首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
OBJECTIVE: To assess serum 17-alpha-hydroxyprogesterone (17OHP) and corticosterone concentrations in dogs with nonadrenal neoplasia and dogs being screened for hyperadrenocorticism. DESIGN: Prospective study. ANIMALS: 16 clinically normal dogs, 35 dogs with nonadrenal neoplasia, and 127 dogs with suspected hyperadrenocorticism. PROCEDURE: ACTH stimulation tests were performed in all dogs. Baseline serum cortisol and corticosterone concentrations were measured in the healthy dogs; baseline serum cortisol concentration and ACTH-stimulated cortisol, corticosterone, and 17OHP concentrations were measured in all dogs. Endogenous plasma ACTH concentration was also measured before administration of ACTH in dogs with neoplasia. RESULTS: In 35 dogs with neoplasia, 31.4% had high serum 17OHP concentration and 22.9% had high serum corticosterone concentration. Of the 127 dogs with suspected hyperadrenocorticism, 59 (46.5%) had high ACTH-stimulated cortisol concentrations; of those, 42 of 59 (71.2%) and 32 of 53 (60.4%) had high serum 17OHP and corticosterone concentrations, respectively. Of dogs with serum cortisol concentration within reference range after ACTH administration, 9 of 68 (13.2%) and 7 of 67 (10.4%) had high serum 17OHP and corticosterone concentrations, respectively. In the dogs with neoplasia and dogs suspected of having hyperadrenocorticism, post-ACTH serum hormone concentrations were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of 17OHP or corticosterone after administration of ACTH may be high in dogs with nonadrenal neoplasia and no evidence of hyperadrenocorticism. Changes in serum 17OHP or corticosterone concentrations after administration of ACTH are proportionate with changes in cortisol concentration.  相似文献   

2.
OBJECTIVE: To evaluate serum 17-hydroxyprogesterone (17-OHP) concentration measurement after administration of ACTH for use in the diagnosis of hyperadrenocorticism in dogs. DESIGN: Prospective study. ANIMALS: 110 dogs. PROCEDURE: Serum 17-OHP concentrations were measured before and after ACTH stimulation in 53 healthy dogs to establish reference values for this study. Affected dogs had pituitary-dependent (n = 40) or adrenal tumor-associated (12) hyperadrenocorticism or potentially had atypical hyperadrenocorticism (5; diagnosis confirmed in 1 dog). In affected dogs, frequency interval and borderline and abnormal serum 17-OHP concentrations after ACTH stimulation were determined. Serum cortisol concentrations were assessed via low-dose dexamethasone suppression and ACTH stimulation tests. RESULTS: In healthy dogs, serum 17-OHP concentration frequency intervals were grouped by sex and reproductive status (defined as < 95th percentile). Frequency intervals of serum 17-OHP concentrations after ACTH stimulation were < 77, < 2.0, < 3.2, and < 3.4 ng/mL (< 23.3, < 6.1, < 9.7, and < 10.3 nmol/L) for sexually intact and neutered females and sexually intact and neutered males, respectively. In 53 dogs with confirmed hyperadrenocorticism, serum cortisol concentrations after ACTH stimulation and 8 hours after administration of dexamethasone and serum 17-OHP concentrations after ACTH stimulation were considered borderline or abnormal in 79%, 93%, and 69% of dogs, respectively. Two of 5 dogs considered to have atypical hyperadrenocorticism had abnormal serum 17-OHP concentrations after ACTH stimulation. CONCLUSIONS AND CLINICAL RELEVANCE: Serum 17-OHP concentration measurement after ACTH stimulation may be useful in the diagnosis of hyperadrenocorticism in dogs when other test results are equivocal.  相似文献   

3.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

4.
A 5-year-old female dog with hyperadrenocorticism was determined to have pituitary-dependent hyperadrenocorticism even though plasma cortisol concentrations were not suppressed after high-dosage dexamethasone administration. The diagnosis was based on a supranormal response of plasma cortisol to ACTH administration and a lack of suppression of plasma cortisol concentration after administration of 0.1 mg of dexamethasone/kg. Although a higher dosage of dexamethasone (1 mg/kg) did not cause suppression of plasma cortisol, plasma ACTH concentrations in the dog were increased above those in clinically normal dogs, supporting a diagnosis of pituitary-dependent hyperadrenocorticism. During treatment with mitotane, the dog became unconscious and died. Necropsy revealed a pituitary tumor that had compressed and displaced the hypothalamus. Although high-dosage dexamethasone suppression tests often are useful in the differential diagnosis of hyperadrenocorticism, a lack of suppression of plasma cortisol does not necessarily exclude pituitary-dependent hyperadrenocorticism.  相似文献   

5.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

6.
Fifteen middle-aged to older, overweight cats attending a first-opinion clinic were investigated to rule out hyperadrenocorticism as a cause of their weight problem, using two different protocols for the adrenocorticotropic hormone (ACTH) stimulation test. The cats received intravenous synthetic ACTH (tetracosactrin) at an initial dose of 125 microg; a second test was performed between two and three weeks later, using a dose of 250 microg intravenously. The mean basal serum cortisol concentration was 203 nmol/litre (range 81 to 354 nmol/litre). The highest mean serum cortisol concentration occurred at 60 minutes following the 125 microg dose and at 120 minutes following the 250 microg dose. There was, however, no statistically significant difference between these peak cortisol concentrations attained using either dose of tetracosactrin. A significantly higher mean serum cortisol concentration was attained after the higher dose at the 180 minutes time point, indicating a more prolonged response when compared with the lower dose. The cats were followed up for one year after the initial investigations and none were found to develop hyperadrenocorticism during this time.  相似文献   

7.
The plasma cortisol response to exogenous ACTH (ACTH stimulation test) was evaluated in 22 dogs with hyperadrenocorticism caused by adrenocortical neoplasia. The mean basal cortisol concentration (6.3 microgram/dl) was high, but 7 dogs had basal cortisol concentrations that were within normal range. Administration of exogenous ACTH increased the plasma cortisol concentrations in each dog. Normal post-ACTH cortisol concentrations were found in 9 (41%) of the 22 dogs; 13 (59%) had an exaggerated increase in cortisol concentrations after ACTH administration. In 9 of 13 dogs with carcinoma and in 4 of 9 with adenoma, the cortisol response was exaggerated. The mean post-ACTH cortisol concentration in the dogs with carcinoma was approximately 4 times that of the dogs with adenoma; the 7 dogs with the highest concentrations had carcinoma. Repeat studies were performed in 6 dogs 2 to 8 weeks after initial testing. In 5 of the 6 dogs, repeat testing yielded data of similar diagnostic significance. One dog, however, had an abnormally high post-ACTH cortisol concentration at initial evaluation, but had only a minimal response to ACTH administration, with a normal post-ACTH cortisol concentration, at time of resting. Although ACTH stimulation testing is useful in diagnosing hyperadrenocorticism, it can not reliably separate dogs with hyperfunction adrenocortical tumors from clinically normal dogs or from dogs with pituitary-dependent hyperadrenocorticism (bilateral adrenocortical hyperplasia).  相似文献   

8.
OBJECTIVE: To evaluate the effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism (PDH), compare the degree of reduction of aldosterone with that of cortisol, and compare aldosterone concentrations of healthy dogs with those of dogs with PDH. ANIMALS: 17 dogs with PDH and 12 healthy dogs. PROCEDURE: For dogs with PDH, the initial dose of trilostane was selected in accordance with body weight. A CBC count, serum biochemical analyses, and ACTH stimulation tests were performed in each dog. Dogs were evaluated 1, 3 to 4, 6 to 8, and 10 to 12 weeks after initiation of treatment. Healthy dogs were evaluated only once. RESULTS: Serum aldosterone concentrations before ACTH stimulation did not change significantly after initiation of treatment with trilostane. At each evaluation after initiation of treatment, serum aldosterone concentrations after ACTH stimulation were significantly lower than corresponding concentrations before initiation of treatment. The overall effect of trilostane on serum aldosterone concentration was less pronounced than the effect on serum cortisol concentration. Median potassium concentrations increased slightly after initiation of treatment with trilostane. Dogs with PDH had significantly higher serum aldo sterone concentrations before and after ACTH stimulation than healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment with trilostane resulted in a reduction in serum cortisol and aldosterone concentrations in dogs with PDH, although the decrease for serum aldosterone concentration was smaller than that for serum cortisol concentration. There was no correlation between serum concentrations of aldosterone and potassium during treatment.  相似文献   

9.
Two hundred dogs with pituitary dependent hyperadrenocorticism (PDH) were treated with mitotane at an initial daily dosage of 21 to 69 mg/kg (mean = 45.2 mg/kg) for 5 to 14 days. During the induction period, 194 of the dogs also were given daily maintenance dosages of a glucocorticoid. Fifty of the dogs exhibited one or more adverse effects during initial induction, including weakness, vomiting, anorexia, diarrhea, and ataxia. After completion of the induction period, repeat ACTH stimulation testing revealed significant decreases in mean serum cortisol concentrations when compared with initial values. Twenty-five dogs, however, still responded to exogenous ACTH with serum cortisol concentrations above normal resting range, necessitating daily treatment for an additional 5 to 55 days. In contrast, 70 of the 200 dogs had low post-ACTH serum cortisol concentrations after the induction period. These subnormal serum cortisol concentrations generally increased spontaneously to within normal resting range 2 to 6 weeks after cessation of mitotane. In 184 dogs, mitotane was continued at an initial mean maintenance dosage of 49 mg/kg administered weekly in two to three divided doses. Of these dogs, 107 had one or more relapses of hyperadrenocorticism during treatment. In the 75 dogs that had one relapse, the median maintenance dosage was increased by approximately 35%, whereas the median maintenance dosage in the 32 dogs having two or more relapses was eventually increased by 225% over the initial dosage. After a mean maintenance treatment time of 2.0 years, the final maintenance dosage required in the 184 dogs ranged from 26.8 to 330 mg/kg/week.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of o,p'DDD therapy on the endogenous plasma ACTH concentration was evaluated in 15 dogs with hypophysis-dependent hyperadrenocorticism. Adequate control of hyperadrenocorticism with o,p'DDD was based on the reduction of water consumption to within the normal range, disappearance of clinical signs of lethargy, weakness, alopecia, thin skin, or pendulous abdomen, and an increase in blood cortisol below the normal range after exogenous ACTH administration. Endogenous ACTH concentrations were determined for each dog after the disease was controlled and while they were given o,p'DDD on a maintenance schedule. Endogenous ACTH concentrations increased in 14 of 15 dogs after o,p'DDD therapy, indicating a lack of suppressive effects of o,p'DDD on hypophysis ACTH secreting cells.  相似文献   

11.
Hyperadrenocorticism is a common endocrinopathy which results from the excessive production of cortisol by the adrenal cortex. In the majority of cases, this increased secretion of cortisol results from stimulation of the adrenal cortex by adrenocorticotrophic hormone secreted from the pituitary gland. In a smaller number of cases adrenal tumours are present. Clinical signs are variable but commonly include polydipsia and polyuria, polyphagia, obesity, a pendulous abdomen, hepatomegaly, alopecia, lethargy, weakness and anoestrus. Haematology, serum chemistry analysis and urinalysis should be performed on a dog with suspected hyperadrenocorticism. Finding a significant number of changes that are consistent with hyperadrenocorticism often allows a presumptive diagnosis to be made. Other tests can then be used to confirm the diagnosis and to help localise the cause, including liver biopsy, radiology, ultrasonography, gamma camera imaging, computed tomography, and measurement of blood and urine hormone levels. The ACTH stimulation test, low dose dexamethasone suppression test and measurement of the urine cortisol:creatinine ratio are used to assess whether hyperadrenocorticism is present. The high dose dexamethasone suppression test, measurement of plasma ACTH, corticotropin-releasing hormone stimulation test, and a modification of the urinary cortisol:creatinine ratio test are then implemented to determine the aetiology. The treatment of choice for adrenal neoplasia is surgical removal of the affected adrenal. On the other hand, pituitary hyperplasia or neoplasia may be treated either surgically, by bilateral adrenalectomy or hypophysectomy, or medically. The drug which is chosen most commonly for medical management is 1,1-dichloro-2(O-chlorophenyl)-2-(P-chlorophenyl) ethane (op'-DDD), which can be used to suppress adrenal function or to completely destroy the adrenal cortex. The antifungal agent ketoconazole also suppresses adrenal steroid synthesis and provides an alternative form of medical treatment for hyperadrenocorticoid dogs.  相似文献   

12.
The serum concentrations of cortisol and cortisone were measured in 19 healthy dogs and in 13 dogs with pituitary-dependent hyperadrenocorticism (PDH) before and one hour after an injection of synthetic adrenocorticotropic hormone (ACTH). In the dogs with pdh, the cortisol and cortisone concentrations were measured before and after one to two weeks and three to seven weeks of treatment with trilostane. The dogs with PDH had significantly higher baseline and poststimulation concentrations of cortisol and cortisone, and higher baseline cortisol:cortisone ratios than the healthy dogs. During the treatment with trilostane, the poststimulation cortisol, the baseline and poststimulation cortisone concentrations, and the baseline and poststimulation cortisol:cortisone ratios decreased significantly. The decrease in poststimulation cortisone was significantly smaller than the decrease in cortisol.  相似文献   

13.
The effect of orally administered ketoconazole on plasma cortisol concentration in dogs with hyperadrenocorticism was evaluated. Every 30 minutes from 0800 hours through 1600 hours and again at 1800 hours, 2000 hours, and 0800 hours the following morning, 15 clinically normal dogs and 49 dogs with hyperadrenocorticism had plasma samples obtained and analyzed for cortisol concentration. The mean (+/- SD) plasma cortisol concentration for the initial 8-hour testing period was highest in 18 dogs with adrenocortical tumor (5.3 +/- 1.6 micrograms/dl), lowest in 15 control dogs (1.3 +/- 0.5 micrograms/dl), and intermediate in 31 dogs with pituitary-dependent hyperadrenocorticism (PDH; 3.4 +/- 1.2 micrograms/dl). Results in each of the 2 groups of dogs with hyperadrenocorticism were significantly (P less than 0.05) different from results in control dogs, but not from each other. The same cortisol secretory experiment was performed, using 8 dogs with hyperadrenocorticism (5 with PDH; 3 with adrenocortical tumor) before and after administration at 0800 hours of 15 mg of ketoconazole/kg of body weight. Significant (P less than 0.05) decrease in the 8-hour mean plasma cortisol concentration (0.9 +/- 0.2 microgram/dl) was observed, with return to baseline plasma cortisol concentration 24 hours later. Twenty dogs with hyperadrenocorticism (11 with PDH, 9 with adrenocortical tumor) were treated with ketoconazole at a dosage of 15 mg/kg given every 12 hours for a half month to 12 months. The disease in 2 dogs with PDH failed to respond to treatment, but 18 dogs had complete resolution of clinical signs of hyperadrenocorticism and significant (P less than 0.05) reduction in plasma cortisol responsiveness to exogenous adrenocorticotropin (ACTH).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
OBJECTIVE: To describe the clinicopathologic characteristics of dogs with hyperadrenocorticism and concurrent pituitary and adrenal tumors. DESIGN: Retrospective study. ANIMALS: 17 client-owned dogs. PROCEDURE: Signalment, response to treatment, and results of CBC, serum biochemical analysis, urinalysis, endocrine testing, and histologic examinations were obtained from medical records of dogs with hyperadrenocorticism and concurrent adrenal and chromophobe pituitary tumors. RESULTS: On the basis of results of adrenal function tests and histologic examination of tissue specimens collected during surgery and necropsy, concurrent pituitary and adrenal tumors were identified in 17 of approximately 1,500 dogs with hyperadrenocorticism. Twelve were neutered females, 5 were males (3 sexually intact, 2 neutered); and median age was 12 years (range, 7 to 16 years). Hyperadrenocorticism had been diagnosed by use of low-dose dexamethasone suppression tests and ACTH stimulation tests. During high-dose dexamethasone suppression testing of 16 dogs, serum cortisol concentrations remained high in 11 dogs but decreased in 5 dogs. Plasma concentrations of endogenous ACTH were either high or within the higher limits of the reference range (12/16 dogs), within the lower limits of the reference range (2/16), or low (2/16). Adrenal lesions identified by histologic examination included unilateral cortical adenoma with contralateral hyperplasia (10/17), bilateral cortical adenomas (4/17), and unilateral carcinoma with contralateral hyperplasia (3/17). Pituitary lesions included a chromophobe microadenoma (12/17), macroadenoma (4/17), and carcinoma (1/17). CLINICAL IMPLICATIONS: Pituitary and adrenal tumors can coexist in dogs with hyperadrenocorticism, resulting in a confusing mixture of test results that may complicate diagnosis and treatment of hyperadrenocorticism.  相似文献   

15.
Hyperadrenocorticism in ferrets is usually associated with unaltered plasma concentrations of cortisol and adrenocorticotropic hormone (ACTH), although the urinary corticoid/creatinine ratio (UCCR) is commonly elevated. In this study the urinary glucocorticoid excretion was investigated in healthy ferrets and in ferrets with hyperadrenocorticism under different circumstances. In healthy ferrets and in one ferret with hyperadrenocorticism, approximately 10% of plasma cortisol and its metabolites was excreted in the urine. High-performance liquid chromatography (HPLC) revealed one third of the urinary corticoids to be unconjugated cortisol; the other peaks mainly represented cortisol conjugates and metabolites. In 21 healthy sexually intact ferrets, the UCCR started to increase by the end of March and declined to initial values halfway the breeding season (June). In healthy neutered ferrets there was no significant seasonal influence on the UCCR. In two neutered ferrets with hyperadrenocorticism the UCCR was increased, primarily during the breeding season. In 27 of 31 privately owned ferrets with hyperadrenocorticism, the UCCR was higher than the upper limit of the reference range (2.1 x 10(-6)). In 12 of 14 healthy neutered ferrets dexamethasone administration decreased the UCCR by more than 50%, whereas in only 1 of the 28 hyperadrenocorticoid ferrets did the UCCR decrease by more than 50%. We conclude that the UCCR in ferrets primarily reflects cortisol excretion. In healthy sexually intact ferrets and in ferrets with hyperadrenocorticism the UCCR increases during the breeding season. The increased UCCR in hyperadrenocorticoid ferrets is resistant to suppression by dexamethasone, indicating ACTH-independent cortisol production.  相似文献   

16.
A presumptive diagnosis of hyperadrenocorticism in dogs can be made from clinical signs, physical examination, routine laboratory tests, and diagnostic imaging findings, but the diagnosis must be confirmed by use of pituitary-adrenal function tests. Screening tests designed to diagnose hyperadrenocorticism include the corticotropin (adrenocorticotropic hormone; ACTH) stimulation test, low-dose dexamethasone suppression test, and the urinary cortisol:creatinine ratio. None of these screening tests are perfect, and all are capable of giving false-negative and false-positive test results. Because of the limitation of these diagnostic tests, screening for hyperadrenocorticism must be reserved for dogs in which the disease is strongly suspected on the basis of historical and clinical findings. Once a diagnosis has been confirmed, the next step in the workup is to use one or more tests and procedures to distinguish pituitary-dependent from adrenal-dependent hyperadrenocorticism. Endocrine tests in this category include the high-dose dexamethasone suppression test and endogenous plasma ACTH measurements. Imaging techniques such as abdominal radiography, ultrasonography, computed tomography, and magnetic resonance imaging can also be extremely helpful in determining the cause.  相似文献   

17.
The results of adrenocorticotropin (ACTH) stimulation and low-dose dexamethasone suppression tests (LDDST) were evaluated retrospectively in eight dogs with clinical signs of hyperadrenocorticism arising from functional adrenocortical tumours, and compared with the results from 12 dogs with confirmed pituitary-dependent hyperadrenocorticism (PDH). The post-ACTH cortisol concentration in the dogs with adrenocortical tumours ranged from 61 to 345-6 nmol/litre (median 251.5 nmol/litre) and they were within the reference range (150 to 450 nmol/litre) in five and unexpectedly low (< 150 nmol/litre) in three dogs. Both the basal and post-ACTH cortisol concentrations were significantly lower in the dogs with adrenocortical neoplasia than in the dogs with PDH. Eight hours after the LDDST, only two of six dogs with adrenocortical tumours had a cortisol concentration above 30 nmol/litre, and the median resting, three, and eight-hour cortisol concentrations were 31.5, 23.0, and 22.7 nmol/litre respectively. There was no significant cortisol suppression during the LDDST, although interpretation was complicated by the low cortisol concentrations, but two dogs showed a pattern of apparent suppression. Two dogs with adrenal tumours showed a diagnostically significant increase in 17-OH-progesterone concentration in response to ACTH although their cortisol concentrations did not increase greatly. These results differ from previous reports of the response of functional adrenal tumours to dynamic endocrine tests.  相似文献   

18.
The diagnostic accuracy of the urinary cortisol:creatinine ratio (CCR), with the cortisol being measured by ELISA, was evaluated by subjecting data from 18 dogs with and 20 dogs without hyperadrenocorticism to recelver operating characteristic (ROC) curve analysis. The area under the ROC curve (W 0–93, SEw 0–044) was much higher than 045, indicating that the CCR did distinguish between dogs with and without hyperadrenocorticism.A cutoff value of about 60 × 10-6 was assoclated with the highest sensitivity (1.0)and speciflcity (0–85). At the disease prevalence rate of the present study (0 47), the positive and negative predictive values were 0–87 and 1.0, respectively. These numbers indicate that canine hyperadrenocorticism may be safely excluded when the CCR Is below 60 × 10-6 but that a test of higher specificlty (eg, the ACTH stimulation test) should be used to confirm the diagnosis of canine hyperadrenocorticism when the CCR Is above 60 × 10-6.  相似文献   

19.
Trilostane is thought to be a competitive inhibitor of the 3beta-hydroxysteroid dehydrogenase (3beta-HSD), an essential enzyme system for the synthesis of cortisol, aldosterone and androstenedione. Due to its reliable clinical efficacy, trilostane is increasingly used to treat dogs with pituitary-dependant hyperadrenocorticism (PDH). The objective of our study was to investigate the effect of trilostane on precursor concentrations located before (17alpha-OH-pregnenolone, dehydroepiandrostenedione) and after (17alpha-OH-progesterone, androstenedione, 11-deoxycortisol, 21-deoxycortisol) the proposed enzyme inhibition, on end products of steroid biosynthesis (cortisol and aldosterone) and on endogenous adrenocorticotrophic hormone (ACTH) concentrations in dogs with PDH. Hormones of the steroid biosynthesis pathway were evaluated in 15 dogs before and 1h after injection of synthetic ACTH prior to (t(0)), in weeks 1-2 (t(1)) and in weeks 3-7 (t(2)) of trilostane treatment. Endogenous ACTH concentrations were measured at the same time points before performing the ACTH stimulation test. During trilostane treatment baseline and post-stimulation cortisol concentrations decreased significantly. Baseline serum aldosterone levels showed a significant increase; post-stimulation values decreased. Baseline and post-stimulation 17alpha-OH-pregnenolone and dehydroepiandrostenedione concentrations increased significantly. 17alpha-OH-progesterone and androstenedione levels did not change. Post-stimulation 21-deoxycortisol concentrations decreased significantly, baseline 11-deoxycortisol concentrations increased significantly. Endogenous ACTH levels showed a significant increase. The significant increase in 17alpha-OH-pregnenolone and dehydroepiandrostenedione concentrations confirms an inhibitory effect of trilostane on the 3beta-HSD. Since 17alpha-OH-progesterone concentrations did not change, but cortisol concentrations markedly decreased, trilostane seems to influence additional enzymes of the hormone cascade, like the 11beta-hydroxylase and possibly the 11beta-hydroxysteroid dehydrogenase.  相似文献   

20.
A 7-year-old 7-kg (16-lb) neutered male Himalayan cat had nonpruritic progressive alopecia of 9 months' duration. The cat had hyperglycemia and glucosuria. Physical examination revealed complete alopecia along the abdomen, inguinal area, medial and caudal areas of the thighs, ventral area of the thorax, and axilla. Clinical signs were consistent with endocrine-induced alopecia and hyperadrenocorticism, however, results of diagnostic tests (ACTH stimulation and low-dose dexamethasone suppression) were not supportive of hyperadrenocorticism. Abdominal ultrasonography revealed a mass cranial to the left kidney. Blood samples were obtained before and after ACTH stimulation to measure sex hormone concentrations. Analysis revealed markedly high blood progesterone concentrations before and after ACTH stimulation. An adrenalectomy was performed and histologic examination of the mass revealed a well-differentiated adrenocortical carcinoma. The right adrenal gland could not be viewed during surgery and was assumed to be atrophic. Following surgery, the hyperglycemia and glucosuria resolved. Within 4 months of surgery, the hyperprogesteronemia had resolved, and at 12 months the cat's coat quality appeared normal. Findings suggest that cats with signs of hyperadrenocorticism should be evaluated not only for abnormal cortisol concentrations, but also for sex hormone abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号