首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effectively utilizing composts requires that their nitrogen (N) and phosphorus (P) contents be used as fertilizer, but how this is best accomplished is not fully understood. The authors' objective was to quantify N and P availability of a calcareous clay loam soil receiving composts derived from four contrasting beef cattle feedlot feedstocks applied at 50, 150, and 450 mg total P kg?1 and supplemented twice with fertilizer N for a 42-week greenhouse plant bioassay. Three composted manures from beef cattle fed distinct diets and a composted mix of slaughterhouse and construction waste were applied. Inorganically fertilized and non-amended soils were included as controls. Canola (Brassica napus L.) and pea (Pisum sativum L.) were grown in pots containing 1.5 kg air-dried soil for six alternating 7-week cycles. Soils amended with composted manure from beef cattle fed typical finishing diets had the lowest apparent N recovery (31%) and the greatest soil nitrate after 42 weeks (25 mg N kg?1). Phosphorus availability was greater with composted manure from beef cattle fed distillers' dried grains than composted manure from beef cattle fed typical finishing diets and a composted mixture of slaughterhouse and construction waste. Apparent P recovery (66%) was greatest from composted manure of beef cattle fed corn (Zea mays L.) distillers' dried grains applied at 50 mg total P kg?1. Composted manure from beef cattle fed distillers' dried grains had greater P availability than conventional composted beef cattle feedlot manure. Overall, performance of the composted mixture of slaughterhouse and construction waste was similar to the composted beef cattle manures.  相似文献   

2.
ABSTRACT

Orchard efficiency (OE) is one of the indices of evaluating the sustainability in production behavior of citrus orchards. A wide range of soil properties broadly categorized into particle size distribution, water soluble and exchangeable cations, and soil available nutrients were investigated in relation to efficiency of Nagpur mandarin (Citrus reticulata Blanco) orchards established on smectite rich three soil orders (Entisols, Inceptisols, and Vertisols) representing 18 locations of central India. The soil properties, viz., free calcium carbonate (CaCO3), clay content, water soluble- and exchangeable-calcium (Ca2 +), available nitrogen (N), phosphorus (P), and zinc (Zn) contributed significantly towards variation in OE. The threshold limit of these limiting soil properties was further established using multivariate quadratic regression models as: 132.1 g kg? 1 free CaCO3, 418.1 g kg? 1 clay, 149.9 mg L? 1 water soluble Ca2 +, 25.9 cmol(p+) kg? 1 exchangeable Ca2 +, 114.6 mg kg? 1 available N, 12.8 mg kg? 1 available P, and 0.96 mg kg? 1 available Zn in relation to optimum OE of 82.1%. These reference values were very close to those obtained from best fit models, and could be effectively utilized in addressing soil related production constraints for precision-aided citriculture.  相似文献   

3.
Changes in land use can significantly affect soil properties. This study was conducted in the Taleghan watershed of Tehran Province, Iran, to determine the effects of land use changes on soil organic matter (SOM) and soil physical properties including soil aggregate stability, saturated hydraulic conductivity, infiltration rate, available water content, total porosity and bulk density (BD). In the present study, two sites contained adjacent land uses of natural pasture and dryland farming were selected. Soil samples were taken from depths of 0–15 and 15–30 cm for each land use. The results indicated that the conversion of natural pasture to dryland farming led to a significant decrease in SOM at 0–30 cm in the first and second sites (24.7 and 44.2%, respectively). In addition, a significant increase in BD was observed at a depth of 0–30 cm in dryland farm soils (1.39 g cm–3) compared to pastureland (1.20 g cm–3) at the first site. An increase in BD was also observed at the same depth of dryland farm soils (1.46 g cm–3) and pastureland soils (1.42 g cm–3) at the second site. In addition, total porosity, mean‐weight diameter of aggregates, saturated hydraulic conductivity, available water content and estimated final infiltration rate showed significant differences between land uses. The results showed that the conversion of natural pasture to dryland farming alters soil properties that negatively affect soil productivity and erodibility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
人为活动对云南纳帕海湿地土壤碳氮变化的影响   总被引:22,自引:0,他引:22       下载免费PDF全文
以纳帕海湿地原生沼泽作为参照 ,选择人为干扰下的沼泽化草甸 ,草甸和排干湿地开垦的耕地作为研究对象 ,研究人为干扰对纳帕海湿地土壤碳氮变化的影响。两年的定位研究结果表明 :沼泽土壤C/N值较高 ;人为干扰下纳帕海湿地土壤空间结构上土壤有机质 0~ 2 0cm表层与 2 0~ 4 0cm下层相差 4倍 ,水平分布上则随人为干扰加强、沼泽化过程减弱而降低 ,下降幅度高达 2 2 .92 %~ 6 9.6 4 %;土壤全氮及其空间分布呈现与有机质相同趋势 ,两者相关系数r=0 .98;NH 4 N、NO-3 N与全氮和水解氮相关系数分别为r=- 0 .74、r=- 0 .6 5 ,r=- 0 .81、r=- 0 .76。表明了纳帕海湿地沼泽土壤较低的矿化量和对碳的固定及较大的氮累积量 ,以及人为活动干扰后湿地土壤碳氮养分的释放变化。  相似文献   

5.
Cattle feedyards can impact local environments through emission of ammonia and dust deposited on nearby land. Impacts range from beneficial fertilization of cropland to detrimental effects on sensitive ecosystems. Shortgrass prairie downwind from an adjacent feedyard on the southern High Plains of Texas, USA changed from perennial grasses to annual weeds. It was hypothesized that N enrichment from the feedyard initiated the cascade of negative ecological change. Objectives were to determine the distribution of soil nitrogen and estimate N loading to the pasture. Soil samples were collected from 119 locations across the pasture and soil total N (TN), nitrate-N and ammonium-N (AN) determined in the top 30 cm. Soil TN concentration decreased with distance downwind from the feedyard from 1.6 ± 0.2 g kg−1 at 75 m to 1.2 ± 0.05 g kg−1 at 582 m. Nitrate-N concentration decreased within 200 m of the feedyard and changed little at greater distances. Ammonium-N concentration decreased linearly (P < 0.001) with increasing distance from the feedyard from 7.9 ± 1.7 mg kg−1 within 75 m from the feedyard to 5.8 ± 1.5 mg kg−1 at more than 550 m from the feedyard; however, distance only explained 12% of the variability in AN concentration. Maximum nitrogen loading, from 75 to 106 m from the feedyard, was 49 kg ha−1 year−1 over 34 years and decreased with distance from the feedyard. An estimate of net dry deposition of ammonia indicated that it contributed negligibly to N loading to the pasture. Nitrogen enrichment that potentially shifted vegetation from perennial grasses to annual weeds affected soil N up to 500 m from the feedyard; however, measured organic and inorganic N beyond that returned to typical and expected levels for undisturbed shortgrass prairie.
Richard W. ToddEmail:
  相似文献   

6.
中国亚热带稻田土壤碳氮含量及矿化动态   总被引:9,自引:0,他引:9  
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China. Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratory incubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cm soil contained 19.6 g kg^-1 organic C and 1.62 g kg^-1 total N, with the corresponding values of 18.1 g kg^-1 and 1.50 g kg^-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation the mineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%, respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organic C and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and then increased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass N increased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm) contained 332.8 mg kg^-1 of microbial biomass C and 23.85 mg kg^-1 of microbial biomass N, which were 111% and 47% higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation in subtropical China would have attained a steady state of organic C content, being about 19 g kg^-1.  相似文献   

7.
红壤水稻土肥力性状的演变特征   总被引:23,自引:0,他引:23  
大田条件下 ,通过选点采样分析 ,研究了不同利用年限红壤水稻土的物理、化学和生物学性质的动态变化特征。荒地红壤水耕利用后 ,土壤颗粒组成呈现规律性变化 ,粘粒 (<0 0 0 2mm)含量从荒地红壤的 3 9%下降到 80a稻田土壤的 1 7% ,而粉砂 (0 0 2~ 0 0 0 2mm)含量升高。土壤pH一般增加 0 5~ 1个单位 ;0~ 1 0cm土壤有机碳和全氮含量从荒地红壤的 4 5 8gkg- 1和 0 3 9gkg- 1增加到 3 0a红壤稻田的1 9 6gkg- 1和 1 62gkg- 1,其后 ,即使利用时间长达 80a ,土壤有机碳和全氮含量并没有显著差异 ;土壤全磷含量 ,经 3a水耕利用后可从荒地红壤的 0 5gkg- 1提高到 1 3gkg- 1,表明通过施肥可使红壤磷素快速积累 ;而在水耕利用过程中 ,红壤稻田土壤的钾素含量呈下降趋势 ,经 80a利用的红壤稻田 ,0~ 1 0cm土壤钾素含量仅为荒地红壤的 80 % ;全铁和游离铁的含量也呈下降趋势。随着水耕熟化过程 ,细菌数量和脲酶活性也明显升高。不同利用年限红壤稻田土壤的各项性状指标的变化结果还表明 ,荒地红壤水耕利用后要达到高度熟化的稻田土壤肥力水平 ,需要经过 3 0a的时间  相似文献   

8.
This study evaluates soil properties in organically managed olive groves and natural zones in a mountainous area of Andalusia, Spain. Two soil types (Eutric Regosol and Eutric Cambisol) and the most common soil management methods (tillage and two intensities of grazing) were studied. Both soil types in the groves had values not much lower than those in the natural areas. Average (±SE) values in the groves were 1.58 ± 0.71% for organic carbon, 323 ± 98 g kg?1 for macroaggregate stability, 1.11 ± 0.16 g cm?3 for bulk density, 3.5 ± 1.6 mm h?1 for saturated hydraulic conductivity and 1209 ± 716 mg CO2 kg?1 for soil respiration. Overall, these values tended to be lower in the tilled compared with that in the grazed groves. The average phosphorus soil content (5.83 ± 5.22 mg kg?1) was low for olive production and within adequate ranges for N (0.12 ± 0.05%) and K (142 ± 81 mg kg?1). Soil erosion was high in the tilled groves (35.5 ± 18.2 t ha?1 year?1) with soil loss correlating with indicators of soil degradation such as organic carbon content and water stable macroaggregates. In the grazed groves, soil loss was moderate with no clear indications of soil degradation. Overall, there was significant farm‐to‐farm variability within the same soil and land management systems. Olive production had a moderate effect on soil degradation compared with natural areas and olive cultivation could be sustained in future if cover crop soil management replaced tillage, especially in the most sloping areas.  相似文献   

9.
The abandonment of cultivated wetland soil increased the contents of light fraction organic matter (LFOM), heavy fraction organic matter (HFOM) and soil organic matter (SOM). The LFOM and HFOM content increased to 13.3 g kg−1 and 62.4 g kg−1 after 5 years whereas they were 8.4 and 47.9 g kg−1 after 9 years of cropping, respectively. Fourteen years after abandonment, HFOM content increased to 104.3 g kg−1. LFOM was positively correlated with HFOM (p < 0.001). A Langmuir equation was used to calculate the highest HFOM value. The value for the natural wetland soil was closed to this theoretical value (140.8 g kg−1). After 14 years of abandonment, the HFOM maximum (HFOMMax) value was lower than the equilibrium value suggesting that a further increase in HFOM can occur after abandonment. Assuming a linear accumulation (3.87 Mg C ha−1yr−1), it would take approximately 24 years after the abandonment to reach the HFOMMax value.  相似文献   

10.
This study analyzes effects of soil and water conservation (SWC) on soil quality and implications to climate change adaptation and mitigation in the Upper Blue Nile River Basin of Ethiopia by using the Anjeni watershed as a case study site. Disturbed and undisturbed soil samples were collected from two sub‐watersheds of Anjeni: the Minchet sub‐watershed (with SWC measures) and the Zikrie sub‐watershed (without SWC measures). Soil samples were taken from 30‐cm depth from five representative landscape positions and analyzed following the standard soil lab analysis procedures. The results show that soils from the conserved sub‐watershed had improved quality indicators compared with those from the non‐conserved site. Significant improvement due to SWC measures was observed in the soil hydrological [total moisture content (+5·43%), field capacity (+5·35%), and available water capacity (+4·18%)] and chemical [cation exchange capacity (+4·40 cmol(+) kg−1), Mg2+ (+1·90 cmol(+) kg−1), Na+ (+0·10 cmol(+) kg−1)] properties. SWC interventions significantly reduced soil erosion by 57–81% and surface runoff by 19–50% in the conserved sub‐watershed. Reduction in soil erosion can maintain the soil organic carbon stock, reduce the land degradation risks, and enhance the C sequestration potential of soils. Therefore, adoption of SWC measures can increase farmers' ability to offset emissions and adapt to climate change. However, SWC measures that are both protective and sufficiently productive have not yet been implemented in the conserved sub‐watershed. Therefore, it is important that SWC structures be supplemented with other biological and agronomic measures in conjunction with soil fertility amendments appropriate to site‐specific conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Water extraction of trace elements can simulate the concentration of elements in the soil solution from where the plant takes up the elements. The objective of this investigation was to determine the water extractable concentration of seven trace elements (Fe, Mn, Ni, Co, Mo, Pb and Cd) and to assess their relationship with soil properties of the Danube basin in Croatia. Soil samples from the surface layer (0–25 cm) of 74 sites, having different land uses (forest and agricultural land), were collected. Samples were analysed for total and water extractable trace elements as well as for pH, DOC, SOC and CEC. The concentrations of water extractable fraction of trace elements were on average: 20.14 mg kg?1 for Fe, 3.61 mg kg?1 for Mn, 0.07 mg kg?1 for Ni, 0.016 mg kg?1 for Co, 0.01 mg kg?1 for Mo, 0.01 mg kg?1 for Pb and 0.0009 mg kg?1 for Cd. Soil properties were in the following range: pH 4.3–8 (Avg: 6.35), DOC 6.1–73 mg l?1 (Avg: 26 mg l?1), CEC 1.3–24 cmol kg?1 (Avg: 9 cmol kg?1) and SOC 0.5–5% (Avg: 1.7%). The concentration of water extractable fraction of trace elements was significantly correlated with pH (p <0.001), DOC (p <0.001 – p <0.05) and CEC (p <0.001) but their relationship with total content of trace element and SOC was rather weak, suggesting that total metal alone cannot be an indicator of toxicity or deficiency. Results show that pH, DOC and CEC are important soil quality parameters taking part in the solubility control of trace metals in the soil rather than their total concentration. The difference between land uses has been observed as well, suggesting that a change in land use can cause a change in trace element solubility.  相似文献   

12.
中国三种典型土壤结皮的发育过程与机理   总被引:5,自引:0,他引:5  
To compare the development of physical crusts in three typical cultivated soils of China, a black soil (Luvic Phaeozem), a loess soil (Haplic Luvisol), and a purple soil (Calcaric Regosol) were packed in splash plates with covered and uncovered treatments, and exposed to simulated rainfall. Meshes covered above the surfaces of half of soil samples to simulate the effects of crop residue on crusting. The results indicated a progressive breakdown of aggregates on the soil surface as rainfall continued. The bulk density and shear strength on the surface of the three soil types increased logarithmically as rainfall duration increased. During the first 30 min of simulated rainfall, the purple soil developed a 7--8 mm thick crust and the loess soil developed a 3--4 mm thick crust. The black soil developed a distinguishable, but still unstable, crust after 80 min of simulated rainfall. Soil organic matter (SOM) content, the mean weight diameter (MWD) of soil aggregates, and soil clay content were negatively correlated with the rate of crust formation, whereas the percentage of aggregate dispersion (PAD), the exchangeable sodium percentage (ESP), and the silt and sand contents were positively correlated with crusting. Mechanical breakdown caused by raindrop impact was the primary mechanism of crust formation in the black soil with more stable aggregates (MWD 25.0 mm, PAD 3.1%) and higher SOM content (42.6 g kg-1). Slaking and mechanical eluviation were the primary mechanisms of crust formation in the purple soil with low clay content (103 g kg-1), cation exchange capacity (CEC, 228 mmol kg-1), ESP (0.60%), and SOM (17.2 g kg-1). Mechanical breakdown and slaking were the most important in the loess soil with low CEC (80.6 mmol kg-1), ESP (1.29%), SOM (9.82 g kg-1), and high PAD (71.7%) and MWD (4.6 mm). Simulated residue cover reduced crust formation in black and loess soils, but increased crust formation in purple soil.  相似文献   

13.
Severe treading damage to soils often occurs when cattle and sheep graze standing forage crops during winter. Soil recovery is a long process that may take several months if not years. Noninversion tillage can speed up the recovery process by improving drainage and air diffusion. This research assessed the ongoing benefit of noninversion tillage for improving soil structure relative to non‐tillage. This assessment was made following a land‐use transition from winter forage cropping to re‐establishment of seasonal pasture that was rotationally grazed by cattle or sheep. Prior to commencement of this study, the research site had poor soil structure due to four consecutive years of cattle and sheep grazing of winter forage crops [macroporosity (0–100 mm) <0.075 and 0.113 m3/m3 under cattle and sheep, respectively]. Tillage was effective in increasing soil macroporosity to ca. 0.175 m3/m3 under both grazing classes, which was significantly higher than nontilled soils (ca. 0.140 m3/m3, 0–100 mm depth). Improvements gained from tillage generally did not persist longer than 18 months. Average annual pasture production in tilled plots was 22.1 and 20.9 tons of dry matter per hectare (t DM/ha) for respective cattle‐ and sheep‐grazed plots, while in the nontilled plots, it was 19.1 and 18.6 t DM/ha, respectively. Results indicate noninversion tillage can provide an immediate increase in the porosity of compacted soils and improve pasture growth. However, processes involved in the formation of resilient soil aggregates are curtailed if subsequent grazing events coincide with high moisture content that causes recompaction.  相似文献   

14.
High heterogeneity in the spatial distribution of soil organic carbon (SOC) in grasslands causes uncertainty in estimating its content and storage. In this study, we investigated the spatial distribution of SOC content and storage in the prairies of southern Alberta, Canada, and how it is affected by land use such as irrigated cropping and other environmental conditions such as cattle grazing, slope landscape position and dominant plant species. The mean SOC content was determined to be 11.5 g kg–1 (range: 8.9 to 22.4 g kg–1) in the 0–10 cm layer and 6.8 g kg–1 (range: 4.0 to 13.3 g kg–1) in the 10–30 cm layer; mean SOC storage was 1.59 kg C m–2 (range: 1.23 to 2.78 kg C m–2) in the 0–10 cm layer and 2.07 kg C m–2 (range: 1.21 to 3.62 kg C m–2) in the 10–30 cm layer. The SOC content was significantly affected by slope position in both the 0–10 and 10–30 cm layers, in the following order: bottom >middle > top position. Moreover, SOC storage was higher in sites dominated by shrubs than graminoid/forb communities. Thus, SOC content and storage had distinctly clustered spatial patterns throughout the study area and were significant differences between the 0–10 and 10–30 cm soil layers. Prior land-use change from arid grassland to irrigated cropland increased SOC content and storage in bulk soils.  相似文献   

15.
This study describes the impact of the conversion of native Colombian savannahs into crops and pastures on: (1) the quantity and diversity of the bio-structures produced by soil ecosystem engineers and (2) soil structure. Bio-structure diversity decreased in all agroecosystems (12 types in the savannah, four to six in pastures and three in crops). Bio-structures were mostly earthworm casts in native savannah and pastures, and ant mounds in crops. Compared with the savannah (750 cm3 m–2), their volume increased in the old pasture (+48%) and decreased in recent pasture and crops (–65% to –97%). Soil structure was similar to savannah soil in the older pasture, but was sharply affected in annual crops. In contrast to crops, pastures appear to sustain soil structure and are also suitable for engineering activity.  相似文献   

16.
盐渍土改造区土壤养分的时空变异性研究   总被引:21,自引:2,他引:21       下载免费PDF全文
在第二次全国土壤普查的基础上,于2002年10月对研究区域———河北省曲周县的耕地进行了全面的调查和分析,并将GPS、GIS技术应用到耕地质量调查工作中。研究结果表明:随着盐碱地综合治理的深入、外源物投入数量的增加和质量的改进、作物布局的调整,盐渍土改造区土壤养分在时间和空间上发生了很大的变化。在时间上,耕层土壤有机质平均含量从8.4 g kg-1增加到13.89 g kg-1,全氮平均含量达到0.937 g kg-1,速效磷平均含量从5.45 mg kg-1增加到23 mg kg-1,速效钾含量从34~285 mg kg-1之间逐步变化为67~191 mg kg-1之间的高肥力农业土壤;在空间上,土壤养分的分布与养分的地球化学过程、农业产业结构布局及采用的相应措施有密切关系。主要表现在:土壤有机质、全氮及速效磷含量随着农业集约化程度的提高、外源物质投入的增加而相应增加;土壤速效钾含量则由原来的随地球化学过程而变化,转变为随着农业集约化程度的提高而相应变化。  相似文献   

17.

Purpose  

Soils within the Lake Okeechobee drainage basin, FL, USA, have been impacted by beef cattle and dairy operations and the landscape ditched and drained to facilitate stocking and grazing pastures. Restoring wetlands located on pastures has been proposed to reduce overland loss of phosphorus (P) by retaining it within the soils. However, soil properties of deeper horizons within impacted wetlands are rarely investigated due to the assumption that most dominant biogeochemical interactions occur at the soil–water interface. In this paper, we investigate soil properties up to 160 cm below the surface from an impacted isolated wetland and its surrounding upland pasture.  相似文献   

18.
Turkey's forests have been continuously facing conversion into both agriculture and pasturelands, causing not only degradation and fragmentation of forested lands but also negative changes in soil properties that have not been thoroughly investigated. In order to determine possible changes in some physical and hydrophysical soil parameters along with the dispersion ratio between natural coppice forests and the neighbouring forest‐to‐grassland converted areas, a foothill of Mount Sacinka in Artvin was chosen as a research area. Besides land use, possible effects of elevation change on soil properties due to the mountainous and moderately steep landscape of the region were also taken into consideration. The soil samples were analysed for soil texture, permeability, field capacity, bulk density, organic matter, pH and dispersion ratio. The results indicated that whereas permeability (43·05 mm h−1 in forest and 18·82 mm h−1 in pasture), field capacity (43·45% in forest and 38·08% in pasture) and organic matter (6·36% in forest and 5·34% in pasture) values turned out to be higher in forest soils, bulk density (0·91 g cm−3 in forest and 1·06 g cm−3 in pasture) and pH (5·89 in forest and 6·55 in pasture) values were low in grassland soils, meaning that conversion has negative effects on soil properties. Additionally, the mean dispersion ratios of 27·55% and 33·58% for forest and pastureland soils, respectively, indicated soil erosion problems in both land uses. In addition, as for elevation effect, forest soils especially showed better characteristics at higher elevations with high permeability, field capacity and organic matter and low pH and dispersion ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

20.
In a screen-house study, the effects of artificially contaminating the soil with lead (Pb) at levels ranging from 0 to 1500 mg kg?1 soil on the growth and uptake of Pb and micronutrients by Indian mustard [Brassica juncea (L.) Czern.] grown on a loamy sand soil (Typic Ustorthent) were investigated. The crop was grown for 60 days with adequate basal fertilization of nitrogen, phosphorus, and potassium, and dry matter was recorded. The plants were analyzed for total Pb and micronutrients, and the soil was analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Pb. The DTPA-extractable Pb measured before sowing of Indian mustard increased consistently and significantly with increase in rates of Pb application to soil. It increased from 0.65 mg kg?1 in the control to 199.8 mg kg?1 in soil treated with 1500 mg Pb kg?1 soil. Significant reduction in the dry-matter yield of Indian mustard occurred with Pb applications of 500 mg kg?1 soil and greater. The concentration as well as uptake of Pb by Indian mustard increased significantly over control at all rates of its application. It increased from 9.4 μg pot?1 in the control to 220.6 μg pot?1 at Pb application of 1500 mg kg?1 soil. Applications of Pb to the soil decreased the concentration of micronutrients in plants, but a significant reduction occurred only for iron at rates greater than 500 mg Pb kg?1 soil. However, the uptake of iron, manganese, and copper registered a significant decline at Pb application of 500 mg kg?1 and greater and that of zinc at 750 mg kg?1 and greater. In a Typic Ustorthent soil, a DTPA-extractable Pb level of 59.5 mg kg?1 and plant content of 44.2 μg Pb g?1 dry matter was found to be the upper threshold levels of Pb for Indian mustard. This study suggests that once the soil is contaminated by Pb, it remains available in the soil for a long time, and such soils, if ingested with food crops, may be a significant source of Pb toxicity to both humans and grazing animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号