首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to determine the effects of betaine, pen space, and preslaughter handling method on growth, carcass traits, and pork quality of finishing barrows. For the growth trial, a 2 x 2 factorial arrangement of treatments was used: betaine (0 or 0.250%) and(or) pen space (m2/pig; adequate, 0.035 BW0.67 kg, or inadequate, 0.025 BW0.67 kg). Each treatment was replicated five times with four barrows per replicate. At trial termination, two barrows from each pen were selected to receive either minimal or normal preslaughter handling. Reducing pen space decreased (P < 0.05) overall ADG and gain:feed and tended (P = 0.12) to decrease overall ADFI. Betaine had no affect (P > 0.10) on overall ADG, ADFI, or gain:feed. Pigs fed betaine had decreased (P < 0.10) carcass length. Other carcass and ham measurements were not affected (P > 0.10) by betaine. Pigs with inadequate pen space had increased (P < 0.10) ultimate pH, subjective color, cooking loss (fresh and frozen chop), and shear force but decreased rectal temperature, loin muscle CIE L*, biceps femoris CIE b*, and drip loss. Pigs subjected to minimal preslaughter handling had decreased (P < 0.10) rectal temperature, plasma cortisol, loin muscle CIE b*, and fresh chop total loss (drip + cooking loss). Pigs fed betaine had increased (P < 0.01) initial pH and decreased (P < 0.10) drip loss (fresh chop). Cooking loss and total loss (frozen chop) were decreased in pigs fed betaine with adequate pen space but increased in pigs fed betaine with inadequate pen space (betaine x pen space, P < 0.01). Pigs fed betaine may have improved pork quality.  相似文献   

2.
Two experiments were conducted to determine the effect of soy isoflavones on growth, meat quality, and carcass traits of growing-finishing pigs. In Exp. 1, 36 barrows (initial and final BW, 26 and 113 kg, respectively) were used and each treatment was replicated four times with three pigs each. The dietary treatments were 1) corn-soybean meal (C-SBM), 2) corn-soy protein concentrate (low isoflavones, C-SPC), or 3) C-SPC + isoflavones (isoflavone levels equal to those in C-SBM). Daily gain and ADFI were increased (P < 0.10) in pigs fed the C-SPC relative to pigs fed the C-SPC + isoflavone diet in the late finishing period; otherwise, growth performance was not affected (P > 0.10) by diet. Longissimus muscle area, 10th-rib fat depth, percentage muscling (National Pork Producers Council), 24-h pH and temperature, color, firmness-wetness, marbling, drip loss, and CIE L*, a*, and b* color values were not affected (P > 0.10) by diet. Dressing percentage, carcass length, weight and percentage of fat-free lean in ham and carcass, lean gain per day, lean:fat, and ham weight were increased (P < 0.10), and ham fat and percentage fat in ham and carcass were decreased (P < 0.10) in pigs fed the C-SPC + isoflavone diet compared with pigs fed the C-SPC diet. Pigs fed the C-SPC + isoflavone diet had similar (P > 0.10) carcass traits as pigs fed the C-SBM diet, except carcass length, percentage ham lean and thaw loss were greater (P < 0.10), and total ham fat was less (P < 0.10) in pigs fed the C-SPC + isoflavone diet. In Exp. 2, 60 gilts (initial and final BW, 31 and 116 kg, respectively) were used, and each treatment was replicated five times with four pigs per replicate. The treatments were 1) C-SBM, 2) C-SBM + isoflavone levels two times those in C-SBM, and 3) C-SBM + isoflavone levels five times those in C-SBM. Daily feed intake was linearly decreased (P < 0.10) in the growing phase and increased (P < 0.10) in the late finishing phases as isoflavone levels increased; otherwise, growth performance was not affected (P > 0.10) by diet. Diet did not affect (P > 0.10) carcass traits; however, CIE a* and b* color scores and drip loss were decreased (P < 0.06) as isoflavone levels increased. Soy isoflavones decreased fat and increased lean in barrows when fed within the dietary concentrations found in typical C-SBM diets but not when fed to gilts at concentrations above those present in C-SBM diets.  相似文献   

3.
Two experiments were conducted to investigate the effects of supplemental betaine on steer performance, fat deposition, and carcass characteristics. In Exp. 1 (grazing phase), 80 steers (317 kg) were fed either 1.0 kg of a control supplement (30% CP) or 1.0 kg of the control supplement plus 20 g of betaine per head per day. Betaine supplementation had no effect on overall gain or fat deposition (P>0.10) but increased ADG (P<0.10) during d 46 to 90 (0.64 vs 0.72 kg; control vs betaine, respectively). The pasture groups remained intact and were moved to the feedlot for 141 d and fed a control diet or the control diet plus 20 g of betaine per head per day. Betaine had no overall effect on finishing gain (P>0.10); however, this response was variable by period. Betaine increased final fat thickness and fat thickness change (P<0.10), but did not affect marbling or longissimus area (P>0.10). Supplemental betaine on pasture increased feed intake, final BW, and hot carcass weight (P<0.05) and increased final fat thickness and fat thickness change (P<0.10) during the finishing phase. In Exp. 2, supplemental betaine (40 g/d) was fed to steers (averaging 584 kg) in 11 replications during the last week before harvest. The overall weighted average increase in dressing percentage when betaine was fed was +0.34% (P<0.05). There was no effect (P>0.10) on fat thickness or marbling. Season of year did not affect response.  相似文献   

4.
Impact of betaine on pig finishing performance and carcass composition   总被引:2,自引:0,他引:2  
Two experiments were conducted to evaluate the effect of betaine supplementation of finishing diets on growth performance and carcass characteristics of swine. Experiment 1 included 288 pigs in a 2 x 2 x 3 factorial arrangement of treatments consisting of barrows and gilts of two genetic populations fed diets with 1.25 g/kg supplemental betaine from either 83 or 104 kg to 116 kg and control pigs fed betaine-devoid diets. Pigs were housed three pigs per pen with eight replicate pens per treatment. Diets were corn-soybean meal-based with 300 ppm added choline. Genetic populations differed (P < 0.05) in fat depth (2.24 vs 2.93 cm) and longissimus muscle depth (53.8 vs 49.1 mm) at 116 kg. Betaine reduced feed intake (P < 0.05); however, real-time ultrasound measurements were not affected. In Exp. 2, 400 pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to evaluate the effect of sex (barrow or gilts), betaine (0 or 1 g/kg of diet), and crude protein (CP) (0.70% lysine = 12.7% CP or 0.85% lysine = 15.0% CP) when fed from 60 to 110 kg live weight. Pigs had been assigned to either a high- or low-protein feeding regimen at an average initial weight of 11.3 kg and were maintained on their respective protein levels throughout the experiment. For a 56-d period from 61.7 kg to 113.6 kg, pigs were fed diets with 300 ppm added choline. Within each protein level, pigs were randomly assigned to diets containing 0 or 1 g/kg betaine. Pigs were group-housed (four to five pigs per pen). Pig weight and feed intake were recorded every 28 d. Real-time ultrasound measurements were recorded initially and at d 28 on 64 pigs, and on all pigs prior to slaughter. Growth rate was fastest and feed intake greatest for barrows (P < 0.05) and for pigs receiving 12.7% crude protein. A crude protein x betaine interaction (P < 0.05) was observed from d 28 to 56 with pigs fed the 15% CP diet growing fastest when supplemented with 1 g/kg betaine, and pigs receiving the 12.7% CP diet growing fastest when the diets contained 0 g/kg betaine. Gilts more efficiently (P < 0.05) converted feed into body weight gain, as did pigs receiving the 12.7% CP diet (P < 0.05). Longissimus muscle area and fat measurements were unaffected by betaine or dietary protein on d 28. However, by d 56 betaine reduced average fat depth in barrows (P < 0.05; 3.21 vs 3.40 cm), but not in gilts. Betaine may be more effective at altering body composition in barrows than in gilts.  相似文献   

5.
A total of 144 barrows and gilts (initial BW = 44 kg) were used in an 82-d experiment to evaluate the effects of dietary fat source and duration of feeding fat on growth performance, carcass characteristics, and carcass fat quality. Dietary treatments were a corn-soybean meal control diet with no added fat and a 2 × 4 factorial arrangement of treatments with 5% choice white grease (CWG) or soybean oil (SBO) fed from d 0 to 26, 54, 68, or 82. At the conclusion of the study (d 82), pigs were slaughtered, carcass characteristics were measured, and backfat and jowl fat samples were collected. Fatty acid analysis was performed, and iodine value (IV) was calculated for all backfat and jowl fat samples. Pigs fed SBO tended to have increased (P = 0.07) ADG compared with pigs fed CWG. For pigs fed SBO, increasing feeding duration increased (quadratic, P < 0.01) ADG and G:F. For pigs fed CWG, increasing feeding duration improved (quadratic, P < 0.01) G:F. For pigs fed SBO or CWG, increasing feeding duration increased carcass yield (quadratic, P < 0.04) and HCW (quadratic, P < 0.02). Dietary fat source and feeding duration did not affect backfat depth, loin depth, or lean percentage. As expected, barrows had greater ADG and ADFI (P < 0.01) and poorer G:F (P = 0.03) than gilts. Barrows also had greater last-rib (P = 0.04) and 10th-rib backfat (P < 0.01) and reduced loin depth and lean percentage (P < 0.01) compared with gilts. Increasing feeding duration of CWG or SBO increased (P < 0.10) C18:2n-6, PUFA, PUFA:SFA ratio, and IV in jowl fat and backfat. Pigs fed SBO had greater (P < 0.01) C18:2n-6, PUFA, PUFA:SFA ratio, and IV but decreased (P < 0.01) C18:1 cis-9, C16:0, SFA, and MUFA concentrations compared with pigs fed CWG in jowl fat and backfat. Barrows had decreased (P = 0.03) IV in jowl fat and backfat compared with gilts. In summary, adding SBO or CWG increased the amount of unsaturated fat deposited. Increasing feeding duration of dietary fat increases the amount of unsaturated fatty acids, which leads to softer carcass fat.  相似文献   

6.
The purpose of this study was to examine the effects of dietary betaine over a range of concentrations (between 0 and 0.5%) on growth and body composition in young feed-restricted pigs. Betaine is associated with decreased lipid deposition and altered protein utilization in finishing pigs, and it has been suggested that the positive effects of betaine on growth and carcass composition may be greater in energy-restricted pigs. Thirty-two barrows (36 kg, n = 8 pigs per group) were restrictively fed one of four corn-soybean meal-skim milk based diets (18.6% crude protein, 3.23 Mcal ME/kg) and supplemented with 0, 0.125, 0.25, or 0.5% betaine. Feed allotment was adjusted weekly according to BW, such that average feed intake was approximately 1.7 kg for all groups. At 64 kg, pigs were slaughtered and visceral tissue was removed and weighed. Carcasses were chilled for 24 h to obtain carcass measurements. Subsequently, one-half of each carcass and whole visceral tissue were ground for chemical analysis. Linear regression analysis indicated that, as betaine content of the diet was elevated from 0 to 0.5%, carcass fat concentration (P = 0.06), P3 fat depth (P = 0.14) and viscera weight (P = 0.129) were decreased, whereas total carcass protein (P = 0.124), protein deposition rate (P = 0.98), and lean gain efficiency (P = 0.115) were increased. The greatest differences over control pigs were observed in pigs consuming 0.5% betaine, where carcass fat concentration and P3 fat depth were decreased by 10 and 26%, respectively. Other fat depth measurements were not different (P > 0.15) from those of control pigs. In addition, pigs consuming the highest betaine level had a 19% increase in the carcass protein:fat ratio, 23% higher carcass protein deposition rate, and a 24% increase in lean gain efficiency compared with controls. Dietary betaine had no effects (P > 0.15) on growth performance, visceral tissue chemical composition, carcass fat deposition rate, visceral fat and protein deposition rates, or serum urea and ammonia concentrations. These data suggest that betaine alters nutrient partitioning such that carcass protein deposition is enhanced at the expense of carcass fat and in part, visceral tissue.  相似文献   

7.
We investigated conjugated linoleic acid (CLA) supplementation administered to heavy pigs, assessing carcass characteristics, meat quality, and sensory characteristics of dry-cured (Parma) ham. Thirty-six pigs, averaging 97 kg BW, were assigned randomly to three feeding groups in which diets were supplemented with either 0, 0.25, or 0.5% (as-fed basis) of a CLA preparation containing 65% CLA isomers. All pigs were slaughtered at 172 kg BW. No (P > 0.05) differences were observed in dressing percentage, loin and ham weight, or pH and color of longissimus and semimembranosus muscle. Tenth-rib backfat thickness tended to be lower (P < 0.10) in carcasses from CLA-fed pigs. The oxidative stability of longissimus muscle was greater (P < 0.05) in pigs fed CLA than control, but only at the longer (300 min) oxidation time. Acetyl-CoA carboxylase activity in adipose tissue of CLA-fed pigs was less (P < 0.05) than that of pigs fed diets devoid of supplemental CLA. Composition of ham fat was markedly affected (P < 0.01) by dietary CLA, with higher saturated fatty acids, lower monounsaturated fatty acids, and higher CLA in the fat of CLA-fed pigs regardless of supplementation level. Although melting quality was improved (P < 0.05), most sensory characteristics and the chemical composition of dry-cured hams were not (P > 0.05) affected by incorporation of CLA. Results indicated that dietary CLA alters lipid metabolism, producing lower concentrations of monounsaturated fatty acids and increased concentrations of CLA isomers in the fat of heavy pigs. Moreover, supplementing diets with CLA produced only minimal improvements in Parma ham sensory traits and had no appreciable effects on fresh pork quality.  相似文献   

8.
An experiment was conducted to determine the efficacy of dietary betaine, CLA, or both as growth promotants and carcass modifiers in growing Iberian pigs. Twenty gilts (20 kg of BW) were individually penned and fed barley- and soybean meal-based diets (12% CP, 0.81% Lys, and 14.8 MJ of ME/kg of DM) containing either no added betaine or CLA (control), 0.5% betaine, 1% CLA, or 0.5% betaine + 1% CLA, at 95% of ad libitum energy intake. An additional group of 5 pigs was slaughtered at the beginning of the experiment to obtain the initial body composition. At 30 kg of BW, a balance experiment was conducted. At 50 kg of BW, pigs were slaughtered and viscera was removed and weighed. Betaine or CLA alone did not affect growth performance. However, betaine + CLA increased ADG (601 vs. 558 g, P = 0.03) and gain relative to ME intake (25.4 vs. 22.2 g/MJ, P = 0.03) compared with control pigs. Digestibility of nutrients and metabolizability of energy did not differ among diets (P = 0.46 to 0.75). Carcass protein, water, and lean deposition (g/d) increased (19.8, 24.2, and 23.4%, respectively, P < 0.01) in pigs fed betaine + CLA compared with control pigs. Similarly, protein deposition relative to ME intake increased by 28% in betaine + CLA-supplemented pigs (P < 0.05). Fat and mineral deposition did not differ among treatments. Carcass protein, water, and lean content (g/kg of carcass) of pigs fed betaine + CLA-supplemented diets tended to increase (P = 0.07 to 0.09) and carcass fat content tended to decrease (P = 0.09). Similarly, estimated composition of carcass gain was affected, such that water and lean content tended to increase (P = 0.06 to 0.08), whereas fat tended to decrease (P = 0.08) in pigs fed betaine + CLA-supplemented diets. Longissimus muscle area was not altered by treatments (P = 0.49). The liver of pigs fed betaine + CLA diets had increased weight (19%, P < 0.05) compared with control pigs. Overall, dietary supplementation of betaine + CLA increased ADG, protein, water, and lean deposition in growing Iberian gilts. There appears to be a synergistic action when betaine and CLA are used together.  相似文献   

9.
Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late finishing diets for 35 d. A corn-soybean meal (SBM) control diet and 3 diets containing pea chips were formulated for each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually, and all pigs were slaughtered at the conclusion of the experiment. Overall, there were no differences (P > 0.11) in final BW, ADFI, and G:F of pigs among treatments, but there was a quadratic response in ADG (P = 0.04), with the smallest value observed in pigs fed the control diet. Dressing percentage linearly decreased (P = 0.04) as pea chips replaced SBM in diets, but there were no differences (P > 0.20) among treatments in HCW, LM area, 10th-rib backfat, lean meat percentage, and marbling. Likewise, pH in loin and ham, drip loss, and purge loss were not influenced (P > 0.13) by treatment. However, there was a quadratic response (P = 0.08) in 24-h pH in the shoulder, with the smallest value present in pigs fed the diet, in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and Japanese color score standard were reduced (quadratic, P = 0.03 and 0.05, respectively) and LM b* values and hue angle were increased (quadratic, P = 0.09 and 0.10, respectively) when pea chips replaced SBM in the diets. Ham L* (quadratic, P = 0.04), a* (linear, P = 0.02), b* (quadratic, P = 0.07), color saturation (linear, P = 0.02), and hue angle (quadratic, P = 0.05) were increased when pea chips replaced SBM. However, there were no differences (P > 0.16) in shoulder and fat color. Moreover, cook loss percentage, shear force, juiciness, and pork flavor of pork chops were not different (P > 0.10) among treatments, but tenderness of pork chops linearly decreased (P = 0.04) as SBM replaced pea chips. It is concluded that all the SBM in diets fed to growing-finishing pigs may be replaced by pea chips without negatively influencing growth performance or carcass composition. However, pigs fed pea chips will have pork chops and hams that are lighter, and chops may be less tender if pigs are fed pea chips rather than corn and SBM.  相似文献   

10.
Four experiments were conducted to determine whether betaine (BET) could replace dietary methionine (MET) in diets for weanling pigs. Pigs in each experiment were allotted to treatments on the basis of weight in a randomized complete block design. Each treatment was replicated four (Exp. 4), five (Exp. 1 and 2), or six (Exp. 3) times with five or six pigs per replicate. In Exp. 1, pigs were fed a diet formulated to be deficient in total sulfur amino acids (TSAA) (negative control; NC) or the NC + 0.05 or 0.10% MET or BET during Phase 1 and 0.035 or 0.07% MET or BET during Phase 2. Growth performance was not affected (P > 0.10) by dietary treatments, indicating that the diets were not deficient in TSAA. In Exp. 2, graded levels of TSAA (0.74, 0.79, 0.84, 0.89, or 0.94%) were fed. Overall ADG was increased (0 vs added MET, P < 0.07) in pigs fed TSAA levels of 0.79% or greater, but gain:feed was not affected (P > 0.10) by diet. Overall ADFI was increased (linear, P < 0.08) and plasma urea N (PUN) was decreased (quadratic, P < 0.01) as the level of TSAA was increased. Most of the change in ADG, PUN, and ADFI occurred between 0.74 and 0.84% TSAA. Thus, the 0.74% TSAA diet was used in Exp. 3 as the NC. In Exp. 3, the diets included the following: 1) NC, 2) NC + 0.05% MET, 3) NC + 0.10% MET, 4) NC + 0.039% BET, or 5) NC + 0.078% BET. The addition of MET resulted in increased (linear, P < 0.10) ADG, ADFI, and gain:feed, but MET decreased PUN (linear, P < 0.05). Daily gain, ADFI, and TSAA intake were not different (P > 0.10) between pigs fed 0.05% MET or 0.039% BET, but gain:feed was decreased (P < 0.01) in pigs fed 0.039% BET compared with pigs fed 0.05% MET. In Exp. 4, a 2 x 2 x 2 factorial arrangement of treatments was used (MET, 0 or 0.072%; cystine, 0 or 0.059%; or BET, 0 or 0.057%). Overall ADG and gain:feed were increased (P < 0.10) in pigs fed MET. The intake of TSAA was increased (P < 0.05), and PUN was decreased (P < 0.10) in pigs fed MET or cystine. Overall ADFI was increased in pigs fed BET or MET independently but not affected when BET and MET were fed together (BET x MET, P < 0.10). The addition of BET to TSAA-deficient diets resulted in increased ADG, which was due to an increase in ADFI (TSAA intake). Thus, BET did not spare MET in this experiment.  相似文献   

11.
A total of 252 crossbred pigs were used in two experiments to determine the effect of feeding hydrolyzed feather meal (FM) during the growing-finishing period on animal performance, carcass composition, and pork quality. All pigs were blocked by weight, and dietary treatments were assigned randomly to pens within blocks. In Exp. 1, 24 pens were randomly assigned to one of three dietary treatments: 1) control corn-soybean meal starter, grower, and finisher diets devoid of FM; 2) control diets formulated with 3% FM; and 3) control diets formulated with 6% FM. During the starter phase, there was a quadratic decrease in average daily gain (P < 0.06) and gain:feed (P < 0.01) with increasing FM, and during the grower-II phase, gain:feed increased linearly (P < 0.07) with increasing FM inclusion level. However, dietary FM had no effects (P > 0.10) on performance during the grower-I phase, finisher phase, or in the overall trial. Moreover, carcasses from pigs fed 3% FM had greater (P < 0.05) average backfat depth than carcasses of pigs fed 0 and 6% FM, but FM did not affect (P > 0.10) ham or carcass lean composition. In Exp. 2, 24 pens were randomly allotted to one of four dietary treatments: 1) positive control corn-soybean meal-based starter, grower, and finisher diets; 2) negative control corn-soybean meal- and wheat middlings-based starter, grower, and finisher diets; 3) negative control diets formulated with 3% FM; and 4) negative control diets formulated with 6% FM. Dietary FM had no effect (P > 0.10) on average daily gain, average daily feed intake, or gain:feed during any phase of the experiment. Ham weight decreased linearly (P < 0.04), whereas ham lean weight increased linearly (P < 0.09), with increasing levels of FM in the diet. Pork from pigs fed 3% FM tended (quadratic effect, P < 0.10) to receive higher Japanese color scores than pork from pigs fed either negative control or 6% FM diets. Moreover, pork color became lighter (P c 0.08), less red (P < 0.001), and less yellow (P < 0.003) as FM level was increased in swine diets. Results from these two experiments indicate that as much as 6% FM can be incorporated into isolysinic diets of growing-finishing pigs without adversely impacting animal performance, carcass composition, or pork quality.  相似文献   

12.
Two growth experiments and one digestibility experiment were conducted to study the effect of trimethylamine oxide (TMAO) and betaine in swine diets. In Exp. 1, 36 limit-fed pigs averaging 19.1 kg in initial weight were used to study the effect of adding TMAO at 10 g/kg of feed or betaine at an equivalent level of methyl groups (10.5 g/kg feed) to a high-fat (11.3% ether extract) basal diet. Dietary addition of TMAO increased ADG by 61 g/d, reduced number of days to market by 8.3 d (P<.02), and tended (P<.09) to improve gain/feed (G/F) compared with the control diet. Betaine had no effect on growth performance of pigs. Adding TMAO or betaine to diets had no effect on percent carcass fat, percent carcass lean, or dressing percentage. Dietary supplementation of TMAO reduced (P<.05) plasma triacylglycerol level (TAG) compared with the control diet. There was no effect of dietary TMAO or betaine on sensory quality characteristics of pork. In Exp. 2, 48 ad libitum-fed pigs averaging 21.7 kg initial BW and 104.7 kg final BW were used to determine the effect of adding low and intermediate levels of TMAO (1, 2, or 5 g/kg) to diets. Adding 1 g of TMAO increased G/F (P<.01) compared with control pigs. When using orthogonal contrasts, adding 2 g of TMAO reduced (P<.05) P2 backfat thickness and tended to increase (P<.09) lean percentage compared with the control diet. Trimethylamine oxide gave a quadratic effect (P<.05) on plasma TAG levels. Adding 1 and 2 g of TMAO increased plasma TAG, but 5 g of TMAO decreased it compared with the control diet. In Exp. 3, 12 barrows of 42.3 kg average initial BW and 50.0 kg final BW were used to investigate the effect of supplementing diets with 1 g of TMAO and 1.27 g of betaine/kg of feed on apparent total tract nutrient digestibility. The addition of TMAO increased (P<0.03) apparent total tract digestibility of fat (HCl-EE). Betaine had no such effect. Adding TMAO to diets influenced growth performance and carcass quality in a dose-dependent manner.  相似文献   

13.
Two experiments were conducted to determine the effects of dietary Cr, as Cr propionate, on growth, carcass traits, pork quality, and plasma metabolites in growing-finishing swine. Ninety-six crossbred gilts (Exp. 1; initial and final BW of 28 [SEM = 0.41] and 109 [SEM = 2.11] kg) or 144 PIC Cambrough 22 barrows (Exp. 2; initial and final BW of 26 [SEM = 0.39] and 111 [SEM = 2.52] kg) were allotted to six or four dietary treatments, respectively, with six replications and four (Exp. 1) or six (Exp. 2) pigs in each replicate pen blocked by weight in randomized complete block designs. The six dietary treatments for Exp. 1 were 1) corn-soybean meal (C-SBM), 2) C-SBM + 50 ppb Cr, 3) C-SBM + 100 ppb Cr, 4) C-SBM + 200 ppb Cr, 5) C-SBM low NE diet, and 6) C-SBM low NE diet + 200 ppb Cr. The four dietary treatments for Exp. 2 were C-SBM with 0, 100, 200, or 300 ppb Cr. Growth, carcass traits, and plasma metabolite (collected on d 29 and at each phase change) data were taken at the end of both experiments and pork quality data were taken at the end of Exp. 1. There was no effect (P > 0.10) on overall growth performance when pigs were fed graded levels of Cr (Exp. 1 and 2) or Cr in the positive control or low NE diets (Exp. 1). Longissimus muscle area, ham weight, ham fat-free lean, and total carcass lean were increased in pigs fed 200 ppb in the positive control diets but decreased in pigs fed 200 ppb Cr in the low NE diets (Cr x NE, P < 0.08). There was no effect of Cr concentration (P > 0.10) on carcass traits in Exp. 2. In Exp. 1, cook loss of a fresh or a frozen chop was decreased (P < 0.10) by 200 ppb Cr. In Exp. 1, NEFA concentration was decreased (P < 0.05) in pigs fed Cr in the positive control or low NE diets during the early-finishing period. In Exp. 2, the addition of Cr decreased NEFA (quadratic, P < 0.09) and plasma urea N (linear, P < 0.02) concentrations and tended to increase total cholesterol and high density lipoproteins (quadratic, P < 0.09). In these experiments, Cr propionate had no effect on overall growth performance, variable effects on carcass traits and plasma metabolites, and some positive effects on pork quality, especially water holding capacity of a fresh or frozen chop.  相似文献   

14.
To alleviate the need for daily injection of porcine somatotropin (pST), a sustained-release implant (pSTSR) was devised that continuously delivers a daily dose of 2 mg of pST for 42 d. Ninety-six white composite (Large White x Landrace) finishing barrows (83.6 +/- 1.2 kg BW) were assigned to receive zero or two pSTSR implants (4 mg pST/d) and to consume one of six diets differing in total Lys concentration (0.29, 0.52, 0.75, 0.98, 1.21, or 1.44%, as-fed basis). Diets were formulated to be isocaloric and based on the ideal protein concept. Pigs were housed individually, allowed ad libitum access to feed and water, and slaughtered at 112 kg of BW. The pSTSR affected neither ADG (P = 0.88) nor 10th rib LM area (LMA; P = 0.51), but it decreased (P < 0.01) ADFI, average backfat thickness, 10th rib fat depth, weights of leaf fat and ham fat, improved (P < 0.05) G:F, and increased (P < 0.01) weights of four trimmed lean cuts (T-cuts), and percentages of ham lean and bone. Increasing total Lys increased ADG (quadratic; P < 0.05) and ADFI (linear; P < 0.01). The G:F, plasma urea N concentrations (PUN), and T-cuts were affected by the interaction pSTSR x dietary Lys (P < 0.01). Without pSTSR, the G:F did not differ (P = 0.37) among pigs fed 0.52% and greater total Lys. With pSTSR, the G:F was less (P < 0.05) for pigs fed 0.52% than 0.98 and 1.44% total Lys. Increases in dietary total Lys resulted in increased PUN (P < 0.01), and incremental increases were less in pSTSR-implanted pigs. Maximal yield of T-cuts was at 0.98% dietary total Lys in nonimplanted pigs and 1.21% total Lys in pSTSR-implanted pigs. Estimates of total Lys requirements of pigs without and with pSTSR, respectively, were 0.52 and 0.86% for growth (ADG and G:F) and 0.73 and 0.88% for lean production (LMA and T-cuts). Equivalent apparent ileal digestible Lys requirements of pigs without and with pSTSR, respectively, were 0.44 and 0.68% for growth, and 0.62 and 0.75% for lean production. With ADFI of 3.5 kg daily, an intake of approximately 26.1 g of total daily Lys (0.75%) or 22.4 g of apparent ileal digestible Lys is needed to maximize lean production in finishing barrows receiving 4 mg pST/d via sustained-release implant.  相似文献   

15.
Twenty-four U.S. crossbred (Duroc x White composite; D x Wc; 83.9 kg), 24 purebred Meishan (M; 59.4 kg), and 24 Meishan x White composite crossbred (M x Wc; 83.4 kg) barrows were allotted within genotype to a 16% CP corn-soybean meal diet or this basal diet + 20 ppm of ractopamine and allowed ad libitum access to feed for 52 d. No genotype x ractopamine interactions were detected (P greater than .05) in pigs for growth, lean cuts, ham and loin characteristics, leaf fat and visceral organ weights, fasting whole-animal heat production, and carcass traits except longissimus muscle area (LMA). The LMA was increased by ractopamine in D x Wc and M x Wc pigs (P less than .05) but not in M pigs. Compared with D x Wc and M x Wc pigs, M pigs had lower ADG, ADFI, and gain to feed ratio (G/F), shorter carcasses, and lower dressing percentage, LMA, predicted amount of muscle, weights of trimmed picnic, loin, and ham cuts, percentage of ham lean, and CP in ham lean, but heavier liver, kidneys, pancreas, and entire gastrointestinal tract with greater percentage of ham fat and ham bone (P less than .05). The M x Wc pigs had lower ADG, G/F, dressing percentage, LMA, amount of muscle, weights of trimmed cuts, and percentage of ham lean but heavier lungs, pancreas, stomach, and large intestine than did D x Wc pigs (P less than .05). Supplemental ractopamine increased ADG, G/F, dressing percentage, amount of muscle, trimmed loin weight, percentage of ham lean, and CP in ham lean and decreased weights of heart, lungs, kidneys, and pancreas in pigs (P less than .05). Neither genotype nor ractopamine had any effect on 4- to 24-h postprandial whole-animal heat production of pigs (P greater than .05). These results indicate that ractopamine will improve growth performance and carcass leanness in pure- and crossbred Meishan pigs.  相似文献   

16.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

17.
An experiment was conducted to investigate the effect of dietary betaine supplementation on carcass characteristics, hormones, growth factor and lipid metabolism in finishing pigs. Forty-eight crossbred barrows and gilts (Seghers × Seghers × Duroc) weighing about 55 kg were divided into two groups, each with three replicates of eight pigs (four barrows and four gilts) per replicate, and fed corn–soybean meal basal diets supplemented with 0 and 0.125% betaine for 42 days. At trial termination, two pigs (one barrow and one gilt) weighing about 90 kg were selected from each replicate and slaughtered for analyses. The results showed that betaine increased carcass lean percentage and longissimus muscle area by 5.19% (P < 0.01) and 17.85% (P < 0.01), respectively, and decreased carcass fat percentage and average backfat thickness by 13.07% (P < 0.01) and 10.30% (P < 0.05), respectively. Serum growth hormone, insulin-like growth factor I, free triiodothyronine, free thyroxine and insulin levels in pigs fed betaine were elevated by 45.61% (P < 0.01), 55.50% (P < 0.01), 57.95% (P < 0.01), 51.80% (P < 0.01) and 42.34% (P < 0.05), respectively. Fatty acid synthase activity in the 10th rib subcutaneous adipose tissue was decreased by 24.35% (P < 0.05) with betaine supplementation, whereas hormone-sensitive lipase activity was significantly increased (P < 0.05). Meanwhile, serum free fatty acids concentration in betaine-fed pigs was 25.75% higher compared to controls (P < 0.01). The study suggested that betaine could induce changes in hormones and growth factor in finishing pigs, and therefore could inhibit fat synthesis through reducing lipogenic enzymes activities and promote fat degradation by increasing hormone-sensitive lipase activity, with a resultant decrease in adipose tissue mass and improvement in carcass characteristics.  相似文献   

18.
Crossbred barrows (n = 144; 80 kg) from four farrowing groups were phenotypically selected into fat (FAT) and lean (LEAN) pens using ultrasound. The difference in 10th-rib fat depth between the LEAN and FAT groups was > or =0.5 cm. Within a farrowing group, pigs were assigned to pens (five pigs per pen and eight pens per phenotype) to equalize pen weight and fat depth. Pigs were fed a corn-soybean meal diet containing 19% CP, 1.0% added animal/vegetable fat, and 1.1% lysine (as-fed basis). Half the pens received 10 ppm (as-fed basis) of ractopamine (RAC) during the 28-d finishing phase. At 7-d intervals, live weight and feed disappearance were recorded to calculate ADG, ADFI, and G:F, and 10th-rib fat depth and LM area were ultrasonically measured to calculate fat-free lean and fat and muscle accretion rates. During the first 7 d on feed, LEAN pigs fed RAC gained less (P < 0.05) than FAT pigs fed RAC or LEAN and FAT pigs fed the control diet (RAC x phenotype; P = 0.02); however, RAC did not (P > 0.25) affect ADG after the second, third, and fourth weeks, or over the entire 28-d feeding period. Although wk-2 and -3 ADG were higher (P < or = 0.03) in LEAN than in FAT pigs, phenotype did not (P = 0.08) affect overall ADG. Dietary RAC decreased (P < or = 0.05) ADFI over the 28-d feeding trial, as well as in wk 2, 3, and 4, but intake was not (P > 0.20) affected by phenotype. Neither RAC nor phenotype affected (P > 0.10) G:F after 7 d on trial; however, RAC improved (P < or = 0.04) wk-3, wk-4, and overall G:F. Lean pigs were more efficient (P < or = 0.05) in wk 2 and 3 and over the duration of the trial than FAT pigs. Ultrasound LM accretion (ULA) was not (P > or = 0.10) affected by RAC; however, LEAN pigs had greater (P < or = 0.02) ULA in wk 2 and 4 than FAT pigs. Although fat depth was lower (P < 0.01) in RAC-fed pigs than pigs fed the control diet, ultrasound fat accretion rate indicated that RAC-pigs deposited less (P = 0.04) fat only during wk 4. In addition, calculated fat-free lean (using ultrasound body fat, ULA, and BW) was increased (P < 0.05) in RAC pigs after 3 and 4 wk of supplementation. In conclusion, RAC enhanced the performance of finishing swine through decreased ADFI and increased G:F, whereas carcass lean was enhanced through decreases in carcass fat and increases in carcass muscling.  相似文献   

19.
An 8-wk study of the effects of CLA, rendered animal fats, and ractopamine, and their interactive effects on growth, fatty acid composition, and carcass quality of genetically lean pigs was conducted. Gilts (n = 228; initial BW of 59.1 kg) were assigned to a 2 x 2 x 3 factorial arrangement consisting of CLA, ractopamine, and fat treatments. The CLA treatment consisted of 1% CLA oil (CLA-60) or 1% soybean oil. Ractopamine levels were either 0 or 10 ppm. Fat treatments consisted of 0% added fat, 5% choice white grease (CWG), or 5% beef tallow (BT). The CLA and fat treatments were initiated at 59.1 kg of BW, 4 wk before the ractopamine treatments. The ractopamine treatments were imposed when the gilts reached a BW of 85.7 kg and lasted for the duration of the final 4 wk until carcass data were collected. Lipids from the belly, outer and inner layers of backfat, and LM were extracted and analyzed for fatty acid composition from 6 pigs per treatment at wk 4 and 8. Feeding CLA increased (P < 0.02) G:F during the final 4 wk. Pigs fed added fat as either CWG or BT exhibited decreased (P < 0.05) ADFI and increased (P < 0.01) G:F. Adding ractopamine to the diet increased (P < 0.01) ADG, G:F, and final BW. The predicted carcass lean percentage was increased (P < 0.05) in pigs fed CLA or ractopamine. Feeding either 5% fat or ractopamine increased (P < 0.05) carcass weight. Adding fat to the diets increased (P < 0.05) the 10th rib backfat depth but did not affect predicted percent lean. Bellies of gilts fed CLA were subjectively and objectively firmer (P < 0.01). Dietary CLA increased (P < 0.01) the concentration of saturated fatty acids and decreased (P < 0.01) the concentration of unsaturated fatty acids of the belly fat, both layers of backfat, and LM. Ractopamine decreased (P < 0.01) the i.m. fat content of the LM but had relatively little effect on the fatty acid profiles of the tissues compared with CLA. These results indicate that CLA, added fat, and ractopamine work mainly in an additive fashion to enhance pig growth and carcass quality. Furthermore, these results indicate that CLA results in more saturated fat throughout the carcass.  相似文献   

20.
Eighty-four crossbred gilts were used to evaluate the effects of dietary choice white grease (CWG) or poultry fat (PF) on growth performance, carcass characteristics, and quality characteristics of longissimus muscle (LM), belly, and bacon of growing-finishing pigs. Pigs (initially 60 kg) were fed a control diet with no added fat or diets containing 2, 4, or 6% CWG or PF. Diets were fed from 60 to 110 kg and contained 2.26 g lysine/Mcal ME. Data were analyzed as a 2 x 3 factorial plus a control with main effects of fat source (CWG and PF) and fat level (2, 4, and 6%). Pigs fed the control diet, 2% fat, and 4% fat had greater (P < 0.05) ADFI than pigs fed 6% fat. Pigs fed 6% fat had greater (P < 0.05) gain/feed (G/F) than pigs fed the control diet or other fat levels. Subcutaneous fat over the longissimus muscle from pigs fed CWG had more (P < 0.05) moisture than that from pigs fed PF. Feeding dietary fat (regardless of source or level) reduced (P < 0.05) the amount of saturated fats present in the LM. Similarly, 4 or 6% fat decreased (P < 0.05) the amount of saturated fats and increased unsaturated fats present in the bacon. No differences (P > 0.05) were observed for ADG, dressing percentage, leaf fat weight, LM pH, backfat depth, LM area, percentage lean, LM visual evaluation, LM waterholding capacity, Warner-Bratzler shear and sensory evaluation of the LM and bacon, fat color and firmness measurements, or bacon processing characteristics. Adding dietary fat improved G/F and altered the fatty acid profiles of the LM and bacon, but differences in growth rate, carcass characteristics, and quality and sensory characteristics of the LM and bacon were minimal. Dietary additions of up to 6% CWG or PF can be made with little effect on quality of pork LM, belly, or bacon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号