospiralis was detected in three wild boars from Holo (Stockholm area) and in one lynx from Froso (Ostersund area), suggesting that this species is widespread in Sweden. These findings are consistent with those of a study from Finland, both for the unexpected presence of T. pseudospiralis infection and the presence of the same four Trichinella species, suggesting that this epidemiological situation is present in the entire Scandinavian region. The widespread diffusion of T. pseudospiralis in the Scandinavian region is also important in terms of it potential impact on public health, given that human infection can occur and the difficulties to detect it by the trichinelloscopic examination.  相似文献   

2.
The recent discovery of Trichinella zimbabwensis in farmed crocodiles (Crocodilus niloticus) of Zimbabwe and its ability to infect mammals, and the development of both T. zimbabwensis and Trichinella papuae in experimentally infected reptiles led to an investigation of Trichinella infection in saltwater crocodiles (Crocodylus porosus) and in wild pigs (Sus scrofa) of Papua New Guinea, to see if T. papuae also, is present in both cold- and warm-blooded animals. Of 222 crocodiles examined, 47 animals (21.2%), all from Kikori, Gulf Province, were positive for non-encapsulated larvae in the muscles. The greatest number of larvae was found usually in the biceps, with an average of 7 larvae/g. One isolate from a crocodile infected successfully both laboratory rats and mice. Of 81 wild pigs examined, 9 from Bensbach river area (Western Province) and 1 from Kikori area (Gulf Province) were positive for non-encapsulated larvae in the muscles. Trichinella larvae from both saltwater crocodiles and wild pigs have been identified by multiplex-PCR analysis as T. papuae. The sequence analysis of the region within the large subunit ribosomal DNA, known as the expansion segment V, has shown the presence of a molecular marker distinguishing T. papuae isolates of Bensbach river area from those of Kikori area. This marker could be useful to trace back the geographical origin of the infected animal. The epidemiological investigation carried out in the Kikori area has shown that local people catch young crocodiles in the wild and keep them in holding pens for several months, before sending them to the crocodile farm in Lae (Morobe Province). They feed the crocodiles primarily with wild pig meat bought at the local market and also with fish. These results stress the importance of using artificial digestion for routinely screening of swine and crocodiles, and of adopting measures for preventing the spread of infection, such as the proper disposal of carcasses and the adequate freezing of meat.  相似文献   

3.
In order to evaluate the present epidemiological situation of Trichinella infection in wild animals in Hokkaido, Japan, red foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) , brown bears (Ursus arctos) , martens (Martes melampus), rodents and insectivores captured in Hokkaido were examined for muscle larvae by the artificial digestion method from 2000 to 2006. Foxes (44/319, 13.8%), raccoon dogs (6/77, 7.8%) and brown bears (4/126, 3.2%) were found to be infected with Trichinella larvae and all other animal species evaluated were negative. Multiplex PCR and DNA sequencing revealed that larvae from a fox captured in Otofuke, in south-eastern Hokkaido, were T. nativa, and larvae from 27 animals including 21 foxes, 2 raccoon dogs and 4 brown bears captured in western Hokkaido were Trichinella T9.  相似文献   

4.
Farming of fur animals represents an important income in Estonia. Even though Trichinella worms does not induce a symptomatic disease in carnivores, the carcasses of skinned animals can increase the biomass of the parasite in the environment, if they are not properly destroyed. The aim of the present survey was to study the prevalence of Trichinella worms in farmed fur animals of Estonia. Of 281 muscle samples from blue foxes (Alopex lagopus), silver foxes (Vulpes vulpes fulva), minks (Mustela vison) and raccoon dogs (Nyctereutes procyonoides), which were collected in eight farms, Trichinella larvae have been detected in 21 animals (8%) from two farms by HCl-pepsin digestion. The highest number of larvae per gram of muscle was found in the front limb muscles. Larvae of the 21 isolates have been identified as Trichinella britovi or Trichinella nativa by a multiplex-PCR analysis.  相似文献   

5.
Trichinellosis is an important parasitic zoonosis that is caused by the intracellular nematode Trichinella spp.. Infection of humans occurs through consumption of raw (or undercooked) meat containing infectious larvae. In Europe, meat from pork, horse, and wild boar have been identified as most important sources of Trichinella infections in humans. In Switzerland, both the domestic pig and wild boar population are considered free of Trichinella. Conversely, Swiss foxes, lynxs and recently a wolf were found to be infected, the species identified in these animals was always referred to as Trichinella britovi. Although this species rarely infects pork and, compared to Trichinella spiralis, only causes reduced pathogenic effects in humans, the basic presence of Trichinella in Switzerland cannot be neglegted. This fact has gained increasing importance since the responsible authorities in the European Union (EU) are preparing regulations for the official Trichinella-control in meat in order to improve food safety for consumers. These regulations will be implemented as a consequence of the recent association of east European countries with the EU. This new legislation particularly takes into account, that in the past by far most cases of human trichinellosis in the EU were due to consumption of imported east European meat.Within the framework of the bilateral agreements of Switzerland with the EU, the Swiss veterinary public health authorities will have to comply with the foreseen EU regulations. Although diagnostic methods for the direct demonstation of Trichinella in pork meat are already routine practice in several Swiss abattoirs, the implementation of a meat control program for Trichinella for the entire slaughter pig population of the country would lead to an enormous increase in costs for the administration and will require an increased infrastructure in veterinary services. In order to find a reduced testing format for monitoring Trichinella infections in Swiss pork, an infection risk-oriented survey strategy is currently evaluated. In the present article, this minimized survey strategy is discussed regarding its compatibility with the EU regulations laying down rules for the official control of meat for Trichinella.  相似文献   

6.
Trichinellosis is a foodborne disease caused by the consumption of raw meat and raw meat-derived products from swine, horse and some game animals infected with nematode worms of the genus Trichinella. Between June 2006 and February 2011, 16 million domestic pigs and 0.22 million wild boars (Sus scrofa) were tested for Trichinella sp. in Hungary. Trichinella infection was not found in any pigs slaughtered for public consumption. Nevertheless, Trichinella spiralis was detected in four backyard pigs when trace back was done following a family outbreak. Trichinella infection was demonstrated in 17 wild boars (0.0077%). Larvae from wild boars were identified as Trichinella britovi (64.7%), T. spiralis (29.4%) and Trichinella pseudospiralis (5.9%). Although the prevalence of Trichinella sp. infection in wild boars and domestic pigs is very low, the spatial analysis reveals that the level of risk differs by region in Hungary. Most of the T. britovi infected wild boars (63.6%) were shot in the north-eastern mountain area of Hungary; whereas domestic pigs and wild boars infected with T. spiralis were detected only in the southern counties bordering Croatia and Romania. In the north-western and central counties, the prevalence of Trichinella infection seems to be negligible.  相似文献   

7.
Since 1992, when the European Union Council Directive requires that wild boars (Sus scrofa) hunted in EU for commercial purpose should be examined for Trichinella, the infection has not been detected in wild boars from Belgium, despite serological evidence of the presence of anti-Trichinella antibodies in wildlife and previous reports of Trichinella larvae in this host species. In November 2004, Trichinella larvae were detected in a wild boar hunted near Mettet, Namur province (Southern Belgium). Larvae were identified as Trichinella britovi by polymerase chain reaction methods. This is the first report of the identification of Trichinella larvae from Belgium at the species level. The detection of T. britovi in wildlife in Belgium is consistent with findings of this parasite in other European countries and confirms the need to test game meat for Trichinella to prevent its transmission to humans.  相似文献   

8.
World distribution of Trichinella spp. infections in animals and humans   总被引:5,自引:0,他引:5  
The etiological agents of human trichinellosis show virtually worldwide distribution in domestic and/or wild animals, with the exception of Antarctica, where the presence of the parasite has not been reported. This global distribution of Trichinella and varying cultural eating habits represent the main factors favouring human infections in industrialised and non-industrialised countries. Human trichinellosis has been documented in 55 (27.8%) countries around the world. In several of these countries, however, trichinellosis affects only ethnic minorities and tourists because the native inhabitants do not consume uncooked meat or meat of some animal species. Trichinella sp. infection has been documented in domestic animals (mainly pigs) and in wildlife of 43 (21.9%) and 66 (33.3%) countries, respectively. Of the 198 countries of the world, approximately 40 (20%) are small islands far from the major continents, or city-states where Trichinella sp. cannot circulate among animals for lack of local fauna (both domestic and wild). Finally, information on the occurrence of Trichinella sp. infection in domestic and/or wildlife is still lacking for 92 countries.  相似文献   

9.
The aim of the study was to establish in which degree wild boars and red foxes are reservoir of Trichinella spp. in North-West Poland. Research was carried out between 1997 and 2004 on 505 foxes and 56,462 wild boars in muscle samples. The muscle samples were examined using the digestion method. The average prevalence rate of Trichinella spp. infection of foxes was 4.4 %. Large differences of the infection rate in wild boars were observed. In the years 1999-2001 Trichinella spp. larvae were observed in 58 animals (0.2 %) and between 2002 and 2004 the Trichinella spp. prevalence in 227 wild boars was 0.9 %, demonstrating that the animals were 5.1 times more often infected than in 1999-2001. The growth of red fox population after the oral vaccination against rabies was probably the cause of this phenomenon.  相似文献   

10.
Only a few studies have compared the muscle distribution of the different Trichinella genotypes. In this study, data were obtained from a series of experimental infections in pigs, wild boars, foxes and horses, with the aim of evaluating the predilection sites of nine well-defined genotypes of Trichinella. Necropsy was performed at 5, 10, 20 and 40 weeks post inoculation. From all host species, corresponding muscles/muscle groups were examined by artificial digestion. In foxes where all Trichinella species established in high numbers, the encapsulating species were found primarily in the tongue, extremities and diaphragm, whereas the non-encapsulating species were found primarily in the diaphragm. In pigs and wild boars, only Trichinella spiralis, Trichinella pseudospiralis and Trichinella nelsoni showed extended persistency of muscle larvae (ML), but for all genotypes the tongue and the diaphragm were found to be predilection sites. This tendency was most obvious in light infections. In the horses, T. spiralis, Trichinella britovi, and T. pseudospiralis all established at high levels with predilection sites in the tongue, the masseter and the diaphragm. For all host species, high ML burdens appeared to be more evenly distributed with less obvious predilection than in light infections; predilection site muscles harbored a relatively higher percent of the larval burden in light infections than in heavy infections. This probably reflects increasing occupation of available muscle fibers as larger numbers of worms accumulate. Predilection sites appear to be influenced primarily by host species and secondarily by the age and level of infection.  相似文献   

11.
In 1995, a new species of Trichinella (Trichinella zimbabwensis) was discovered in farmed Nile crocodiles (Crocodylus niloticus) in Zimbabwe, where the mode of transmission was the consumption of the meat of slaughtered crocodiles, used as feed. To determine whether T. zimbabwensis affects poikilotherm vertebrates in the wild, monitor lizards (Varanus niloticus) and Nile crocodiles were collected in Zimbabwe and Mozambique. In 5 (17.6%) of the 28 monitor lizards from Zimbabwe, T. zimbabwensis larvae were identified. For the wild Nile crocodiles from Mozambique, species-level identification was not possible, yet immunohistochemical analysis revealed that 8 (20%) of the 40 animals harboured non-encapsulated Trichinella sp. larvae, which probably belonged to T. zimbabwensis. This is the first report of T. zimbabwensis in wild reptiles, and the findings are consistent with reports that vertebrates with scavenger and cannibalistic behaviour are the most important hosts of Trichinella spp. The wide distribution of monitor lizards and crocodiles in Africa and the development of national crocodile breeding programs in many African countries should be taken into consideration when evaluating the risk of transmission of this parasite to mammals, including humans.  相似文献   

12.
The red fox (Vulpes vulpes) is considered one of the main reservoir of Trichinella spp. in Europe. As limited information on Trichinella infection in wildlife of Hungary is available, 2116 red foxes, representing more than 3% of the estimated fox population of the country, were screened to detect Trichinella larvae by a digestion method. Trichinella larvae from the 35 positive foxes were identified by a multiplex PCR as Trichinella britovi (30 isolates, 85.7%), Trichinella spiralis (4 isolates, 11.4%), and Trichinella pseudospiralis (1 isolate, 2.9%). The true mean intensity of T. britovi, T. spiralis and T. pseudospiralis larvae in lower forelimb muscles was 23.6, 3.5 and 13.5larvae/g, respectively. T. spiralis was detected only in the southern and eastern regions. The non-encapsulated T. pseudospiralis was recorded for the first time in Hungary. Although the overall true prevalence of Trichinella infection in foxes was only 1.8% (95% confidence interval, CI=1.5-2.1%), the spatial analysis reveals different risk regions. In the north-eastern counties bordering Slovakia and Ukraine (21% of the Hungarian territory), the true prevalence of Trichinella infection is significantly higher than that observed in other regions (6.0%, CI=4.8-7.1%). In the southern counties bordering Croatia, Serbia and Romania (41% of the Hungarian territory), the true prevalence of Trichinella infection is moderate (1.4%, CI=1.0-1.8%). In the north-western and central counties (38% of Hungarian territory), the prevalence of Trichinella infection is significantly lower (0.2%, CI=0.1-0.4%) than that of the other regions. Based on the statistical analysis and the evaluation of epidemiological data, none of the counties can be considered free of Trichinella infection. In the past decade, Trichinella infection has been detected only in few backyard pigs, and only few wild boar-related autochthonous infections in humans were described. Nevertheless, these results highlight the need of the maintenance of a strict monitoring and control programmes on Trichinella infection in farmed and hunted animals of Hungary.  相似文献   

13.
The in vitro differential effect of fox, pig, sheep and chicken bile and corresponding non-protein fractions at various concentrations on the motility of released muscle larvae of Trichinella spiralis, Trichinella nativa and Trichinella nelsoni was examined. In many cases, the percentages of motile (live) larvae of the three Trichinella species cultured in the presence of the non-protein fractions of bile from the study animals were significantly higher (p<0.001) compared to their respective control cultures. In addition, the percentages of motile (live) larvae of all Trichinella species cultured in the presence of the non-protein fraction of bile at every concentration from all study animals were significantly higher (p<0.001) compared to their respective cultures in the presence of raw bile. Not only did results with non-protein fractions of bile differ from those with raw bile, but also the non-protein fraction, with increased dilution, showed a decrease in the percentages of motile larvae while the opposite was true with the raw bile (p<0.001). These observations indicate that the non-protein fraction of bile prolongs the in vitro survival of larvae.  相似文献   

14.
Multiple Trichinella species are reported from the Australasian region although mainland Australia has never confirmed an indigenous case of Trichinella infection in humans or animals. Wildlife surveys in high-risk regions are essential to truly determine the presence or absence of Trichinella, but in mainland Australia are largely lacking. In this study, a survey was conducted in wild pigs from mainland Australia's Cape York Peninsula and Torres Strait region for the presence of Trichinella, given the proximity of a Trichinella papuae reservoir in nearby PNG. We report the detection of a Trichinella infection in a pig from an Australian island in the Torres Strait, a narrow waterway that separates the islands of New Guinea and continental Australia. The larvae were characterised as T. papuae (Kikori strain) by PCR and sequence analysis. No Trichinella parasites were found in any pigs from the Cape York Peninsula. These results highlight the link the Torres Strait may play in providing a passage for introduction of Trichinella parasites from the Australasian region to the Australian mainland.  相似文献   

15.
Trichinellosis is one of the most important zoonotic diseases in Romania. Even though the disease is a serious public health concern, only a limited number of Trichinella isolates have been identified at the species level; in the past, all larvae were assumed to be Trichinella spiralis. The present study was conducted to identify Trichinella spp. circulating among wild and domestic animals in Romania, using PCR-based methods. Trichinella spp. larvae originating from 54 wild and 23 domestic mammals were examined. No Trichinella spp. larvae were detected in muscle samples of 182 birds. T. spiralis and Trichinella britovi were the only two species identified in the 40 isolates that yielded a positive PCR result. Overall, T. britovi was more prevalent (n = 26; 65%) than T. spiralis (n = 14; 35%). T. spiralis was the predominant species found in domestic animals (n = 9; 75%), while T. britovi was more prevalent in wildlife (n = 24; 86%). No mixed infections were found. The highest prevalence of Trichinella infection was detected in wolves (11/35; 31%), in European wild cats (4/28; 14%), and in red foxes (5/71; 7%). The distribution of Trichinella spp. in Romania does not show a species-specific clustering; both of the two species found were present over the entire range of counties studied.  相似文献   

16.
The aim of the present study was to investigate the prevalence of Trichinella infection in wolves (Canis lupus) in a 17,468 km2 area in Croatia. Muscle samples were collected from 67 wolves between 1996 and 2007 and analyzed by artificial digestion. Muscle larvae were detected in 21 wolves (31%) and genotyped by multiplex PCR. Trichinella britovi was the predominant species confirmed in 90% (19 wolves) while Trichinella spiralis was detected in 9% (2 wolves). The presence of the so called “domestic” Trichinella species was a surprise since, to date, only T. britovi had been reported in wild animals in this region. The larval burdens in infected animals ranged from 0.3 to 45.9 larvae per gram. The prevalence of infected animals varied by geographic region; infected animals were found in the region of Gorski Kotar (20%) which has very similar environment to the region of Lika, where almost all wolves were found infected. Interestingly, this is the first report of infected wolves in Dalmatia.  相似文献   

17.
Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking 10 g of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value=1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region.  相似文献   

18.
Nematodes of the genus Trichinella are maintained in nature by sylvatic or domestic cycles. The sylvatic cycle is widespread on all continents, from frigid to torrid zones, and it is maintained by cannibalism and scavenging behavior of carnivores. Trichinella is primarily a parasite of carnivorous mammals, although one non-encapsulated species, Trichinella pseudospiralis, has also been detected in birds. The anaerobic metabolism of larvae in nurse cells allows their survival in extremely decayed meat. Encapsulated larvae in the decomposing carcass function similarly to the species-dispersing population of eggs or larvae of other nematodes, suggesting that the natural cycle of Trichinella includes a free-living stage when the parasite is no longer protected by the homeothermy of the host. Consequently, environmental temperature and humidity play an important role in the transmission of Trichinella among wildlife. Of the 10 recognized genotypes of Trichinella, only Trichinella spiralis is transmitted and maintained in a domestic cycle, although it can be present also in wildlife. All other genotypes (Trichinella nativa, Trichinella britovi, T. pseudospiralis, Trichinella murrelli, Trichinella nelsoni and Trichinella papuae, Trichinella T6, T8, and T9) are transmitted and maintained only in a sylvatic cycle. This generalization does not preclude sylvatic species of Trichinella from invading the domestic habitat, and T. spiralis may return to this habitat when humans fail in the management of wildlife and domestic animals. However, the presence of sylvatic genotypes of Trichinella in the domestic habitat represents a "dead-end" for the sylvatic cycle. Synanthropic animals (rats, foxes, mustelids, cats, dogs, etc.) contribute to the flow of sylvatic Trichinella genotypes from wildlife to domestic animals and of T. spiralis from domestic to sylvatic animals. Furthermore, human behavior not only influences the transmission patterns of Trichinella genotypes in the domestic habitat, but also it can contribute to the transmission and spread of this infection among wildlife, for example by improper hunting practices.  相似文献   

19.
Trichinella spp. larvae were collected from domestic and wild-life animals in association with 15 human trichinellosis outbreaks registered between 1999-2002 in Bulgaria. Furthermore, Trichinella spp. isolates were obtained from 62 naturally infected wild animals and of a rat. All isolates were subjected to speciation by both multiplex PCR and cross-breeding experiments. Epidemiological and clinical data were collected and analysed using standard protocols for epidemiological surveillance and control of outbreaks. Only two species were identified-Trichinella britovi and Trichinella spiralis. Results obtained by molecular typing fully matched those of cross-breeding. More specifically, parasite isolates obtained upon 15 epidemic outbreaks revealed the predominance of T. britovi (n = 10) when compared to T. spiralis (n = 5). With regard to host origin, the predominant species detected among wild boar was T. britovi (n = 4), and T. spiralis was identified in one wild boar sample only. Among the isolates obtained from domestic pig products, T. britovi was found in five cases and T. spiralis in four cases, respectively. In the naturally infected wild animals not related to epidemics, only T. britovi was demonstrated. The present results provide a strong indication that both T. britovi and T. spiralis operate within domestic and sylvatic cycles in Bulgaria. Geographically, the distribution of T. britovi appears to include Central, Southern, Eastern and Western parts of the country, and wildlife animals from the Mid Balkan Mountains and Mid Sredna Gora Mountains, T. spiralis was found in Western and Southwestern Bulgaria, only.  相似文献   

20.
During susceptibility studies of non-specific hosts, three merino sheep were infected with 3000, 5000 or 7000 Trichinella spiralis larvae by gavage. Clinical, physiological and serological parameters were assessed during the experiment. On the 152nd day p.i., animals were necropsied and, using artificial digestion methods, numbers of Trichinella larvae in muscle tissues were determined. The most infected parts were masseters with 3122 larvae g-1 muscle, 5526 larvae g-1 muscle and 4058 larvae g-1 muscle and diaphragms with 2778 larvae g-1 muscle, 2725 larvae g-1 muscle and 2320 larvae g-1 muscle, for the 3000, 5000 and 7000 infection levels, respectively. A positive correlation between infective rate and circulating antibodies was observed using ELISA and latex agglutination (LA) test methods. Trichinella larvae from sheep applied by gavage to ICR mice developed to the muscle stage. No significant changes were found in the clinical and physiological parameters of infected animals. Our results confirm the high susceptibility of merino sheep to T. spiralis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号