首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
红壤稻田不同生育期土壤氨氧化微生物群落结构   总被引:2,自引:0,他引:2  
宋亚娜  林智敏 《土壤学报》2010,47(5):987-994
以福建省红壤稻田土壤为对象,通过提取土壤总DNA,利用特异引物进行PCR(聚合酶链反应)扩增和DGGE(变性梯度凝胶电泳)并结合DNA克隆测序,研究了水稻生长过程中稻田土壤氨氧化细菌和氨氧化古菌群落结构的变化。结果显示:稻田土壤具有丰富的氨氧化细菌和氨氧化古菌资源。水稻生长过程中土壤氨氧化细菌群落组成较为稳定,只表现出水稻生长前期(苗期、分蘖期)和中后期(孕穗期、成熟期)间存在一定差异。而土壤氨氧化古菌群落组成变化较大,在水稻生长的苗期、分蘖期、孕穗期和成熟期4个时期间均存在一定差异。在水稻生长过程中,土壤氨氧化细菌群落多样性指数无显著性变化,但氨氧化古菌群落多样性指数随水稻生长明显提高,孕穗期后才达到平稳。水稻生长前期土壤硝化势也具有显著上升趋势,孕穗期时达到最高,而后有所下降。土壤硝化势与氨氧化古菌群落多样性指数具有显著正相关性,与氨氧化细菌没有相关性。研究表明,氨氧化古菌对红壤稻田土壤硝化作用的影响程度较大,证实了氨氧化微生物尤其是氨氧化古菌在稻田土壤微生物组成及其生态系统功能中的重要性。  相似文献   

2.
以福建省红壤稻田土壤为对象,通过提取土壤总DNA,利用特异引物进行PCR(聚合酶链反应)扩增和DGGE(变性梯度凝胶电泳)并结合DNA克隆测序,研究了水稻生长过程中稻田土壤氨氧化细菌和氨氧化古菌群落结构的变化。结果显示:稻田土壤具有丰富的氨氧化细菌和氨氧化古菌资源。水稻生长过程中土壤氨氧化细菌群落组成较为稳定,只表现出水稻生长前期(苗期、分蘖期)和中后期(孕穗期、成熟期)间存在一定差异。而土壤氨氧化古菌群落组成变化较大,在水稻生长的苗期、分蘖期、孕穗期和成熟期4个时期间均存在一定差异。在水稻生长过程中,土壤氨氧化细菌群落多样性指数无显著性变化,但氨氧化古菌群落多样性指数随水稻生长明显提高,孕穗期后才达到平稳。水稻生长前期土壤硝化势也具有显著上升趋势,孕穗期时达到最高,而后有所下降。土壤硝化势与氨氧化古菌群落多样性指数具有显著正相关性,与氨氧化细菌没有相关性。研究表明,氨氧化古菌对红壤稻田土壤硝化作用的影响程度较大,证实了氨氧化微生物尤其是氨氧化古菌在稻田土壤微生物组成及其生态系统功能中的重要性。  相似文献   

3.
三江平原寒地稻田CH_4、N_2O排放特征及排放量估算   总被引:3,自引:1,他引:3  
利用静态暗箱-气相色谱法,于2003-2006年对三江平原寒地稻田CH4、N2O通量进行了为期4年的田间原位观测研究.结果表明:三江平原寒地稻田CH4和N2O排放具有明显的季节变化,水稻生长季淹水期是CH4排放的强源,稻田排水后CH4排放显著下降,休闲期CH4排放微弱或呈弱吸收汇,整个生长季CH4排放呈现单峰型态,并随水稻植株生长和叶面积指数而变化;水稻生长季和休闲期N2O排放通量都很小,冬季休闲期有时还出现微弱的吸收现象.生长季一般在施肥和表土落干时都会出现不同强度的排放峰,除了几次比较显著的排放峰值外,其它淹水状态下N2O排放很弱;温度和土壤水分状况是影响稻田CH4和N2O排放的重要因子,稻田积水深度和气体排放无明显的相关性;水稻植株对稻田土壤CH4排放起促进作用而对稻田土壤N2O排放起抑制作用;稻田氮肥用量增加可以降低土壤CH4排放,但却增加了N2O的排放.根据试验数据对三江平原地区寒地稻田CH4和N2O排放总量估算值分别为0.1035 Tg/a和0.0021 Tg/a.  相似文献   

4.
2016年4月,从四川省南充市嘉陵区猫儿山垃圾填埋场采集土壤样品,运用PCR-DGGE法鉴定垃圾填埋场的土壤细菌。结果表明:DGGE指纹图谱中条带数较少,比较之后选择鉴定Band 1。将Band1的测序结果与Gen Bank数据库中已有的土壤细菌进行BLAST比对,序列相似性为84%,鉴定出Band 1所代表的不可培养细菌属于酸杆菌门,并根据鉴定结果做出进化树。  相似文献   

5.
有机稻鸭共作对土壤养分动态变化和经济效益的影响   总被引:12,自引:1,他引:12  
土壤养分供应与作物需求间的矛盾是影响有机种植作物产量的技术瓶颈之一。试验通过对常规稻田、转换期稻鸭共作稻田和有机稻鸭共作稻田3种不同种植模式的土壤定位监测,分析土壤基本养分在水稻不同生长阶段的动态变化。结果表明,有机稻鸭共作稻田土壤有机质、碱解氮、速效磷和速效钾等养分指标在整个水稻生长期基本能维持一个相对稳定的状态,在幼穗分化期速效钾含量高于常规稻田,在成熟期碱解氮、速效磷和速效钾含量都远高于常规稻田。有机稻鸭共作稻田水稻产量较常规稻田有所降低,由于有机稻米的价格远高于常规稻米,实际经济效益可观,是值得推广的种植模式。  相似文献   

6.
由于土壤水分状况的不同,水稻生长季土壤N2O排放量明显不同于旱地作物。基于多元统计模型,通过多点代面的方法进行尺度扩展,并应用蒙特卡洛方法模拟影响因素的变异程度,模拟了中国稻田水稻生长季的N2O排放情况。所模拟的378个点的水稻生长季N2O排放通量为6.0~74.3μgN.m-2.h-1,其均值接近于原始观测结果;378个点位的N2O排放通量空间分布不均,排放量较高的点位于北纬20°到30°之间;378个点中单季稻、稻-旱轮作中的水稻和双季稻的生长季N2O平均排放量分别占年总排放量的53%、34%和59%。多点代面的尺度扩展结果显示2008年中国稻田水稻生长季N2O排放量均值为22.48Gg,其95%的概率区间为20.5~24.8Gg;化肥氮的N2O排放系数为0.27%,与IPCC缺省值0.3%接近。用秩相关关系表征影响因子对中国稻田水稻生长季N2O排放量的不确定性的贡献,结果表明水分管理类型、有机肥类型、土壤属性、氮用量等对结果均有显著影响。  相似文献   

7.
PCR—DGGE法研究福建省稻田土壤微生物地区多态性   总被引:4,自引:0,他引:4  
运用细菌16S rDNA基因和固氮细菌nifH基因的特异引物对,将稻田土壤中提取的总DNA进行PCR扩增后,通过DGGE技术对PCR产物进行分析,以揭示福建省稻田微生物地区多态性。结果表明:福建省不同地区的稻田土壤中,细菌与固氮细菌的组成都有较大差异,且固氮细菌的地区多态性更为明显;同一地区表土与根际土中细菌和固氮细菌的组成也有所不同,尤其是固氮细菌组成在不同地区的表土和根际土间的差异都较大。  相似文献   

8.
稻鸭共作对稻田水体底栖动物生物多样性的影响   总被引:2,自引:0,他引:2  
在水稻不同生育时期对稻鸭共作稻田和常规稻田的土壤取样,研究不同稻田生态系统水体底栖动物的生物多样性。结果表明:与常规稻田相比,稻鸭共作使水体底栖动物的种类数减少。水稻生育前期,稻鸭共作使底栖动物的个体总数减少较大,后期与常规稻田差异较小。水稻各生育时期常规稻田和稻鸭共作稻田底栖动物的Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀度指数变化趋势相似,均为水稻生育前期稻鸭共作稻田的生物多样性指数和均匀度指数高于常规稻田,而后期低于常规稻田。研究结果为规范稻鸭共作稻田水分管理和稻鸭共作技术提供理论指导,促进稻鸭共作技术的推广和应用。  相似文献   

9.
水稻油菜轮作稻田甲烷排放及其总量估算   总被引:2,自引:0,他引:2  
利用静态箱/气相色谱法对川中丘陵区水稻油菜轮作稻田进行水稻全生长季CH4排放观测。结果表明,稻田CH4排放有明显的季节变化,呈“前低后高”的变化趋势,CH4排放峰出现在水稻抽穗扬花期;测定期内稻田CH4平均排放通量为6.20mg/m2.h。对影响稻田CH4排放的因素分析发现,淹水条件下水稻移栽到抽穗初期,水稻植株生长是影响稻田CH4排放的关键因素;水稻抽穗期到成熟期,温度是影响稻田CH4排放的关键因素。水稻油菜轮作稻田在水稻生长季中CH排放总量为173.96kg/hm2。  相似文献   

10.
为研究稻田消解沼液对水稻安全生产、土壤肥力及质量的影响,评价沼液施用后对水体及大气环境污染的风险,提出稻田沼液消解安全容量,在浙江省嘉兴市青紫泥田(属脱潜潴育型水稻土)上,进行3a定位田间小区试验,考察了不同沼液用量下水稻产量、稻谷及土壤中有害重金属含量差异,测定了稻田氨挥发通量及田面水、下渗水氮含量,并确定了稻田沼液消解容量。结果表明,连续3a、每年水稻生长季施灌沼液135~540kgN·hm-2的范围内,水稻产量与全化肥区持平或略有增产,施灌沼液处理的稻谷中有害重金属镉、铅、汞、砷含量没有明显增加;除高沼液用量处理土壤速效钾、缓效钾含量明显增加外,其他土壤肥力指标没有明显增加,土壤中重金属含量也没有明显积累;施用沼液处理田面水中铵态氮含量明显高于全化肥处理,但对土壤下渗水氮含量影响较小;2倍氮沼液用量下,水田消解中氨挥发量占总氮投入量的13%,高于全化肥处理10倍以上。在水稻生产安全、农产品安全、土壤质量可持续、农田水环境友好的前提下,水稻生长季沼液稻田消解的安全容量为540kgN·hm^-2·a^-1;氨挥发是目前沼液稻田消解中主要的环境风险。  相似文献   

11.
To estimate diversity, seasonal variation, and phylogeny of the cyanobacterial communities in rice straw placed in nylon mesh bags and left on the soil surface of a paddy field, total DNA was extracted from straw, amplified by polymerase chain reaction targeting 16S rRNA genes of cyanobacteria, and the amplicons were separated by denaturing gradient gel electrophoresis (DGGE). These DGGE bands were sequenced. The paddy field was under flooded condition after transplanting of rice (Experiment 1) and under drained conditions after harvest (Experiment 2). The residual samples on the soil surface under upland conditions were collected just before spring plowing and were placed again on the soil surface after transplanting under flooded conditions. DGGE band patterns of cyanobacterial communities of rice straw were different under drained conditions, under flooded conditions when fresh rice straw samples were placed (Experiment 1), and under flooded conditions when residual rice straw samples were replaced (Experiment 2), indicating that the communities were influenced by both water regime of the paddy field and the degree of the rice straw decomposition. Sequence analysis of DGGE bands indicated that most of the cyanobacteria in rice straw on the soil surface in the paddy field were filamentous members belonging to Subsections III and IV. Filamentous cyanobacterial cells were observed in rice straw under flooded conditions by epifluorescence microscopy.  相似文献   

12.
The structure of the β-proteobacterial autotrophic ammonia-oxidizing bacterial (AOB) communities in a microcosm of submerged paddy soil was determined by denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments amplified using AOB-selective primers. Shift in the community composition was observed 4 weeks after submergence. The communities from the surface layers (0–1, 2–3 mm) of the soil microcosm were different from those of the subsurface layers (6–9, > 15 mm) and DGGE bands specific to each layer were detected. The majority of the retrieved sequences were Nitrosospira-like, whereas no Nitrosomonas-like sequences were obtained. The 16S rDNA primer set also amplified sequences that were not related to the known Nitrosospira-Nitrosomonas group, although they showed a close relationship with other groups of β-proteobacteria. The results suggest that Nitrosospira-like populations are dominant AOB populations in the submerged paddy soil, and that the oxic layer of submerged paddy soil harbours the specific AOB.  相似文献   

13.
Bacterial communities associated with five kinds of microcrustaceans ( Tanycypris sp., Moina sp., Mesocyclops sp., Cypretta sp. and Heterocypris sp.) from the floodwater of a paddy field microcosm were examined by the application of denaturing gradient gel electrophoresis (DGGE) to PCR-amplified 16S rDNA products with universal bacterial primers and by sequencing of characteristic DGGE bands. The number of DGGE bands of the associated bacteria was small, indicating the association of specific bacterial members with the microcrustaceans studied, among which Tanycypris sp. showed the smallest number of bands. Principal component analysis (PCA) demonstrated that the community structure of the associated bacteria could be divided into three groups: Podocopida ( Tanycypris sp., Cypretta sp. and Heterocypris sp.), Moina sp. and Mesocyclops sp., and further analysis separated Tanycypris sp. and Heterocypris sp. into different clusters. The duration of the incubation period affected the bacteria associated with Tanycypris sp., Moina sp. and Cypretta sp. only. Nearly all of the associated bacteria belonged to Gram-negative bacteria, especially the Cytophaga-Flavobacterium-Bacteroides (CFB) group. Closest relatives of the DGGE bands common to three Podocopida and Mesocyclops sp. belonged to an invertebrate endosymbiont.  相似文献   

14.
Bacterial communities associated with Moina sp. in the floodwater of a paddy field microcosm were examined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA. Eighteen out of 20 eubacterial DGGE bands were sequenced. The associated eubacterial communities mainly consisted of the Cytophaga-Flavobacterium-Bacteroides group and α-, β-, and γ-Proteobacterial groups, irrespective of the application of rice straw and rice straw compost. The effect of the application of rice straw and compost on the communities was not appreciable, compared with host specificity. An uncultured Cytophagales bacterium was estimated to be specifically associated with Moina sp. Presence of bacteria that are specific to rice straw treatment was also estimated.  相似文献   

15.
Phylogenetic positions of characteristic bands of 16S rDNA that were obtained from the floodwater of a Japanese paddy field by denaturing gradient gel electrophoresis (DGGE) analysis in a previous work (Biol Fertil Soils 36:306–312, 2002) were determined to identify dominant bacterial members in the floodwater. Sequences of DGGE bands were affiliated with the CytophagaFlavobacteriumBacteroides group, β-Proteobacteria, and Actinobacteria and showed phylogenetically close relationships with species inhabiting other aquatic environments, although most of their closest relatives were uncultured bacterial clones.  相似文献   

16.
Although arbuscular mycorrhizal fungi (AMF) are crucial for ecosystem functioning, characterizing AMF community structure in soil is challenging. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined with cloning of fungal 18S ribosomal gene fragments for the rapid comparison of AMF community structure in soil. Reference AMF isolates, representing four major genera of AMF, were used to develop the method. Sequential amplification of 18S rDNA fragments by nested PCR using primer pairs AM1-NS31 and Glo1-NS31GC followed by DGGE analysis yielded a high-resolution band profile. In parallel, 18S rDNA fragment clone libraries were constructed and clones screened by DGGE. Sequence identity was inferred by matching the electrophoretic mobility of the sample fingerprint bands to that of bands from individual clones. The effectiveness of this approach was tested on soil samples from different ecosystems, yielding reproducible, complex DGGE band patterns specific to each site. The coupling of PCR–DGGE with clone library analysis provides a robust, reliable, and precise means to characterize AMF community structure in soils.  相似文献   

17.
To estimate the succession and phylogenetic composition of the bacterial communities responsible for the decomposition of rice straw compost under flooded conditions during the cultivation period of paddy rice, denaturing gradient gel electrophoresis (DGGE) analyses targeting 16S rDNA and 16S rRNA, followed by sequencing were conducted in a Japanese paddy field. The DGGE bands of the bacterial communities in the rice straw compost were significantly more numerous in the DNA samples than in the RNA samples. Although the band number of the DNA samples was almost constant throughout the period, RNA samples showed fewer DGGE bands after mid-season drainage than before it. Thus, about 81% of the bacteria present in rice straw compost were considered to be metabolically "active" before mid-season drainage and about 62% after it. The changes in the DGGE patterns of bacterial DNA and RNA before and after mid-season drainage, respectively, were also revealed by cluster analysis and principal component analysis of the DGGE patterns. These results indicated that the bacterial communities of rice straw compost incorporated into flooded paddy fields changed gradually along with the decomposition, except for the period of mid-season drainage, but that they were influenced by mid-season drainage. Members of β-, γ- and δ-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Chlorobia, Verrucomicrobia, Chloroflexi, Spirochaetes, Firmicutes (clostridia) and Actinobacteria were present during the decomposition of rice straw compost. Characteristic "active" bacteria among them were as follows: Clostridium, Acinetobacter (γ-Proteobacteria) and β-Proteobacteria before mid-season drainage, Flavobacterium, Chondromyces , Chlorflexi and δ-Proteobacteria after mid-season drainage, and Spirochaeta and myxobacteria throughout the period.  相似文献   

18.
Consensus nematode 18S ribosomal DNA primers were designed by aligning available 18S sequences and identifying a variable region flanked by highly conserved regions. These primers were then used to amplify nematode 18S rDNA from whole soil community DNA extracted from a range of European grassland types. Cloning of the PCR amplicons (778 bp) followed by restriction digest analysis (RFLP) resulted in the recovery of 34 unique nematode sequences from the four grasslands studied. Comparison of these data with the limited number of 18S rDNA nematode sequences currently held in on-line databases revealed that all of the sequences could be assigned to known nematode taxa albeit tentatively in some cases. Two of the sequences recovered from the site in the Netherlands (wet, hay-grassland) were recovered in a clade that included a sequence of the genus Trichodorus whilst other sequences from this site showed similarity with 18S rDNA sequences of the genus Prismatolaimus (five sequences), Xiphinema (one sequence) and Enoplus (one sequence). Of the remaining sequences, two showed some affinity with Mylonchulus (UK, upland peat), four with Steinernema (UK) and one sequence with Mesorhabditis (Hungary, east European Steppe). Three sequences from the Netherlands and one from Hungary were recovered in a clade that included a sequence of the genus Pratylenchoides whilst three further sequences from the Netherlands and two from Hungary were recovered in a clade encompassing the genus Globodera. Of the remaining nine sequences, two (NL6, NL62) formed a distinct lineage within the Adenophorea with 90% bootstrap recovery in a paraphyletic clade that included sequences of Prismatolaimus and Trichodorus. Seven sequences (three from the Netherlands, three from the UK and one from Greece) were left unassigned though the tree topology suggested some relationship (58% bootstrap recovery) with the genus Cephalobus. To assess whether primers used to amplify 18S rDNA might be used to fingerprint genetic diversity in nematode communities in soil, the environmental sequence data were used to design a second set of primers carrying a GC-clamp. These primers amplified a 469 bp fragment internal to the region flanked by the primer set used to derive the nematode trees and were used to amplify 18S rDNA for subsequent analysis using denaturing gradient gel electrophoresis (DGGE). DGGE analysis of six major European grassland types revealed considerable genetic diversity between sites. However, the relationships seen with the DGGE data were inconsistent with previous studies where the same soils had been characterized with respect to functional and morphological diversity. To confirm that this second set of primers was amplifying nematode sequences, selected bands on the DGGE gels were extracted, PCR amplified and sequenced. The final alignment was 337 bases. These analyses revealed the presence of sequence signatures from the genera Paratrichodorus, Plectus, Steinernema, Globodera, Cephalobus and Pratylenchoides.  相似文献   

19.
To estimate the succession and phylogenetic composition of the eukaryotic communities responsible for the decomposition of rice straw compost under flooded conditions during the cultivation period of paddy rice, denaturing gradient gel electrophoresis (DGGE) analysis targeting 18S rDNA followed by sequencing was conducted in a Japanese paddy field. The eukaryotic communities in rice straw compost incorporated into the flooded paddy field were influenced by the mid-season drainage and mainly composed of fungi (Ascomycota, Zygomycota, and Chytridiomycota) and protozoa (Ciliophora, Euglyphida, and Dactylopodida), most of which existed continuously during the cultivation period of paddy rice. The results indicated that these eukaryotic members were associated with the decomposition of rice straw compost in paddy field soil directly or indirectly.  相似文献   

20.
Community structure of methanogenic archaea in paddy field soil under double cropping (rice [Oryza sativa L.] and wheat [Triticum aestivum L.]) was studied by the denaturing gradient gel electrophoresis (DGGE) method. Soil samples under flooded and upland conditions were collected 7 and 6 times, respectively, from two paddy fields throughout a year, and two primer sets, 0357F-GC/0691R and newly designed 1106F-GC/1378R, were used for DGGE analysis. The 25 and 29 different bands were observed on the DGGE gels with the primers 0357F-GC/0691R and 1106F-GC/1378R, respectively. DGGE band patterns of the methanogenic archaeal community were stable throughout a year including the cultivation periods of rice under flooded conditions and of wheat under upland conditions. Cluster analysis and principal component analysis suggested that the difference in the soil type (sampling region) largely influenced the community structures of methanogenic archaea in paddy field soil, while the effects of sampling period and different fertilizer treatments on them were small. Most of the sequences obtained from the DGGE bands were closely related to Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Rice cluster-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号