首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
D1 dopamine receptors in prefrontal cortex: involvement in working memory   总被引:36,自引:0,他引:36  
The prefrontal cortex is involved in the cognitive process of working memory. Local injections of SCH23390 and SCH39166, selective antagonists of the D1 dopamine receptor, into the prefrontal cortex of rhesus monkeys induced errors and increased latency in performance on an oculomotor task that required memory-guided saccades. The deficit was dose-dependent and sensitive to the duration of the delay period. These D1 antagonists had no effect on performance in a control task requiring visually guided saccades, indicating that sensory and motor functions were unaltered. Thus, D1 dopamine receptors play a selective role in the mnemonic, predictive functions of the primate prefrontal cortex.  相似文献   

2.
3.
A wide variety of nonexcitable cells generate repetitive transient increases in cytosolic calcium ion concentration ([Ca2+]i) when stimulated with agonists that engage the phosphoinositide signalling pathway. Current theories regarding the mechanisms of oscillation disagree on whether Ca2+ inhibits or stimulates its own release from internal stores and whether inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DG) also undergo oscillations linked to the Ca2+ spikes. In this study, Ca2+ was found to stimulate its own release in REF52 fibroblasts primed by mitogens plus depolarization. However, unlike Ca2+ release in muscle and nerve cells, this amplification was insensitive to caffeine or ryanodine and required hormone receptor occupancy and functional IP3 receptors. Oscillations in [Ca2+]i were accompanied by oscillations in IP3 concentration but did not require functional protein kinase C. Therefore, the dominant feedback mechanism in this cell type appears to be Ca2+ stimulation of phospholipase C once this enzyme has been activated by hormone receptors.  相似文献   

4.
Chronic blockade of dopamine D2 receptors, a common mechanism of action for antipsychotic drugs, down-regulates D1 receptors in the prefrontal cortex and, as shown here, produces severe impairments in working memory. These deficits were reversed in monkeys by short-term coadministration of a D1 agonist, ABT 431, and this improvement was sustained for more than a year after cessation of D1 treatment. These findings indicate that pharmacological modulation of the D1 signaling pathway can produce long-lasting changes in functional circuits underlying working memory. Resetting this pathway by brief exposure to the agonist may provide a valuable strategy for therapeutic intervention in schizophrenia and other dopamine dysfunctional states.  相似文献   

5.
Human depression patients often show abnormal pupillary reflex with morphological changes in hippo campus and prefrontal cortex.This study aimed to find the relationship between the prolonged pupillary light reflex(PLR) which had been shown by confined sows with chronic stress or depression and morphological changes in brain,in order to provide theoretical basis for that the confined environment should lead to sows' depression.A total of 637 sows of Durac,Landrace and Large White breeds with various parities were observed,and the pupil light reflex(PLR) was measured and the actual pupillary light reflex time(PLRT) were recorded.All the PLRTs were grouped based on the results of confidence interval:t10%as group A,5%t10%as group B,1%t5%as group C and t1%as group D.Three individuals were randomly selected from each group(12 sows in total) and the white tissues of hippocampus and the prefrontal cortex were prepared for HS staining slices(three slices/per tissue) for observation on tissue structure and pathological changes with high magnification(400X) of electronic microscope.The results showed that in group A(t10%) pathological change was found in hippocampus,however,as PLRT increased from group B to group D,pathological changes in hippocampus tissues tended to be deteriorated with the increase of inflammatory cells and nuclear pyknosis phenomena.The same as those shown in hippocampus as the increasing of PLRT from groups A to D,more inflammatory cells appeared in prefrontal cortex for groups B and D.The results suggested that the tissue lesions of hippocampus and prefrontal cortex of the confined sows with prolonged PLRT might be the results of chronic stress or depression.  相似文献   

6.
This study provides evidence that the alpha 2-adrenergic receptor agonist clonidine ameliorates the cognitive deficits exhibited by aged nonhuman primates through drug actions at alpha 2 receptors. Furthermore, pharmacological profiles in animals with lesions restricted to the dorsolateral prefrontal cortex indicate that this area may be the site of action for some of clonidine's beneficial effects. These results demonstrate that alpha-adrenergic systems contribute to cognitive function and suggest a new strategy for treating memory disorders in aged humans.  相似文献   

7.
The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.  相似文献   

8.
The murine epidermis contains a subpopulation of bone marrow-derived lymphocytes that have a dendritic morphology and that express Thy-1 and T3 cell-surface antigens but not other markers (L3T4 or Lyt-2) characteristic of mature peripheral T lymphocytes. An alternative type of T cell receptor was earlier identified on a subpopulation of murine thymocytes with a similar phenotype (T3+, L3T4-, Lyt-2-), but not on peripheral murine T lymphocytes. Two independently derived Thy-1+, L3T4-, and Lyt-2- dendritic cell lines of epidermal origin that express a T3-associated disulfide-linked heterodimer composed of a 34-kilodalton gamma-chain and 46-kilodalton partner (the delta chain) have now been identified. Analysis of N-linked glycosylation revealed that this receptor is similar to that detected on thymocytes. These results demonstrate that Thy-1+ dendritic epidermal cell lines can express gamma delta T cell receptors in vitro and suggest that Thy-1+ dendritic epidermal cells express such receptors in vivo. The localization of these gamma delta T cell receptor-expressing cells in the epidermis may be of importance for understanding the function of these receptors.  相似文献   

9.
Glial cells express a variety of neurotransmitter receptors. Notably, Bergmann glial cells in the cerebellum have Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) assembled without the GluR2 subunit. To elucidate the role of these Ca2+-permeable AMPARs, we converted them into Ca2+-impermeable receptors by adenoviral-mediated delivery of the GluR2 gene. This conversion retracted the glial processes ensheathing synapses on Purkinje cell dendritic spines and retarded the removal of synaptically released glutamate. Furthermore, it caused multiple innervation of Purkinje cells by the climbing fibers. Thus, the glial Ca2+-permeable AMPARs are indispensable for proper structural and functional relations between Bergmann glia and glutamatergic synapses.  相似文献   

10.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) release calcium ions, Ca2+, from intracellular stores, but their roles in mediating Ca2+ entry are unclear. IP3 stimulated opening of very few (1.9 +/- 0.2 per cell) Ca2+-permeable channels in whole-cell patch-clamp recording of DT40 chicken or mouse B cells. Activation of the B cell receptor (BCR) in perforated-patch recordings evoked the same response. IP3 failed to stimulate intracellular or plasma membrane (PM) channels in cells lacking IP3R. Expression of IP3R restored both responses. Mutations within the pore affected the conductances of IP3-activated PM and intracellular channels similarly. An impermeant pore mutant abolished BCR-evoked Ca2+ signals, and PM IP3Rs were undetectable. After introduction of an alpha-bungarotoxin binding site near the pore, PM IP3Rs were modulated by extracellular alpha-bungarotoxin. IP(3)Rs are unusual among endoplasmic reticulum proteins in being also functionally expressed at the PM, where very few IP3Rs contribute substantially to the Ca2+ entry evoked by the BCR.  相似文献   

11.
Although it has been known for some time that olfactory receptors (ORs) reside in spermatozoa, the function of these ORs is unknown. Here, we identified, cloned, and functionally expressed a previously undescribed human testicular OR, hOR17-4. With the use of ratiofluorometric imaging, Ca2+ signals were induced by a small subset of applied chemical stimuli, establishing the molecular receptive fields for the recombinantly expressed receptor in human embryonic kidney (HEK) 293 cells and the native receptor in human spermatozoa. Bourgeonal was a powerful agonist for both recombinant and native receptor types, as well as a strong chemoattractant in subsequent behavioral bioassays. In contrast, undecanal was a potent OR antagonist to bourgeonal and related compounds. Taken together, these results indicate that hOR17-4 functions in human sperm chemotaxis and may be a critical component of the fertilization process.  相似文献   

12.
The T lymphocyte antigen-receptor complex mediates antigen-specific cell activation, at least in part, through the production of inositolphospholipid-derived second messengers. Little is known about how second messenger events, typically measured within minutes of ligand binding, eventually lead to distal biologic responses such as expression of lymphokine genes. Several monoclonal antibodies directed against the receptor complex were tested for their ability to elicit transmembrane signaling in the parental Jurkat line and in a somatic mutant (J.CaM1) with a deficient receptor function. One antibody elicited substantial early Ca2+ mobilization responses in both cells but was unable to promote expression of the interleukin-2 gene in J.CaM1. In J.CaM1 there was a diminished production of phosphatidylinositol second messengers, and the elevation in intracellular free Ca2+ was transient. Thus, short-term Ca2+ mobilization does not always indicate complete signal transmission and lead to a full cellular response.  相似文献   

13.
In postmortem studies of patients with schizophrenia, D2 dopamine receptors in the basal ganglia have been observed to be more numerous than in patients with no history of neurological or psychiatric disease. Because most patients with schizophrenia are treated with neuroleptic drugs that block D2 dopamine receptors in the caudate nucleus, it has been suggested that this increase in the number of receptors is a result of adaptation to these drugs rather than a biochemical abnormality intrinsic to schizophrenia. With positron emission tomography (PET), the D2 dopamine receptor density in the caudate nucleus of living human beings was measured in normal volunteers and in two groups of patients with schizophrenia--one group that had never been treated with neuroleptics and another group that had been treated with these drugs. D2 dopamine receptor densities in the caudate nucleus were higher in both groups of patients than in the normal volunteers. Thus, schizophrenia itself is associated with an increase in brain D2 dopamine receptor density.  相似文献   

14.
Inositol 1,4,5-trisphosphate [I(1,4,5)P3] is a second messenger generated along with diacylglycerol upon the binding of various physiological agents with their cell surface receptors. I(1,4,5)P3 mobilizes Ca2+ from intracellular storage sites through a receptor-coupled mechanism, and the subsequent increased intracellular free calcium ion concentration [( Ca2+]i) activates a multitude of cellular responses. Electropermeabilized neoplastic rat liver epithelial (261B) cells were used to study Ca2+ sequestration, a process that reverses the elevated [Ca2+]i to resting levels and replenishes intracellular Ca2+ pools. Although I (1,4,5)P3-mobilized Ca2+ is readily sequestered into storage pools by the action of Ca2+-adenosine triphosphatases, Ca2+ mobilized by addition of the nonmetabolized inositol trisphosphate isomer I(2,4,5)P3 is not sequestered, suggesting that metabolism is necessary to eliminate the stimulus for Ca2+ release. Several inositol phosphate compounds were examined for their ability to lower the buffer [Ca2+] to determine if a specific I(1,4,5)P3 metabolite might be involved in stimulating Ca2+ sequestration; of these, I(1,3,4,5)P4 alone was found to induce Ca2+ sequestration, demonstrating a physiological role for this inositol trisphosphate metabolite.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) and other neurotrophins are critically involved in long-term potentiation (LTP). Previous reports point to a presynaptic site of neurotrophin action. By imaging dentate granule cells in mouse hippocampal slices, we identified BDNF-evoked Ca2+ transients in dendrites and spines, but not at presynaptic sites. Pairing a weak burst of synaptic stimulation with a brief dendritic BDNF application caused an immediate and robust induction of LTP. LTP induction required activation of postsynaptic Ca2+ channels and N-methyl-d-aspartate receptors and was prevented by the blockage of postsynaptic Ca2+ transients. Thus, our results suggest that BDNF-mediated LTP is induced postsynaptically. Our finding that dendritic spines are the exclusive synaptic sites for rapid BDNF-evoked Ca2+ signaling supports this conclusion.  相似文献   

16.
Various signaling pathways rely on changes in cytosolic calcium ion concentration ([Ca2+]i). In plants, resting [Ca2+]i oscillates diurnally. We show that in Arabidopsis thaliana, [Ca2+]i oscillations are synchronized to extracellular Ca2+ concentration ([Ca2+]o) oscillations largely through the Ca2+-sensing receptor CAS. CAS regulates concentrations of inositol 1,4,5-trisphosphate (IP3), which in turn directs release of Ca2+ from internal stores. The oscillating amplitudes of [Ca2+]o and [Ca2+]i are controlled by soil Ca2+ concentrations and transpiration rates. The phase and period of oscillations are likely determined by stomatal conductance. Thus, the internal concentration of Ca2+ in plant cells is constantly being actively revised.  相似文献   

17.
The binding of multivalent immunoglobulin G complexes to Fc receptors (Fc gamma Rs) on macrophages activates multiple immune functions. A murine macrophage cell line, but not a fibroblast cell line, that was transfected with human Fc gamma RIIA mediated phagocytosis and an intracellular Ca2+ concentration ([Ca2+]i) flux upon cross-linking of human Fc gamma RIIA. Transfected macrophages that expressed a truncated receptor lacking 17 carboxy-terminal amino acids phagocytosed small antibody complexes. However, only wild-type transfectants phagocytosed labeled erythrocytes and fluxed [Ca2+]i. Thus, the cytoplasmic domain of human Fc gamma RIIA contains distinct functional regions.  相似文献   

18.
We characterized an activation mechanism of the human LTRPC2 protein, a member of the transient receptor potential family of ion channels, and demonstrated that LTRPC2 mediates Ca2+ influx into immunocytes. Intracellular pyrimidine nucleotides, adenosine 5'-diphosphoribose (ADPR), and nicotinamide adenine dinucleotide (NAD), directly activated LTRPC2, which functioned as a Ca2+-permeable nonselective cation channel and enabled Ca2+ influx into cells. This activation was suppressed by intracellular adenosine triphosphate. These results reveal that ADPR and NAD act as intracellular messengers and may have an important role in Ca2+ influx by activating LTRPC2 in immunocytes.  相似文献   

19.
Intracortical infusion of the "N-methyl-D-aspartate" (NMDA) receptor blocker D,L-2-amino-5-phosphonovaleric acid (APV) renders kitten striate cortex resistant to the effects of monocular deprivation. In addition, 1 week of continuous APV treatment (50 nanomoles per hour) produces a striking loss of orientation selectivity in area 17. These data support the hypothesis that crucial variables for the expression of activity-dependent synaptic modifications are a critical level of postsynaptic activation and calcium entry through ion channels linked to NMDA receptors.  相似文献   

20.
Human growth hormone (hGH) elicits a diverse set of biological activities including lactation that derives from binding to the prolactin (PRL) receptor. The binding affinity of hGH for the extracellular binding domain of the hPRL receptor (hPRLbp) was increased about 8000-fold by addition of 50 micromolar ZnCl2. Zinc was not required for binding of hGH to the hGH binding protein (hGHbp) or for binding of hPRL to the hPRLbp. Other divalent metal ions (Ca2+, Mg2+, Cu2+, Mn2+, and Co2+) at physiological concentrations did not support such strong binding. Scatchard analysis indicated a stoichiometry of one Zn2+ per hGH.hPRLbp complex. Mutational analysis showed that a cluster of three residues (His18, His21, and Glu174) in hGH and His188 from the hPRLbp (conserved in all PRL receptors but not GH receptors) are probable Zn2+ ligands. This polypeptide hormone.receptor "zinc sandwich" provides a molecular mechanism to explain why nonprimate GHs are not lactogenic and offers a molecular link between zinc deficiency and its association with altered functions of hGH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号