首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olive plantations and tree nurseries are economically and ecologically important agricultural sectors. However, Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious problem in olive-growing regions and in tree nurseries worldwide. In this review we describe common and differentiating aspects of Verticillium wilts in some of the main economically woody hosts. The establishment of new planting sites on infested soils, the use of infected plant material and the spread of highly virulent pathogen isolates are the main reasons of increasing problems with Verticillium wilt in tree cultivation. Therefore, protocols for quick and efficient screening of new planting sites as well as planting material for V. dahliae prior to cultivation is an important measure to control Verticillium wilt disease. Furthermore, screening for resistant genotypes that can be included in breeding programs to increase resistance to Verticillium wilt is an important strategy for future disease control. Collectively, these strategies are essential tools in an integrated disease management strategy to control Verticillium wilt in tree plantations and nurseries.  相似文献   

2.
Effects of crop rotation between rice paddy fields and strawberry nurseries on the control of Verticillium wilt of strawberry were studied. For detecting Verticillium dahliae, the causal agent of Verticillium wilt, in soil, eggplant was used as an indicator plant. We were thus able to detect as low as 1 microsclerotium/g dry soil. In field surveys of Chiba and Hokkaido from 2000 to 2003, V. dahliae was detected in 9 of 10 upland fields but in none of 21 paddy-upland fields. In Hokkaido during 2000–2007, strawberry mother plants were planted, and plantlets were produced in upland and paddy-upland fields to assess V. dahliae infestation. Verticillium wilt of strawberry had never occurred in 72 tested paddy-upland fields, compared to 13.2–73.9% of plantlets infected with V. dahliae in upland fields. In a pot experiment in a greenhouse, two flooding treatments or two paddy rice cultivations suppressed Verticillium wilt symptoms on eggplant. In field experiments, one paddy rice cultivation in Chiba and two in Hokkaido prevented development of Verticillium wilt symptoms on eggplant. Verticillium wilt of strawberry was controlled completely with one paddy rice cultivation in infested fields in Chiba. In these field experiments, the number of microsclerotia of V. dahliae decreased under the flooding conditions for paddy rice cultivation. Based on the reduction in microsclerotia, a crop rotation system with paddy rice for 3 years (three times), green manure for 1 year, and strawberry nursery for 1 year was designed for Hokkaido.  相似文献   

3.
Verticillium wilt is a devastating disease caused by the soil-borne fungus Verticillium dahliae that causes severe wilt symptoms in more than 400 plant species, including economically important cotton. However, the molecular mechanism of plant resistance to Verticillium remains unclear. In this study, we identified an Arabidopsis mutant, vsad1 (verticillium sensitive and anthocyanin deficient 1), which showed more serious disease symptoms such as discoloration and chlorosis than wild-type Arabidopsis. vsad1 is a previously identified allele of the transparent testa 4 gene (tt4), which encodes chalcone synthase (CHS), a key enzyme involved in the biosynthesis of flavonoids. Our results showed that VSAD1 expression was induced in response to Verticillium dahliae infection. Overexpression of VSAD1 partially recovered the anthocyanin accumulation phenotype of the vsad1–1 mutant. The concentration of V. dahliae increased and ROS accumulation decreased in the vsad1 mutant after infection with V. dahliae. Knockdown of the homologous gene GhCHS in cotton plants increased their susceptibility to V. dahliae infection. Thus, we conclude that VSAD1 is involved in the regulation of plant resistance to Verticillium wilt.  相似文献   

4.
Verticillium wilt of cotton (Gossypium hirsutum) is a widespread and destructive disease caused by the soil-borne fungal pathogen Verticillium dahliae. In this study, a green fluorescent protein (GFP) labelled V. dahliae strain (TV7) was obtained by transforming gfp into defoliating strain V991. Strain TV7 was used to study infection and colonization of wilt resistant cotton cultivar Zhongzhimian KV1 and susceptible cultivar 861 with the aid of confocal laser scanning microscopy. The results showed that initial infection and colonization of V. dahliae in Zhongzhimian KV1 and 861 were similar. Conidia and hyphal colonies formed and penetrated in the root meristematic and elongation zones and in the conjunction of the lateral and main roots. The invaded conidia started to germinate by 2 hpi (hours post-inoculation), penetrated into the root cortex and vascular bundles, eventually colonized in the stem xylem vessels and grew restrictedly in the individual tracheae of both resistant and susceptible cultivars. Moreover, pathogen DNA could be detected by qPCR in roots and stems of both cultivars, but its content in the wilt susceptible cultivar 861 was much higher than that in the wilt resistant cultivar Zhongzhimian KV1. The results indicated that the resistant cultivar has ability to suppress V. dahliae reproduction.  相似文献   

5.
Verticillium longisporum and V. dahliae, causal agents of Verticillium wilt, are spreading through the cabbage fields of Gunma Prefecture. Using the V. longisporum-specific intron within the 18S rDNA and differences between ITS 5.8S rDNA sequences in Japanese isolates of V. longisporum and V. dahliae, we developed three quantitative nested real-time (QNRT) PCR assays. The QNRT-PCR quantification of V. longisporum or V. dahliae in cabbage field soil was consistent with the severity of Verticillium wilt disease in those fields. In field trials of resistant cultivar YR Ranpo grown for three seasons in soil infested with the pathogen, disease severity and pathogen density in the soil were significantly reduced in a field moderately contaminated by V. dahliae, but only slightly reduced in a highly contaminated field. These results suggest that continuous cultivation of a resistant cultivar is an effective way to reduce the pathogen population. QNRT-PCR assays provide a powerful analytical tool to evaluate the soil population dynamics of V. longisporum and V. dahliae for disease management.  相似文献   

6.
Verticillium wilt of olive was first recorded in Syria in mid-1978 and confirmed as due to Verticillium dahliae. This article reports observations made in a comprehensive survey of the disease in nine provinces over 7 years. Percent infection varied from 0.85 to 4.5 in different provinces. Newly planted groves in lowland areas showed more infection than older groves in hilly areas. Isolation of V. dahliae was possible at all times of year. Young trees were more susceptible to wilt than older ones. The performance of 13 local cultivars against wilt was studied under natural field conditions and found to vary greatly from susceptible to resistant. Agricultural practices greatly affect spread of the disease. High disease incidence was observed in irrigated groves compared with non-irrigated, and correlated positively with number of ploughings. Verticillium wilt causes a loss between 1 and 2.3% of total olive production annually.  相似文献   

7.
Vegetable grafting for disease management was first used successfully when watermelon grafted onto a Cucurbita moschata rootstock overcame Fusarium wilt. Interspecific grafting has since been used effectively to mitigate several soilborne pathogens in a variety of solanaceous and cucurbitaceous cropping systems. Verticillium wilt caused by Verticillium dahliae is a significant disease in watermelon crops and is difficult to manage. Current management practices, including crop rotation, soil fumigation, and host resistance, are insufficient due to the ability of microsclerotia to persist in absence of a host, lack of efficacy of soil fumigants, and limited availability of resistant cultivars. Watermelon grafted onto commercial cucurbit rootstocks have increased tolerance to Verticillium wilt, although no cucurbit rootstocks are known to be completely resistant. Verticillium wilt incidence decreased on grafted plants grown in artificially and naturally infested soils, while scion health and growth as well as rootstock root mass and vigour increased. Commonly used rootstocks are Lagenaria siceraria, C. moschata, and C. maxima × C. moschata; of these, only C. maxima × C. moschata ‘Tetsukabuto’ reduced severity of Verticillium wilt across several scion cultivars, locations, years, and soil densities of V. dahliae. Although studies on Verticillium wilt resistance of grafted watermelon are few, their combined results suggest the threshold of V. dahliae soil density for watermelon may be around 5–12 cfu/g. This review summarizes available information on Verticillium wilt of watermelon and effects of different rootstock × scion combinations, assisting growers and breeding programmes in decisions to adopt watermelon grafting for management of Verticillium wilt.  相似文献   

8.
Verticillium dahliae, the causal agent of Verticillium wilt of tomato, causes serious damage to crops grown in unheated greenhouses. To control this disease, growers are obliged to employ strong soil disinfestants. The possibility of controllingV. dahliae by using soil solarization during the months of June — August was examined. The soil was covered with transparent polyethylene sheets for 10 weeks. The pathogen could not be isolated from the solarized soil, whereas the inoculum level in the nonsolarized soil remained high (1379–1806 propagules/g soil). The yield from the solarized soil was increased by 112.4% in comparison with the control, and no infected plants were observed. The percentage of infected roots was very low (0.3–0.4%) in relation to the nonsolarized soil (66.7–67.1%). From these results it was concluded that solarization can effectively control Verticillium wilt of greenhouse-grown tomato under the summer conditions in Crete.  相似文献   

9.
为掌握新疆主要植棉区棉花黄萎病的发生现状及其病原菌大丽轮枝菌Verticillium dahliae的落叶型菌系分布以及遗传变异情况,于2015年对26个新疆主要植棉区棉花黄萎病的发生情况进行了随机调查,统计新疆大丽轮枝菌的培养性状,利用大丽轮枝菌落叶型特异引物D1/D2、INTD2F/INTD2R与非落叶型特异性引物ND1/ND2、INTNDF/INTNDR对新疆大丽轮枝菌菌系进行互补鉴定,并对部分菌系的遗传变异进行简单序列重复区间(inter simple sequence repeat,ISSR)分析。结果表明:2015年新疆棉花黄萎病发病田比例为54.0%,其中病情指数在10.0以上的发病田与2013年持平,而病情指数在20.0以上的严重发病田比例为10.8%,比2013年增加3.8个百分点;新疆大丽轮枝菌的培养性状以菌核型为主,比例为70.1%,菌丝型与中间型比例分别为13.4%和16.5%;新疆大丽轮枝菌落叶型菌系比例为53.2%,26株菌株的来源地全部检出落叶型菌系;聚类分析结果显示,当遗传相似系数为0.66时,新疆大丽轮枝菌落叶型与非落叶型菌系聚为2个谱系,菌系地理来源、培养性状与大丽轮枝菌的遗传分化无明显相关性。  相似文献   

10.
Verticillium wilt can cause high losses in tree nurseries. To be able to predict disease and unravel disease dynamics over time and space, the relationship between verticillium wilt and soil inoculum densities of Verticillium dahliae and the nematode Pratylenchus fallax was studied in two 4-year field experiments with Acer platanoides and Catalpa bignonioides in the Netherlands. Best-fit regression equations showed that pre-planting inoculum densities of V. dahliae can be used to predict verticillium wilt over a period of at least 4 years. Pratylenchus fallax contributed significantly to disease severity in A. platanoides in some years. Disease can already occur at the detection limit of the pathogens. The 5% infection thresholds for V. dahliae were at 1 (A. platanoides) vs. 3 (C. bignonioides) colony-forming units (CFU) g−1 soil. Analysis of spatial relationships indicated that diseased plants had a higher influence on neighbouring plants at low V. dahliae inoculum densities (<5 CFU g−1 soil) than at high densities (≥5 CFU g−1 soil). Seventy-four percent of the diseased plants recovered during the following year. After that year, recovered plants had a significantly higher probability of becoming diseased again than plants that were healthy during the two previous years, at high inoculum densities of V. dahliae, indicating that inoculum density in the soil, rather than incomplete recovery, was the most important factor for disease development.  相似文献   

11.
Three isomers of the ligand 2,5-bis(pyridinyl)-1,3,4-thiadiazole, with the N atom of pyridine group in position 2, 3 or 4, named respectively, L2, L3 and L4 were compared for their use as plant defense activators. They were examined for their ability to protect tomato plants from Verticillium dahliae and Agrobacterium tumefaciens in the greenhouse, to induce reactive oxygen species and to activate plant defenses, including antioxidant enzymes. The three ligand isomers exhibited in vitro only slight inhibition of radial growth of V. dahliae, while no significant inhibition was observed for phytopathogenic bacteria. In the greenhouse, the three ligand isomers statistically reduced the severity of Verticillium wilt and crown gall on tomato plants, and the isomers L3 and L4 were the most efficient to control Verticillium wilt. This superiority was reflected in their differential ability to activate H2O2 accumulation, antioxidant enzymes including catalase and ascorbate peroxidase and other defense-related enzymes such as guaiacol peroxidase and polyphenol oxidase. These results demonstrated that the presence of the N atom within the two pyridinyl groups in the position 3 or 4 highly enhanced the activity of plant defense and antioxidant responses as well as their ability to reduce the severity of symptoms caused by V. dahliae on tomato.  相似文献   

12.
Verticillium wilt, caused by Verticillium albo-atrum or V. dahliae, is an important disease of many worldwide crop species. In Europe, V. albo-atrum isolates infecting hop express different levels of virulence, inducing mild or lethal disease syndromes, and it is therefore an attractive model for studying the virulence of this pathogen. In this work, eleven amplified fragment length polymorphism (AFLP) primer combinations were used to analyze genetic variability among 55 V. albo-atrum hop isolates from four European hop growing regions, as well as isolates from other hosts and V. dahliae isolates. Cluster analysis divided V. albo-atrum and V. dahliae isolates into two well-separated groups. Within the V. dahliae cluster, isolates were separated without host specific grouping, although no host adapted isolates were included. In V. albo-atrum, the alfalfa isolates were distinct from isolates of other hosts, where a high association with virulence was observed in hop and tomato isolates. All lethal hop isolates were genetically different from mild hop isolates. The lethal hop isolates from England and Slovenia expressed the same virulence phenotype, although they showed a different AFLP pattern. The mild hop isolates formed two subgroups, to which isolates clustered irrespective of geographical location. These data suggest multiple origins of V. albo-atrum hop isolates, and the possible appearance of new virulent isolates in the future in other hop growing regions.  相似文献   

13.
In January 2002, Verticillium wilt of lettuce (Lactuca sativa L.) caused by Verticillium tricorpus occurred in upland paddy fields in Hyogo Prefecture for the first time in Japan. This fungal species was first isolated from lettuce in California, USA. In the present study, the genetic relationships between the American and Japanese isolates of V. tricorpus from lettuce were analyzed to determine whether the pathogen could have migrated to Japan from the USA, the major lettuce-seed supplier for Japan. Nucleotide sequences of the rDNA internal transcribed spacer regions, as well as the genes coding for translation elongation factor 1-alpha and RNA polymerase II were compared among American and Japanese V. tricorpus isolates from lettuce. The Japanese isolates of V. tricorpus were distinct from the American. Random amplified polymorphic DNA analyses also supported this conclusion. These results demonstrated that Verticillium wilt on lettuce caused by V. tricorpus in Japan was not related to the isolates causing the disease in California.  相似文献   

14.
Vascular wilt caused by the soil-borne fungus Verticillium dahliae is a major yield and quality-limiting disease across a broad spectrum of crop plants worldwide. Sulphur-enhanced plant defence mechanisms provide an opportunity to effectively and environmentally safely constrain the wilt disease levels in planta. To evaluate the influence of sulphur nutrition on the protective potential of these mechanisms, two near-isogenic tomato genotypes differing in fungal susceptibility, were treated with low or supra-optimal sulphur supply. Microscopic analysis revealed a significant sulphur-induced decrease in the amount of infected vascular cells in both genotypes. However, plant shoot and severely pathogen-affected root growth did not display this distinct alleviating influence of sulphur nutrition. Rates of leaf photosynthesis were impeded by Verticillium dahliae infection in both genotypes especially under low sulphur nutrition. However, assimilate transport rates in the phloem sap were enhanced by fungal infection more in the resistant genotype and under high sulphur nutrition suggesting a stronger sink for assimilates in infected plant tissues possibly involved in sugar-induced defence. A SYBR Green-based absolute quantitative Real-Time assay using a species-specific primer was developed which sensitively reflected sulphur nutrition-dependent changes in fungal colonization patterns. High sulphur nutrition significantly reduced fungal spread in the stem in both tomato genotypes. Concentrations of selected sulphur-containing metabolites revealed an increase of the major anti-oxidative redox buffer glutathione under high sulphur nutrition in response to fungal colonization. Our study demonstrates the existence of sulphur nutrition-enhanced resistance of tomato against Verticillium dahliae mediated by sulphur-containing defence compounds.  相似文献   

15.
Spread of Verticillium wilt into newly established olive orchards in Andalucía, southern Spain, has caused concern in the olive industry in the region. This spread may result from use of Verticillium dahliae-infected planting material, which can extend distribution of the highly virulent, defoliating (D) pathotype of V. dahliae to new areas. In this study, a molecular diagnostic method for the early in planta detection of D V. dahliae was developed, aimed especially at nursery-produced olive plants. For this purpose, new primers for nested PCR were designed by sequencing a 992-bp RAPD marker of the D pathotype. The use of the specific primers and different nested-PCR protocols allowed the detection of V. dahliae pathotype D DNA in infected root and stem tissues of young olive plants. Detection of the pathogen was effective from the very earliest moments following inoculation of olive plants with a V. dahliae pathotype D conidia suspension as well as in inoculated, though symptomless, plants.  相似文献   

16.
Mating type genes of Verticillium dahliae, a wilt pathogen affecting many plant species, were identified to examine sexual recombination between Japanese pathotypes. We amplified a DNA sequence encoding high mobility group (HMG) box from V. dahliae using PCR. A cloned genomic DNA fragment included a sequence homologous to MAT1-2-1 gene. Despite that sequence's presence in all V. dahliae isolates we used, MAT1-1-1 (an opposite mating type gene) was never amplified. We concluded that V. dahliae is potentially heterothallic. Furthermore, sexual bias practically obviates sexual recombination between Japanese pathotypes. This report describes, for the first time, a mating type gene of phytopathogenic Verticillium.  相似文献   

17.
Verticillium wilt caused by Verticillium dahliae is a disease highly prevalent in newly established olive orchards in Andalucía, southern Spain. Two syndromes of the disease occur in Andalucia, namely apoplexy and slow decline. Apoplexy is characterized by quick dieback of twigs and branches while slow decline consists of rapid drying out of inflorescences together with leaf chlorosis and necrosis. Systematic disease observations carried out in two experimental orchards planted with susceptible cv. Picual indicated that natural recovery of diseased trees occurred over time. Infection and vascular colonization of olive plants by V. dahliae were studied in susceptible (Picual) and resistant (Oblonga) cultivars inoculated with a mildly virulent or a highly virulent cotton-defoliating isolate of V. dahliae. Disease symptoms developed 24–32 days after inoculation in cv. Picual, but at that time plants of cv. Oblonga remained free from symptoms. However anatomical observations and isolations indicated that systemic infections by the two isolates had occurred to a large extent in both cultivars.  相似文献   

18.
Resistance of 23 important olive cultivars to Verticillium dahliae has been evaluated in four experiments under controlled conditions. Nine-month-old nursery olive plants were inoculated with a cotton non-defoliating (ND) (V4) or a cotton defoliating (D) (V117) isolate of V. dahliae. Resistance was evaluated by assessing symptom severity using a 0–4 rating scale and estimating the area under disease progress curves. The percentage of plants killed and of those which recovered from the disease were used as additional parameters for including a particular cultivar into a defined category. Most of the evaluated cultivars were susceptible, although at different levels, to both isolates of V. dahliae. All cultivars were more susceptible to the D pathotype than to the ND one. A group of 11 cultivars, including several important Spanish cultivars, were susceptible or extremely susceptible to both pathotypes of V. dahliae. A second group showed differences of resistance depending on the pathotype used. They were susceptible or extremely susceptible to the D pathotype but resistant or moderately susceptible to the ND one. Finally, 'Frantoio', 'Oblonga' and 'Empeltre' were moderately susceptible to the D isolate of V. dahliae and resistant to the ND one. The resistance of 'Empeltre' was evident by the plant ability to recover from infection with either isolates. 'Empeltre' is considered to be a valuable cultivar for inclusion in breeding programmes for resistance to Verticillium wilt.  相似文献   

19.
Verticillium dahliae causes wilt disease of many crops worldwide. Microsclerotia are the main resting structure of V. dahliae in soil and can survive for more than 10 years, serving as an important source of primary inoculum. Mass production of microsclerotia in laboratory is valuable for studying various aspects of V. dahilae, such as its biology, epidemiology and control. We failed to produce a sufficient amount of microsclerotia in vitro for one strain of our interest using several previously published methods. Therefore, we developed a new protocol for mass in vitro production of viable microsclerotia. Verticillium strains were cultured in a modified basal agar medium at pH of 11.5 under 20 °C and incubated for 25 days in dark. When 16 strains were subjected to this condition, large numbers of microsclerotia were produced although varied greatly among strains, including the strain that failed to produce microsclerotia with previously published methods. Microsclerotia from 14 of the 16 strains resulted in wilt development on inoculated cotton seedlings.  相似文献   

20.
Verticillium wilt of olive is best managed by resistant cultivars, but those currently available show incomplete resistance to the defoliating (D) Verticillium dahliae pathotype. Moreover, these cultivars do not satisfy consumers' demand for high yields and oil quality. Highly resistant rootstocks would be of paramount importance for production of agronomically adapted and commercially desirable olive cultivars in D V. dahliae‐infested soils. In this work, resistance to D V. dahliae in wild olive clones Ac‐13, Ac‐18, OutVert and StopVert was assessed by quantifying the fungal DNA along the stem using a highly sensitive real‐time quantitative polymerase chain reaction (qPCR) protocol and a stem colonization index (SCI) based on isolation of V. dahliae following artificial inoculations under conditions highly conducive for verticillium wilt. Ac‐13, Ac‐18, OutVert and StopVert showed a symptomless reaction to D V. dahliae. The mean amount of D V. dahliaeDNA quantified in stems of the four clones ranged from 3.64 to 28.89 pg/100 ng olive DNA, which was 249 to 1537 times lower than that in susceptible Picual olive. The reduction in the quantitative stem colonization of wild olive clones by D V. dahliae was also indicated by a sharp decrease in the SCI. Overall, there was a pattern of decreasing SCI in acropetal progression along the plant axis, as well as correlation between positive reisolation and quantification of pathogen DNA. The results of this research show that wild olive clones Ac‐13, Ac‐18, OutVert and StopVert have a valuable potential as rootstocks for the management of verticillium wilt in olive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号