首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starches were isolated from the endosperm of 12 wheat samples with a wide swelling power range in the wholemeal. Starch amylose content (24.8–34.2%) correlated negatively with the swelling power of isolated starch (18.3–26.9), but starch lipid content showed no such correlation. Higher proportions of long chains (DP ≥ 35) in amylopectins contributed to increased starch swelling. Native starch gelatinization temperatures and enthalpy measured by differential scanning calorimetry correlated positively with swelling power, which also correlated significantly with the regelatinization enthalpy of retrograded starches stored at 5°C for two and four weeks.  相似文献   

2.
The effects of environmental temperature on gelatinization properties and amylopectin structures of wheat endosperm starch were examined by isolating starches from four wheat cultivars matured in growth chambers at daytime temperatures of 15, 20, 25, or 30°C. Kernel weight and starch content per kernel were reduced by high maturation temperature. Amylose content showed no significant change at high maturation temperature in some cultivars; in other cultivars, there was a slight increase. Principal component analysis of data on relative peak areas of debranched amylopectin showed that amylopectin from wheat grown at a lower temperature had a greater proportion of shorter chains. Amylopectin branch chains were classified into three groups based on the correlation coefficients between the data of branch chain length distribution and principal component scores, degree of polymerization (DP) of 6–12, DP 13–34, and DP ≥ 35. The gelatinization temperature of starches increased markedly at a higher maturation temperature, with increases exceeding 10°C at high maturation temperatures. Gelatinization properties correlated significantly with amylopectin chain length distribution.  相似文献   

3.
Some physicochemical properties and molecular structures of starches from millet (Pennisetum typhoides, Doro and Gero) and sorghum (Sorghum bicolor, red and white) in Nigeria were examined. Starch granules of millet and sorghum were 3–14 μm and 4–26 μm in diameter, respectively. Millet cultivars had similar peak viscosities (204–205 RVU) on pasting, while sorghum showed similar minimum viscosities (155–156 RVU). The actual amylose content (%) calculated from iodine affinity (IA, g/100 g) was 20.1 and 21.4 for sorghum and 21.3 for millet. The IA of amylopectin was high (1.27–1.42) and its average chain lengths were 20–21 with β‐amylolysis limit of 56%. Amylopectins showed a polymodal molecular weight distribution on a molar basis. The distributions differed among the samples with a higher amount of larger molecules in Doro and red sorghum. Weight‐ and molar‐based distributions of debranched amylopectins on HPSEC were polymodal with weight‐based distribution showing presence of long chains. Peak DP values for A+B1 and B2+B3 chain fractions were 13–16 and 42–43, respectively. The (A+B1)/(B2+B3) ratio on molar basis (9.0–11.5) was similar to maize and rice amylopectins. Peak DP on molar‐based distribution for white sorghum and millet amyloses were similar (490–540) and the DPn range was narrow (1,060–1,300), but weight‐based distribution profiles differed. The average chain lengths were 260–270 with 3.9–4.8 chains per molecule.  相似文献   

4.
The effect of storage temperatures (‐10, +1, and +10°C) on the structural organization of mung bean starch gels and noodles was studied by acid hydrolysis, X‐ray diffractometry, and gel‐permeation chromatography. The gels showed higher susceptibility to acid compared with the noodles as shown by the rate constants of the first stage of hydrolysis (k = 5.37–12.17 × 10‐2/day and k = 4.19–4.61 × 10‐2/day for gels and noodles, respectively). Acid hydrolysis showed no difference in the amount of resistant residues of both gels (42–46%) and noodles (44–45%), except for gels (38%) stored at ‐10°C. The acid‐resistant residues of both the gels and noodles had a B‐type X‐ray diffraction pattern (major reflections at 2θ = 19, 24, and 25°). The acid‐resistant residues of the unstored sample and those stored at ‐10°C for both gels and noodles contained chains with DP 46–54 and after debranching yielded two peaks with DP 29–39 and DP 15–19. The acid‐resistant residues of gels and noodles stored at +1 and +10°C contained chains with DP 35–37 and after debranching showed two chain populations with DP 31–33 and DP 14–19. These results indicate the greater participation of amylopectin in the retrogradation process occurring during storage at +1 and +10°C.  相似文献   

5.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   

6.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

7.
Pulse starches were isolated from different cultivars of pea, lentil, and chickpea grown in Canada under identical environmental conditions. The in vitro digestibility and physicochemical properties were investigated and the correlations between the physicochemical properties and starch digestibility were determined. Pulse starch granules were irregularly shaped, ranging from oval to round. The amylose content was 34.9–39.0%. The amount of short A chains (DP 6‐12) of chickpea starch was much higher than the other pulse starches, but the proportions of B1 and B2 chains (DP 13‐24 and DP 25‐36, respectively) were lower. The X‐ray pattern of all starches was of the C type. The relative crystallinity of lentil (26.2–28.3%) was higher than that of pea (24.4–25.5%) and chickpea starches (23.0–24.8%). The swelling factor (SF) in the temperature range 60–90°C followed the order of lentil ≈ chickpea > pea. The extent of amylose leaching (AML) at 60°C followed the order of pea ≈ chickpea > lentil. However, in the temperature range 70–90°C, AML followed the order of lentil > pea > chickpea. The gelatinization temperatures followed the order of lentil > pea > chickpea. The peak viscosity, setback, and final viscosity of pea starch were lower than those of the other starches. Lentil starch exhibited lower rapidly digestible starch (RDS) content, hydrolysis rate, and expected glycemic index (eGI). The resistant starch (RS) content of both lentil cultivars was nearly similar. However, pea and chickpea cultivars exhibited wide variations in their RS content. Digestibility of the pulse starches were significantly correlated (P < 0.05) with swelling factor (60°C), amylose leaching (60°C), gelatinization temperature, gelatinization enthalpy, relative crystallinity, and chain length distribution of amylopectin (A, B1, and B2 chains).  相似文献   

8.
Resistant starches (RS) were prepared from wheat starch and lintnerized wheat starch by autoclaving and cooling and by cross‐linking. Heat‐moisture treatment also was used on one sample to increase RS. The experimental resistant starches made from wheat starch contained 10–73% RS measured as Prosky dietary fiber, whereas two commercial resistant starches, Novelose 240 and 330, produced from high‐amylose maize starch, contained 58 and 40%, respectively. At 25°C in excess water, the experimental RS starches, except for the cross‐linked wheat starch, gained 3–6 times more water than the commercial RS starches, and at 95°C gained 2–4 times more. Cross‐linked RS4 wheat starch and Novelose 240 showed 95°C swelling powers and solubilities of 2 g/g and 1%, and 3 g/g and 2%, respectively. All starches showed similar water vapor sorption and desorption isotherms at 25°C and water activities (aw) < 0.8. At aw 0.84–0.97, the resistant starches made from wheat starch, except the cross‐linked wheat starch, showed ≈10% higher water sorption than the commercial resistant starches.  相似文献   

9.
Weight-average molecular weight (Mw) and chain length of eight amylopectins isolated from one Australian, two United States, and five Korean wheats were measured using multiangle laser light scattering (MALLS) and refractive index (RI) detectors operated in a microbatch mode, and in a high-performance size-exclusion chromatography (HPSEC) mode. The Mw of amylopectins measured in the microbatch mode ranged from 29 × 106 to 349 × 106. Three amylopectins (Geuru, Tapdong and WW) showed significantly high Mw values over 200 × 106. The Mw measured by HPSEC mode with MALLS-RI detectors (42 × 106 to 73 × 106) were significantly less than those obtained in the microbatch mode with exception of dark northern spring hard wheat (DNS) amylopectin, indicating the possible variation of Mw by the analysis mode. Root-mean square of the radius of gyration (Rg) also was greater when the microbatch mode was used (122–340 vs. 95–116 nm). Chain length distributions of debranched amylopectins of different cultivars, measured by the HPSEC-MALLS-RI system, were similar. Weight average degrees of polymerization (DPw) of A, B1, and larger B chains (B≥2) had ranges of 13–22, 26–46, and 58–73, respectively, and mass ratios of A and B chains ranged from 0.7 to 1.1.  相似文献   

10.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

11.
The unit chain compositions of debranched foxtail, proso, pearl, and finger millet amylopectins and their ϕ,β‐limit dextrins were analyzed by high‐performance anion‐exchange chromatography. The ϕ,β‐limit dextrins reflected amylopectin internal chain profiles. The amylopectins had average chain lengths ranging from 17.94 to 18.12. The ranges of external chain length, internal chain length, and total internal chain length of the millet amylopectins were 11.85–12.33, 4.75–5.09, and 11.64–12.28, respectively. The relative molar concentration of B‐chains in the amylopectins was close to 50% in all samples. Significant differences were, however, observed in the proportions of very short “fingerprint” B‐chains (Bfp, degree of polymerization 3–7) and the major group of short B‐chains (BSmajor): foxtail and proso millets possessed high amounts of Bfp‐chains, whereas finger and pearl millets had higher amounts of BSmajor‐chains, suggesting possible differences in the fine structure of the clusters and building blocks of the amylopectins. Millet amylopectin can be classified structurally as type 2.  相似文献   

12.
Physicochemical properties of starch of three common (Fagopyrum esculentum) and three tartary (F. tataricum) buckwheat varieties from Shanxi Province, China, were compared. Starch color, especially b*, differed greatly between tartary (7.99–9.57) and common (1.97–2.42) buckwheat, indicating that removal of yellow pigments from tartary buckwheat flour may be problematic during starch isolation. Starch swelling volume in water of reference wheat starch (2.8% solids and 92.5°C) was 20.1 mL; for the three common buckwheat starches it was 27.4–28.0 mL; and for the three tartary buckwheat starches it was 26.5–30.8 mL. Peak gelatinization temperature (Tp) in water was 63.7°C for wheat starch, 66.3–68.8°C for common buckwheat and 68.8–70.8°C for tartary buckwheat. Tp of all samples was similarly delayed (by 4.0–4.8°C) by 1% NaCl. Enthalpy of gelatinization (ΔH) was higher for all six buckwheat starches than it was for wheat starch. However, one common buckwheat sample had significantly lower ΔH than the others. Starch pasting profiles, measured by a Rapid Visco-Analyzer, were characteristic and similar for all six buckwheat starches, and very different from the reference wheat starch. A comparison of pasting characteristics of common and tartary buckwheat starches to wheat starch indicated similar peak viscosity, higher hot paste viscosity, higher cool paste viscosity, smaller effect of NaCl on peak viscosity, and higher resistance to shear thinning. Texture profile analysis of starch gels showed significantly greater hardness for all buckwheat samples when compared to wheat starch.  相似文献   

13.
Differential scanning calorimetry (DSC) was used to study the effect of sucrose on wheat starch glass transition, gelatinization, and retrogradation. As the ratio of sucrose to starch increased from 0.25:1 to 1:1, the glass transition temperature (Tg, Tg′) and ice melting enthalpy (ΔHice) of wheat starch‐sucrose mixtures (with total moistures of 40–60%) were decreased to a range of −7 to −20°C and increased to a range of 29.4 to 413.4 J/g of starch, respectively, in comparison with wheat starch with no sucrose. The Tg′ of the wheat starch‐sucrose mixtures was sensitive to the amount of added sucrose, and detection was possible only under conditions of excess total moisture of >40%. The peak temperature (Tm) and enthalpy value (ΔHG) for gelatinization of starch‐sucrose systems within the total moisture range of 40–60% were increased with increasing sucrose and were greater at lower total moisture levels. The Tg′ of the starch‐sucrose system increased during storage. In particular, the significant shift in Tg′ ranged between 15 and 18°C for a 1:1 starch‐sucrose system (total moisture 50%) after one week of storage at various temperatures (4, 32, and 40°C). At 40% total moisture, samples with sucrose stored at 4, 32, and 40°C for four weeks had higher retrogradation enthalpy (ΔH) values than a sample with no sucrose. At 50 and 60% total moisture, there were small increases in ΔH values at storage temperature of 4°C, whereas recrystallization of samples with sucrose stored at 32 and 40°C decreased. The peak temperature (Tp), peak width (δT), and enthalpy (ΔH) for the retrogradation endotherm of wheat starch‐sucrose systems (1:0.25, 1:0.5, and 1:1) at the same total moisture and storage temperature showed notable differences with the ratio of added sucrose. In addition, Tp increased at the higher storage temperature, while δT increased at the lower storage temperature. This suggests that the recrystallization of the wheat starch‐sucrose system at various storage temperatures can be interpreted in terms of δT and Tp.  相似文献   

14.
The molecular structure and pasting properties of starches from eight buckwheat cultivars were examined. Rapid viscograms showed that buckwheat starches had similar pasting properties among cultivars. The actual amylose content was 16–18%, which was lower than the apparent amylose content (26–27%), due to the high iodine affinity (IA) of amylopectin (2.21–2.48 g/100 g). Amylopectins resembled each other in average chain‐length (23–24) and chain‐length distributions. The long‐chains fraction (LC) was abundant (12–13% by weight) in all the amylopectins, which was consistent with high IA values. The amyloses were also similar among the cultivars in number‐average DP 1,020–1,380 with 3.1–4.3 chains per molecule. The molar‐based distribution indicated that all the amyloses comprised two molecular species differing in molecular size, although the weight‐based distribution showed a single species. A comparison of molecular structures of buckwheat starches to cereal starches indicated buckwheat amylopectins had a larger amount of LC, and their distributions of amylose and short chains of amylopectin on molar basis were similar to those of wheat and barley starches.  相似文献   

15.
The effects of environmental temperature (21 vs. 28°C) during rice seed development on the starch characteristics (apparent amylose content, amylopectin chain length distribution, and gelatinization properties) of nonwaxy Taichung 65 (T65), waxy Taichung (T65wx), du2‐2 mutated low‐amylose strain Taichung (76‐3/T65), and Koshihikari were studied. Amylose contents increased with decreasing environmental temperatures. Analysis of the amylopectin chain length distribution showed that the relative amounts of long chains with degree of polymerization (DP) > 25 in all starches decreased if maturation occurred at 21°C. Gelatinization onset, peak, and conclusion temperatures and enthalpies decreased with decreasing environmental temperatures. Of all starches studied, the du2‐2 mutated low‐amylose Taichung (76‐3/T65) was most affected by maturation temperatures. These results indicate that the du2‐2 mutated low‐amylose Taichung (76‐3/T65) may be a useful strain in understanding biochemical and genetic starch biosynthesis response to slight changes in temperature.  相似文献   

16.
The enthalpy changes (ΔH) for melting of crystallites formed during retrogradation of 60% (w/w) amylopectins (AP) aged at 4°C were investigated using AP from 13 rice cultivars with well‐known structural properties. According to the Avrami equation, the resultant kinetic parameters for AP retrogradation were obtained in relation to structural factors. Generally, the AP systems studied showed two stages of retrogradation behavior during early (≤7 days) and late (≥7 days) storage. The Avrami exponent for early‐stage kinetics (n1, 1.04–5.54) was greater than the corresponding value for late‐stage kinetics (n2, 0.28–1.52). While the Avrami K constant of the early‐stage kinetics (K1, 1.0×10‐5 to 2.3×10‐1 day‐n) was lower than the corresponding value of late‐stage kinetics (K2, 4.4×10‐2 to 1.4 day‐n). The ΔH values for late and infinite retrogradation stages showed a significantly positive correlation with the proportions of short chain (chain length [CL] ≤ 15 glucose units) and long chain (CL = 16–100 glucose units) fractions, respectively. Retrogradation of AP with a higher number‐average degree of polymerization, greater proportion of short chain fractions, and shorter average chain lengths revealed significantly greater n1 values and smaller K1 values. Values for n2 and K2 showed little influence from the molecular properties except for the proportion of extra long (CL>100 glucose units) and long chain fractions on K2. The negatively linear relationships between log K and n suggest the importance of some nonstructural factors for AP retrogradation mechanisms in various starch systems.  相似文献   

17.
Based on examination of 192 club and soft white winter (SWW) wheat samples, club and SWW wheat flours showed comparable levels of starch damage and flour peak viscosity, while differing significantly in starch content. Varietal differences and growing conditions had strong influence on the characteristics of both classes of wheat flour. Club wheat flour exhibited better stability in starch content and starch damage than did SWW wheat flour. A significant correlation between starch damage and cookie diameter in both club and SWW wheat was observed (r = -0.480, P < 0.0001 for club wheat and r = -0.430, P < 0.0001 for SWW wheat). Sponge cake volume was positively correlated with starch content in both classes of wheat (r = 0.362, P < 0.01 for club wheat and r = 0.181, P < 0.05 for SWW wheat). When wheat samples were grown in one location over three years, club and SWW wheat flours had comparable starch content. However, flour and prime starch peak viscosities were significantly different in club than in SWW wheat. Club wheat flour had lower starch damage and amylose content, as measured by high-performance size-exclusion chromatography (HPSEC), than did SWW wheat flour. Crop year and varietal differences had significant effect on amylose content, starch damage, and flour and starch peak viscosities, but not on starch content, in both classes of wheat flour. When wheat samples were grown in one year over seven locations, club wheat flour was higher in starch content, lower in starch damage, and comparable in amylose to SWW wheat flour. Both flour and prime starch viscosities were significantly higher in club wheat than in SWW wheat. Varietal differences and growing location had strong influence on starch properties in both classes of wheat. Peak viscosity of the isolated starch did not correlate well with the corresponding flour, indicating that flour pasting property does not reflect the pasting property of starch. The fine structure of isoamylase-debranched amylopectins from club and SWW wheats had a similar tri-modal pattern, with maximum at ≈DP 15 and two valleys at ≈DP 20 and 45, respectively. Although wheat flour samples differed widely in their prime starch peak viscosity, no significant difference between debranching patterns was obtained. These results indicate that the fine structure of amylopectin might not be responsible for the large differences in prime starch pasting property.  相似文献   

18.
Laboratory-isolated buckwheat (Fagopyrum esculentum) starch was compared to commercial corn and wheat starches. Buckwheat starch granules (2.9–9.3 μm) were round and polygonal with some holes and pits on the surface. Buckwheat starch had higher amylose content, waterbinding capacity, and peak viscosity, and it had lower intrinsic viscosity when compared with corn and wheat starches. Buckwheat starch also showed restricted swelling power at 85–95°C and lower solubility in water at 55–95°C and was more susceptible to acid and enzymatic attack. Gelatinization temperatures, determined by differential scanning calorimetry, were 61.1–80.1°C for buckwheat starch compared to 64.7–79.2°C and 57.1–73.5°C for corn and wheat starches, respectively. A second endotherm observed at 84.5°C was an amylose-lipid complex attributed to the internal lipids in buckwheat starch, as evidenced by selective extraction. The retrogradation of buckwheat, corn, and wheat starch gels was examined after storage at 25, 4, and -12°C for 1–15 days. In general, buckwheat starch retrogradation was slower than that of corn and wheat starch, but it increased as storage time increased, as did that of the other starch pastes. When the values of the three storage temperatures were averaged for each storage period analyzed, buckwheat starch gels showed a lower percentage of retrogradation than did corn and wheat starch gels. Buckwheat starch also had a lower percentage of water syneresis when stored at 4°C for 3–10 days and had better stability to syneresis after three freeze-thaw cycles at -12 and 25°C.  相似文献   

19.
The structural features of starch were examined to better understand the causes of variability in rice quality resulting from nighttime air temperature (NTAT) incidence during kernel development. Starch samples were isolated from head rice of four cultivars (Bengal, Cypress, LaGrue, and XL723) field‐grown in four Arkansas locations (Keiser, Pine Tree, Rohwer, and Stuttgart) in 2009 and 2010. Average NTATs recorded during the grain‐filling stages of rice reproductive growth in the four locations were 3.0–8.4°C greater in 2010 than 2009. Elevated NTATs altered the deposition of starch in the rice endosperm. Means pooled across cultivars and locations showed that amylose content was 3.1% (percentage points) less for the 2010 sample set. The elevated NTATs in 2010 resulted in a decrease in the percentage of amylopectin short chains (DP ≤ 18) and a corresponding increase in the percentage of long chains (DP ≥ 19) by an average of 1.3% (percentage points). The greater NTATs in 2010 also produced greater starch paste peak, final, and breakdown viscosities, whereas setback and total setback viscosities decreased. Changes in paste viscosity were highly correlated with the changes in the proportion of amylose and amylopectin. Onset gelatinization temperature was greater by 3.5°C, gelatinization enthalpy by 1.3 J/g, and relative crystallinity by 1.5% (percentage points) for the 2010 sample set. Changes in gelatinization parameters and granule relative crystallinity were highly correlated with the changes in amylopectin chain‐length distribution. Year × cultivar × location interaction effects were statistically insignificant, indicating that the four cultivars evaluated all showed some degree of susceptibility to the effects of temperature incidence during kernel development, regardless of the growing location.  相似文献   

20.
The molecular structure and some physicochemical properties of starches from two high‐amylose cultivars of barley, high‐amylose Glacier A (HAG‐A) and N (HAG‐N), were examined and compared with those of a normal cultivar, Normal Glacier (NG). The true amylose contents of HAG‐A, HAG‐N, and NG were 41.0, 33.4, and 23.0%, respectively. Iodine affinities before and after defatting of starch, and thermograms of differential scanning calorimetry, indicated that HAG‐A and HAG‐N starches had a higher proportion of amylose‐lipid complex than did NG starch. The amylopectins from HAG‐A and HAG‐N were similar to NG amylopectin in average chain length (18–19), β‐amylolysis limit (β‐AL 56–57%), number‐average degrees of polymerization (DPn 6,000–7,500) and chain length distribution. Very long chains (1–2%) were found in amylopectins from all cultivars. HAG‐A amylopectin had a larger amount of phosphorus (214 ppm) than the others. The amyloses from HAG‐A and HAG‐N resembled NG amylose in DPn (950–1,080) and β‐AL (70–74%). However, HAG‐A and HAG‐N had a larger number of chains per molecule (NC 2.4–2.7) than NG amylose (1.8) and contained the branched amylose with a higher NC (9.5–10.6) than that of NG amylose (5.8), although molar fractions of the branched amylose (15–20%) were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号