首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
基于多时相GF-6遥感影像的水稻种植面积提取   总被引:2,自引:1,他引:1  
为获取高精度水稻种植面积提取方法和分析红边信息在作物识别能力上的优越性,该研究选取辽宁省盘锦市为研究区域,利用2020年水稻关键物候期的多时相高分6号宽幅相机(GF-6 WFV)遥感影像,构建归一化植被指数(Normalized Difference Vegetation Index,NDVI)、归一化水体指数(Normalized Difference Water Index,NDWI)、比值植被指数(Ratio Vegetation Index,RVI)和归一化差异红边1指数(Normalized Difference Red-Edge 1 Index,NDRE1),根据各地物类型进行时序分析,在获得水稻面积粗提取结果的基础上对其他地类进行掩膜,准确提取水稻种植面积。对2020年盘锦市水稻提取结果进行精度分析,结果表明,基于实测数据进行精度验证的总体精度为94.44%,基于目视解译数据进行精度验证的总体精度和Kappa系数分别为95.60%和0.91。根据目视解译数据对有无红边波段参与的水稻提取结果进行对比分析可知,红边波段的引入使总体分类精度、水稻制图精度和Kappa系数分别提高了3.20个百分点、6.00个百分点和0.06。该研究证明红边波段可以有效降低作物的错分、漏分情况,对水稻精准估产和丰富农作物遥感监测方法具有重要作用,显示出国产红边卫星数据在作物分类、面积提取方面具有巨大应用潜力。  相似文献   

2.
利用遥感数据时空融合技术提取水稻种植面积   总被引:8,自引:4,他引:4  
为解决水稻种植面积提取过程中的数据缺失问题,提出了一种利用遥感数据时空融合技术提取水稻种植面积的方法。该方法从时序MODIS数据中提取地物的时间变化信息,结合早期Landsat-ETM+影像的纹理信息,融合出具有MODIS时间分辨率和ETM+空间分辨率的影像,再利用关键期的高时空分辨率融合影像,利用光谱角分类法进行水稻种植面积的提取。以江苏省南京市江宁区为研究区对该方法进行了测试。结果显示,该方法能够有效的提取水稻种植面积,水稻种植面积提取精度为93%,Kappa系数为0.96。  相似文献   

3.
基于多时相IRS-P6卫星AWiFS影像的水稻种植面积提取方法   总被引:3,自引:2,他引:3  
水稻是中国的第一大粮食作物,准确的获得水稻种植面积具有重要的现实意义。IRS-P6卫星数据产品是近年来中等分辨率数据中有广泛应用前景的数据源之一,但是它在农作物种植面积提取方面的应用还有待进一步验证。选取中国典型水稻种植区安徽省怀远县作为试验区,利用2005年6月24日和9月9日的两个水稻典型物候期的IRS-P6卫星AWiFS数据对水稻种植面积识别进行了试验研究,根据两期水稻提取结果进行分区提取得到了较为准确的水稻种植面积。经过与IRS-P6高分辨率LISS-3识别结果进行对比分析,测量结果总体像元精度为88.58%,区域总量一致性为97.63%,略低于高分辨率识别结果。通过试验研究得到以下初步结论:1)利用多时相的IRS-P6卫星AWiFS数据分别分类后结果,进行分区提取的方法可以较精确的提取水稻的种植面积;2)水稻种植面积同样可以利用乳熟期的IRS-P6卫星AWiFS单期影像较准确的获得;3)IRS-P6卫星影像数据在农作物种植面积提取应用中有巨大的应用潜力。  相似文献   

4.
为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍 "红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取。结果表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性。研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考。  相似文献   

5.
基于MODIS指数和随机森林的江西省早稻种植信息提取   总被引:1,自引:1,他引:0  
尽早获取双季早稻的种植信息,对政府部门掌握全省水稻生产形势及制定粮食安全保障的相关政策方针具有重要意义。传统业务服务中,通常将水稻生长早期的多时相MODIS指数与阈值法相结合,对种植信息进行提取,但该方法主观性强,受人为及不同地区水稻物候期差异影响大,且存在混合像元等限制,机器学习算法可以较好解决此问题。因此,该研究提出一种结合水稻生长早期MODIS指数和随机森林的种植信息提取方法,基于江西省早稻生长早期多时相MODIS增强型植被指数(Enhanced Vegetation Index,EVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和地表水分指数(Land Surface Water Index,LSWI)的变化特征,利用随机森林算法构建早稻种植区域提取模型与丰度反演模型,提取全省早稻种植信息,并利用Sentinel-1A提取的验证样区与统计资料验证。结果表明,早稻种植区域及丰度的空间分布特征与Sentinel-1A提取的验证样区的空间特征基本一致,提取模型的分类精度为93.18%,丰度反演模型与样本数据的平均绝对误差、均方根误差和决定系数分别为0.07、0.10与0.86,且在高丰度种植区反演效果更优。与统计资料相比,全省早稻面积识别精度为92.33%。该研究解决了水稻种植信息提取中阈值选取合理性、混合像元与时效性限制等问题,为水稻生长早期种植信息的业务化提取提供一种参考方法,具有一定应用价值。  相似文献   

6.
水稻是中国的第一大粮食作物,准确的获得水稻种植面积具有重要的现实意义。IRS-P 6卫星数据产品是近年来中等分辨率数据中有广泛应用前景的数据源之一,但是它在农作物种植面积提取方面的应用还有待进一步验证。选取中国典型水稻种植区安徽省怀远县作为试验区,利用2005年6月24日和9月9日的两个水稻典型物候期的IRS-P 6卫星AW iFS数据对水稻种植面积识别进行了试验研究,根据两期水稻提取结果进行分区提取得到了较为准确的水稻种植面积。经过与IRS-P 6高分辨率L ISS-3识别结果进行对比分析,测量结果总体像元精度为88.58%,区域总量一致性为97.63%,略低于高分辨率识别结果。通过试验研究得到以下初步结论:1)利用多时相的IRS-P 6卫星AW iFS数据分别分类后结果,进行分区提取的方法可以较精确的提取水稻的种植面积;2)水稻种植面积同样可以利用乳熟期的IRS-P 6卫星AW iFS单期影像较准确的获得;3)IRS-P 6卫星影像数据在农作物种植面积提取应用中有巨大的应用潜力。  相似文献   

7.
基于地块尺度多时相遥感影像的冬小麦种植面积提取   总被引:5,自引:5,他引:0  
针对仅利用单一遥感影像数据获取农作物信息精度不够问题,该文选择冬小麦主产地河南省兰考县乡镇作为研究区,以2017年多时相中分辨率Landsat8 OLI影像和Google earth上下载的亚米级高分影像为遥感数据源,结合光谱差异和农田地块信息实现冬小麦的精确提取。该算法首先构建不同时相决策树模型,分别实现2个时相的冬小麦区域初步提取;其次通过将对高分影像多尺度分割产生的地块信息分别与2个时相冬小麦播种面积初步区域相互叠加,完成地块单元控制下的冬小麦播种面积分地块统计,并通过设定不同统计阈值,分析落在每一地块单元下的冬小麦区域,生成基于地块单元的冬小麦播种面积分布图;最后通过多时相交叉验证,获取最终冬小麦播种区域。结果表明:该方法能更加准确提取冬小麦种植面积,保持较低的误判率(1.3%)水平下,得到较高的提取正确率(95.9%),较通过对比单一Google earth高分辨率影像获取冬小麦精度(85.6%)高,该研究对通过融合多源多时相影像数据获取农作物提供参考。  相似文献   

8.
为及时准确评估黑土区土壤全氮(soil total nitrogen,STN)含量的空间分布,以指导作物精准施肥和提高农作物产量,该研究基于绥化市实测STN数据和Sentinel-2卫星Level-2A遥感影像反射率,构建光谱指数结合环境变量的STN预测模型,包括随机森林(random forest,RF)、自适应增强(adaptive boosting,AdaBoost)、梯度提升(gradient boosting categorical features,CatBoost)等集成学习算法和多元逐步线性回归(simple linear regression,SLR)、支持向量机(support vector regression,SVR)、神经网络(back propagation neural network,BPNN)等监督学习算法,并考虑波段1~12遥感反射率、波段1~12遥感反射率联合光谱指数和环境变量作为算法输入变量的2种情景。结果表明:1)绥化市实测STN平均含量为1904.06 mg/kg,变异系数为17.93%;2)以波段1~12遥感反射率作为输入变量时,6种STN模型验证集拟合决定系数(coefficient of determination,R2)小于 0.6,模型验证集决定系数精度由大到小顺序为:RF、CatBoost、AdaBoost、BPNN、SLR、SVR;3)结合波段1~12遥感反射率、光谱指数和环境变量优选方法,构建STN含量预测模型,模型验证集决定系数精度由大到小顺序为:RF、CatBoost、BPNN、AdaBoost、SLR、SVR,验证集模型决定系数精度提升幅度从大到小依次为RF、SVR、BPNN、AdaBoost、CatBoost、SLR,其中RF模型验证集决定系数预测精度提升最大,决定系数增加0.22,均方根误差(root mean square error,RMSE)降低了35.30 mg/kg;4)基于光谱指数和环境变量优选的机器学习算法具有强大的非线性拟合能力,RF能够更好地模拟STN与遥感光谱信息及地形因子之间复杂的多元非线性关系,并获得较高的实测和反演模型拟合结果;5)结合模型,绥化市STN的空间分布呈现东北高西南低、由北向南逐渐降低及中部略高的空间分布特点。研究结果为东北黑土区STN含量实时动态监测、土地肥力评价和农业可持续发展提供技术支持,为开展黑土地保护与利用及农田生态系统保护提供决策依据。  相似文献   

9.
株高和植被覆盖度(Vegetation Coverage, VC)是估算生物量的重要参数,而生物量的准确估算对农业生产具有重要作用。该研究获取马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期和成熟期的无人机和地面数码影像,并实测株高、地上生物量和地面控制点(Ground Control Point, GCP)的三维空间坐标。首先基于数字表面模型(Digital Surface Model, DSM)提取马铃薯株高,其次利用地面和无人机数码影像提取马铃薯VC实测值和估测值,然后将提取的株高、VC和二者乘积与选取的11种植被指数和生物量作相关性分析,挑选出相关性较好的前6种植被指数和3种农学参数,最后通过线性回归(Linear Regression,LR)、偏最小二乘回归(Partial Least Square Regression,PLSR)、随机森林(Random Forest,RF)算法和支持向量机(Support Vector Machine, SVM)估算生物量。结果表明,提取株高和实测株高拟合的决定系数为0.86,标准均方根误差为13.42%;提取VC值和实测VC值拟合的决定系数为0.84,标准均方根误差为15.76%;利用LR建模和验证精度由低到高依次为提取的株高、VC和二者乘积,每种变量的估算效果均从现蕾期到块茎增长期逐渐变好,从淀粉积累期到成熟期逐渐变差;每个生育期利用3种方法以不同变量估算生物量效果依次由低到高为植被指数、植被指数结合提取株高、植被指数结合提取VC、植被指数结合提取的株高和VC,其中PLSR模型效果优于RF和SVM模型。该研究为马铃薯长势快速监测提供参考。  相似文献   

10.
由于热带地区的雨季时间较长,云覆盖严重,基于光学影像难以准确提取区域内的水稻种植模式。该文以泰国湄南河流域中部平原水稻种植区为例,基于Sentinel-1SAR时间序列数据,提出一种融合时序统计参数与时序曲线相似性特征的热带地区水稻种植结构提取方法。首先利用年内所有可获取的Sentinel-1SAR数据,分别基于像元和基于对象构建后向散射系数时间序列曲线,提取时序特征参数;利用动态时间规整(Dynamic Time Warping,DTW)算法,计算后向散射系数时序曲线与地物标准曲线间的隶属度;将时序特征参数、时序曲线隶属度相结合,利用随机森林模型进行机器学习监督分类,提取研究区的水稻种植信息并评价分类精度。结果表明,基于Sentinel-1SAR时序特征融合的算法可以较好地提高水稻种植结构分类精度。其中,基于对象的分类算法的单季稻提取用户精度为81.46%,生产者精度为82.00%;双季稻用户精度为88.0%,生产者精度为84.08%,均优于基于像元的分类算法。研究结果可为多云多雨的热带地区水稻种植信息提取提供一种新的思路。  相似文献   

11.
水稻是中国主要的粮食作物之一,实时且准确获取稻田区域及其空间分布特征是指导和管理农业生产的基础,对于保障国家粮食安全具有重要意义。但传统遥感变量与基于像元的机器学习分类算法在准确识别破碎度较高的稻田方面存在较大挑战。物候参数能够反映不同植被的生长动态,在识别稻田方面具有较大的应用潜力。面向对象的随机森林分类可以有效避免“椒盐”现象,提高稻田的分类精度。鉴于此,该研究以中国南方典型山地丘陵区——福建省漳州市稻田为研究对象,基于归一化植被指数、改进归一化水体指数、土壤调节植被指数、垂直极化后向散射系数、交叉极化后向散射系数和物候参数等多个遥感变量,利用面向对象的随机森林分类算法识别稻田,验证和分析物候参数与面向对象的随机森林分类法在提高南方复杂地形区稻田识别精度方面的有效性。结果表明:1)福建省漳州市稻田的最高识别精度为94.47%,Kappa系数为0.92,传统遥感变量、物候参数及面向对象的随机森林分类算法在准确识别破碎度较高的稻田方面具有协同优势;2)物候参数在表征植被生长与植被类型差异等方面具有显著优势,相较于仅基于传统遥感变量的试验组,物候参数与传统遥感变量的组合能够将稻田识别总体精度提高8.78~9.36个百分点;3)对于复杂地形区破碎度较高的稻田,面向对象的随机森林分类方法能够清晰明确地勾勒出稻田的形状与边界信息,且能够有效避免“椒盐”现象,相较于基于像元的分类方法,面向对象的分类法可将稻田识别精度提高0.58~1.53个百分点,因此,更适用于复杂地形区破碎农田的遥感提取。该研究结果可提高福建省漳州市稻田制图产品的应用价值,也可为中国南方复杂地形区稻田识别精度的进一步提高提供参考。  相似文献   

12.
时空协同的地块尺度作物分布遥感提取   总被引:3,自引:3,他引:0  
地块尺度作物分布信息清晰直观地反映了农田位置、空间形态等空间细节和种植类型信息,对精准农业管理、种植补贴发放和农业资源调查等具有重要价值。虽然遥感时空协同思路为地块尺度作物分布提取提供了解决方案,但在农田地块提取和时序特征构建方面尚存在不足。该研究基于遥感时空协同的思路,以Google Earth高空间分辨率影像为底图,利用擅于学习影像视觉特征的D-LinkNet深度学习模型,快速、精准提取农田地块形态;以地块为观测单元,利用Landsat8和Sentinel-2多源遥感的"碎片化"无云数据构建地块时序数据集,基于加权Double-Logistic函数重建地块归一化植被指数(Normalized Difference Vegetation Index,NDVI)时序曲线;提取地块物候特征和多时相光谱特征,经过特征优选和随机森林分类模型构建,开展地块尺度作物分布制图。以广西扶绥县为研究区开展试验,共提取地块43.7万个,边界准确率为84.54%,相较于常规基于多尺度分割的地块提取,基于D-LinkNet的地块提取方法直接排除了非农田地物的干扰,地块形态与现实情况符合度更高;地块NDVI时间序列重建结果能够较好地捕捉作物开始生长、旺盛期、成熟收获期的动态变化趋势;分类特征重要性评价结果显示,红边特征、与时间相关的物候特征在分类中发挥重要作用,当联合物候特征和光谱特征时分类效果最佳;根据特征重要性分析不同特征数量情况下的分类精度,当特征数量大于40维时,作物分类精度和Kappa系数保持稳定,总体分类精度维持在88%左右;对扶绥县地块尺度作物分布进行制图,提取甘蔗地块277 421个、水稻地块33 747个、香蕉地块4 973个、柑橘地块102 055个,分别占农田地块总数的63.48%、7.72%、1.14%、23.35%,种植面积占比分别为69.78%、7.12%、1.71%、18.06%。该研究在理论上构建了遥感时空协同的地块尺度作物分类模型,为大范围、地块尺度作物分布遥感提取提供了实用化方案。  相似文献   

13.
无人机遥感影像面向对象分类方法估算市域水稻面积   总被引:7,自引:5,他引:2  
针对如何高效地从无人机遥感影像中提取农作物样方数据,用于农作物面积遥感估算,该文以浙江省平湖市为例,利用面向对象分类方法对无人机影像进行水稻自动化识别,作为样方数据与卫星遥感全覆盖空间分布分类结果结合,采用分层联合比估计进行2014年单季晚稻面积估算。然后,与人工目视解译识别方法获取的水稻样方数据推断的区域水稻面积估算的结果进行精度、效率对比分析。研究结果表明:1)利用面向对象分类方法对无人机影像进行分类,总体分类精度达到93%以上,满足构建样本的要求;2)通过区域作物估算对比分析发现,面向对象分类方法对无人机影像进行水稻识别,构建平湖市单季晚稻的样方数据,能够替代人工目视解译样方准确推断区域作物种植面积,有效地提高了无人机影像在遥感面积估算中的应用效率。  相似文献   

14.
基于GF-1/WFVNDVI时间序列数据的作物分类   总被引:6,自引:11,他引:6  
归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。  相似文献   

15.
基于相似性分析及线性光谱混合模型的双季稻面积估算   总被引:2,自引:1,他引:1  
为了解决大范围水稻种植信息提取时的混合像元问题,以便能够准确及时地获取水稻信息、指导水稻生产、保证粮食安全,该文提出了一种基于相似性分析和线性光谱混合模型复合的水稻提取业务化方法。以江西省为研究区,利用2010年4月15日至2010年10月31日的MODIS合成地表反射率数据(MODIS09A1),计算出时间序列MODIS-EVI指数,运用Savizky-Golay滤波方法对其进行平滑处理减少云等噪声的影响。根据双季稻的生长规律,结合野外调查和HJ-1ACCD2影像,确定双季稻样点,提取出标准双季稻EVI生长变化曲线,构建图像像元相似性指数,然后采用线性光谱混合像元分解模型对疑似双季稻像元进行混合像元分解,获得江西省双季稻种植面积信息的分布情况。结果显示,运用该方法提取的江西省双季稻种植分布情况与实际情况吻合,与江西省2010年统计年鉴中全省双季稻种植面积相比,提取精度为93%,精度较理想,与各地区统计面积相关性较好,R2=0.9659,可以为今后高精度水稻种植信息业务化的提取提供参考。  相似文献   

16.
基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取   总被引:3,自引:0,他引:3  
土地利用/覆盖信息是区域气候与环境研究的基础,是土地资源规划与管理、合理开发与保护的信息保障。为此,该文选取长株潭城市群核心区为试验区,以时间序列HJ卫星影像为数据源,首先构建了时间序列归一化植被指数(normalized difference vegetation index,NDVI)、时间序列光谱第一主成分(first principal component,PC1)数据集,通过J-M(Jeffries-Matusita)距离变量可分离性分析结合地表覆盖的物候特征,确定最佳时序HJ组合数据;其次,采用面向对象的随机森林算法对研究区土地利用/覆盖信息进行分类,并对分类结果进行精度评价与比较分析。研究结果表明:采用时间序列HJ组合数据与面向对象的分类方法,提取城市土地利用/覆盖信息的总体精度和Kappa系数分别达到91.55%和0.90,其中水田、水浇地、旱地、林地、建设用地的生产者精度均达到90%及以上;相对于时间序列基于像元分类、单时相面向对象的分类方法,该文提出的土地利用/覆盖信息提取方法的总体分类精度和Kappa系数分别提高了2.26%、0.02和6.82%、0.08,有效提高了区域土地利用/覆盖信息提取的精度,为大范围土地利用/覆盖精细化分类提供了有效的途径。  相似文献   

17.
及时、准确的农作物空间分布信息是进行作物长势监测、灾害评估与产量估计的基础。传统方法一般在作物收获期前后进行作物的识别,时间上滞后,难以满足农业生产的应用,时空泛化能力差,模型复用程度低。该研究以历史知识为支撑,提出冬小麦像元匹配模型(Pixel-matched Model,PMM)进行冬小麦空间分布提取,旨在生长季内实现冬小麦空间分布的快速提取。研究结果表明,PMM能充分利用作物物候特征变化,排除冬小麦种植物候空间异质性的影响,能够在播种后2个月内实现冬小麦的准确提取,总体精度达到了95.49%,F1分数为0.83,且不随物候曲线的延伸而大幅提高精度。与传统参考曲线模型(Reference Curve Model,RCM)相比,PMM在消除区域内冬小麦生长物候差异方面具有优势,可在年际间实现冬小麦的准确识别,具有较强的时间泛化能力,能够实现冬小麦的自动化识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号