首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为研究两种不同双蜗壳型式离心泵的水力特性,采用RNG k-ε湍流模型和滑移网格技术,对单出口双蜗壳及双出口双蜗壳离心泵进行了不同工况下三维非定常湍流数值模拟,得到不同型式双蜗壳泵内压力脉动情况,同时对两种型式泵的径向力进行定常计算对比分析.结果表明:单出口双蜗壳泵内压力脉动高于双出口双蜗壳泵内的压力脉动;在设计工况和非设计工况下,两种型式泵的隔舌及出口处压力脉动的频率均以叶片通过频率为主;在小流量工况下,单出口双蜗壳泵的出口及隔板起始端位置处频率以叶轮转频为主;两种型式双蜗壳离心泵在不同工况下都能有效地平衡径向力,由于单出口双蜗壳泵内存在较为明显的压力脉动,导致其叶轮受到的径向力较大.  相似文献   

2.
压水室结构对离心泵径向力影响的数值分析   总被引:1,自引:0,他引:1  
采用SST k-ω湍流模型对不同压水室结构: 单蜗壳、双蜗壳、导叶和蜗壳匹配同一叶轮的离心泵进行定常和非定常数值模拟.根据数值计算结果比较并分析3种不同结构压水室离心泵外特性、定常和非定常径向力特性.结果表明,在全流量下,单蜗壳和双蜗壳离心泵流量-扬程曲线变化平缓,效率高效区较宽;单蜗壳离心泵径向力远大于其他2种形式离心泵;导叶式离心泵径向力方向随着流量增加基本不变,其他2种形式离心泵径向力方向随着流量的增加变化较大且从隔舌向蜗壳出口移动;单蜗壳离心泵和双蜗壳离心泵径向力整体变化趋势呈椭圆分布,导叶式离心泵径向力变化无规律性;单蜗壳离心泵径向力平衡较差,瞬态径向力幅度波动远大于其他2种形式离心泵.分析结果可对离心泵径向力的认识和设计提供依据.  相似文献   

3.
国外一种离心泵双蜗壳设计方法的介绍和分析   总被引:3,自引:0,他引:3  
双蜗壳作为一种用以平衡离心叶轮在非设计工况下运行时产生的径向力的压水室形式,阐述了其重要性;介绍了国外近期一种离心泵用双蜗壳的设计方法.以充分的试验结果为基础,给出了叶轮所受径向力的精确而详尽的计算统计公式;比较了双蜗壳与单蜗壳,以及不同结构形式的双蜗壳对叶轮径向力的平衡效果和双蜗壳的水力效率特性.同时,介绍了双蜗壳外侧等流量断面的两种设计绘形方法,即基于国外统计资料的速度系数法和基于速度矩守恒原则的数字积分方法.  相似文献   

4.
为研究两级中开泵双吸叶轮所受径向力,基于SST k-ω模型分别对原型泵和加入隔板后的两级中开泵进行数值模拟,获得了泵外特性、螺旋形压水室和双吸叶轮截面上的静压分布及作用在双吸叶轮上的径向力特性.研究结果表明:试验与数值计算外特性曲线趋势一致,表明建立的两级中开泵计算模型是可靠的;级间流道内隔板结构对二级压水室内部的静压影响不大,而双吸叶轮内部静压变化比较明显;隔板对外特性影响比较明显,加入隔板后扬程提高了9%~16%,效率最高增幅约为5%;在一个周期内不同工况下,叶轮所受径向力呈明显的规律性分布,即十角星分布,说明叶轮上径向力矢量分布跟叶轮与蜗壳的动静干涉作用相关;两级中开泵在0.6倍设计工况下径向力最小但不为0,在设计工况下有隔板结构的两级中开泵双吸叶轮所受径向力小于原型泵.  相似文献   

5.
为了研究离心式消防泵外特性、内流特性及空化特性,基于RNG k-ε湍流模型对某一比转数为24.7的离心式消防泵不同工况下的内部非定常流动进行数值模拟.结果表明:在关死点工况下,离心泵消防泵叶轮内部产生大量的失速旋涡,尤其在叶轮出口位置出现面积较大且极高湍动能的涡核分布,严重影响流道的通流能力,且造成较大的能量损失;随着流量增大,流道内的旋涡逐渐消失,流场趋于稳定,涡核分布基本保持稳定且对称;随着流量持续增大,离心式消防泵轴向力逐渐增大,在极小流量和极大流量工况下的轴向力波动相对较强;随着流量增大,径向力逐渐降低,且不同工况下径向力的矢量分布均呈现六齿形分布;随着流量的增大,离心式消防泵扬程特性曲线受空化的影响更加明显,随扬程曲线开始下降时的NPSHR也逐渐增大,但下降速度相对较慢.  相似文献   

6.
双吸离心泵径向力数值分析   总被引:3,自引:0,他引:3  
赵万勇  张亮  雒军 《排灌机械》2009,27(4):205-209
应用CFD软件对某型双吸离心泵的内部流场进行了数值计算,给出了不同工况下叶轮出口与蜗壳耦合面静压沿周向、轴向的分布规律.通过对比试验曲线与数值计算外特性曲线,发现两者比较吻合,相对误差小于5%,且数值计算叶轮出口周向压力分布曲线与试验曲线趋势一致.采用径向力出口压力法计算模型,计算了各工况下离心泵叶轮所受的径向力及其分量.结果表明:应用数值计算结果而建立的离心泵径向力计算模型具有一定的准确性.小流量工况时,径向力随流量的增加而减少;设计流量工况附近时,径向力达到最小值且不为0;大流量工况时,径向力随流量的增加而增加.  相似文献   

7.
基于标准k~ε湍流模型,应用ANSYS CFX 12.0软件,在原来微型电泵的螺旋形压水室的基础上重新设计了矩形断面的环形压水室,并对环形压水室做了两种改进方案,将4种不同的压水室与同一叶轮组合进行数值模拟与预测。计算结果表明,配环形压水室的微型电泵能够提高关死点扬程及泵的效率,使泵的高效点向大流量方向偏移,综合水力性能较优于螺旋形的电泵,而功率曲线却没有明显变化;采用环形压水室,叶轮四周具有较为均匀的静压,隔舌间隙变大,防止了流动的突然偏斜,使泵在变工况下运行效率变化不敏感,即能在较宽的工况区维持较高的泵效率;将环形压水室的断面轴面高度增加50%的微型电泵获得较优的水力性能,且小流量到额定工况点附近径向力小于螺旋形压水室;通过了试验验证,具有一定的可行性,且为企业节省了加工成本。  相似文献   

8.
为了改善单叶片泵的运行特性,降低径向受力不均匀性,采用数值计算与试验相结合的方法分析了单叶片离心泵径向力的动态特性.研究了3个不同流量工况(0.6Qd,1.0Qd和1.4Qd)下径向力的变化规律,结果表明,单叶片离心泵叶轮叶片工作面与背面所受压差是径向力产生的主要原因,并在小流量工况下径向力达到最值.通过对试验与数值模拟结果的分析对比,提出了平衡单叶片泵径向力的新方法-叶片开缝,并在叶片包角方向上选取3个不同位置(0°,90°和270°)布置宽度为1.0 mm的缝隙,分析了不同开缝位置对径向力及泵外特性的影响情况.结果表明:当在叶片尾缘开缝时,对泵的外特性影响较小,并可以较大降低单叶片离心泵叶片工作面和背面的压差,减小叶轮径向受力情况,提高单叶片泵的可靠性和使用寿命.  相似文献   

9.
双蜗壳泵压力脉动特性及叶轮径向力数值模   总被引:12,自引:3,他引:9  
为揭示双蜗壳离心泵的水力不稳定性,采用雷诺时均方法和SST k-ω湍流模型,对一双蜗壳双吸离心泵进行了三维非定常湍流数值模拟,得到了泵内部流场特性及双蜗壳内压力脉动情况.并对其进行了频谱分析.结果表明双蜗壳内存在比较明显的压力脉动.设计工况下压水室内的压力脉动强度小于非设计工况.在设计工况下,隔舌处和隔板区压力脉动频率均以叶片通过频率为主,其中隔板起始端的脉动幅值最大,约为隔舌处的2.5倍.在大流量工况下,隔舌处和隔板起始端压力脉动频率以叶片通过频率为主,而小流量工况下以叶轮转顿为主.叶轮受到的径向力随着叶轮的旋转呈现不稳定性,其中小流量工况时最明显.3种工况下径向力均指向隔板起始端侧.  相似文献   

10.
为了定量研究诱导轮对高速离心泵内部流场和性能的影响,分别对有诱导轮和无诱导轮的高速离心泵进行三维非定常全流道数值模拟,并获得其压力脉动特性和作用在叶轮上的径向力分布。通过对比分析发现诱导轮产生的扬程提高了叶轮进口压力,从而提升泵的抗汽蚀性能并且能增大泵的扬程,但对效率有一定影响。模拟结果还表明,有、无诱导轮的高速离心泵内压力脉动均主要是由于叶轮和蜗壳动静干涉产生,且主频与叶频相一致,加装诱导轮对泵内的压力脉动频率分布影响较小,幅值在小流量下有所增大而设计流量和大流量下则有所降低。加装诱导轮之后,设计工况和小流量下叶轮受到的径向力的均值与最大值都比无诱导轮模型泵稍大,其中设计工况下均值和最大值分别增大15.13%和18.4%。  相似文献   

11.
为研究蜗壳结构对液力透平径向力的影响,以某化工厂XWT 500-18型液力透平为研究对象,采用SST k-ω湍流模型和边界层网格,对单蜗壳、双蜗壳匹配同一叶轮的液力透平进行内部流场数值模拟.根据数值计算结果对比分析2种不同蜗壳结构液力透平的外特性、压力分布、径向力特性.结果表明,在全工况内,单、双蜗壳透平的水头、轴功率接近,双蜗壳结构并无性能优势;双蜗壳结构由于隔板的存在使得叶轮进口附近的静压分布不如单蜗壳的均匀;在最优工况点下,单蜗壳透平的径向力最小,约为双蜗壳的一半,双蜗壳液力透平的径向力水平大于单蜗壳液力透平,双蜗壳液力透平径向力平衡较差;单、双蜗壳液力透平径向力方向与隔舌夹角在小流量下变化较大,在大流量下变化较小.分析结果可对液力透平径向力的认识和蜗壳设计提供参考.  相似文献   

12.
针对某泵站S700-500-730型双吸离心泵运行时引发的断轴问题,采用CFD数值模拟方法,通过与蜗壳断面面积线性变化规律(以下简称L-规律)进行对比,分析了原型泵采用的蜗壳断面面积变化规律(以下简称Y-规律)对水力性能以及径向力的影响.结果表明:在定常工况下,2种规律的双吸离心泵在设计工况下水力性能相近,相较于L-规律方案,采用Y-规律设计的蜗壳作用在叶轮上的径向力增大高达24.77%;在非设计工况下,相较于L-规律方案,采用Y-规律设计的蜗壳水力性能更加优越,但是作用在叶轮上的径向力要高于采用L-规律方案时作用在叶轮上的径向力;在非定常工况下,Y-规律方案的脉动幅值以及高频脉动都要比采用L-规律方案设计时明显得多.蜗壳断面面积变化规律对作用在叶轮上的径向力影响显著.研究结果可为解决由于径向力过大导致断轴问题提供一定的理论依据.  相似文献   

13.
为探究蜗壳内隔板长度对紧凑型高速磁力泵外特性与叶轮径向力的影响,根据蜗壳型式及隔板长度的不同提出6种蜗壳方案.设单蜗壳为方案一,其余双蜗壳方案根据隔板长度从小到大依次设为方案二至方案六.采用ANSYS-CFX软件对不同工况下(0.8Qd,1.0Qd,1.2Qd)各蜗壳方案泵内流场进行数值模拟,得到不同蜗壳方案的泵中心面静压分布云图,并进行径向力分析.采用方案四蜗壳作为泵实型样机进行试验,将试验值与计算结果进行对比.研究结果表明:相较于无隔板的单蜗壳泵,采用有隔板的双蜗壳泵有利于平衡叶轮径向力,在额定流量下单蜗壳在x,y方向的径向力最大分量分别为151.2,149.7 N,是双蜗壳方案四的1.5倍;随着隔板长度的增大,泵的扬程与效率均逐渐提高,叶轮径向力不断减小,3种工况下扬程的模拟值与试验值偏差均小于3.0%;试验表明数值计算结果具有可信性,研究结果可为紧凑型高速磁力泵在提高水力性能以及平衡叶轮径向力方面提供一定参考.  相似文献   

14.
为分析叶轮直径对双蜗壳离心泵压力脉动特性的影响,采用SST k-ω湍流模型和SIMPLEC算法对不同叶轮直径下的双蜗壳离心泵进行数值计算,将外特性参数试验结果与计算结果进行对比。研究表明,离心泵外特性参数(扬程H与输出功率P)随直径变化是等梯度的,并且计算值与试验值基本吻合;小流量工况下压力脉动幅值高于其他流量工况,叶轮直径变化会使叶片弯曲度发生改变,受动静干涉以及射流-尾迹的影响会出现脉动叠加现象,从而在叶片通过频率的倍频处(3fBPF或4fBPF)产生高幅值脉动;隔舌区域流动混合现象最为明显,且除D^2/D2=1(模型3)以外,隔舌位置处的压力脉动峰值均出现在叶片通过频率处。对于所选取的模型,除过隔舌区域监测点之外的其他监测点处压力脉动峰值处的脉动幅值随叶轮直径增大逐渐增大,且最大幅值波动达到23.8%。叶轮直径变化时射流-尾迹与动静干涉作用对离心泵内部压力脉动特性有重要影响。  相似文献   

15.
双蜗壳可减小离心泵的叶轮径向力,但数值模拟及试验结果均表明,不合理的隔板设计会导致双蜗壳泵较单蜗壳泵在原设计工况点处的扬程、效率分别相对下降21.8%和41.3%,不能满足实际工程需要.对隔板重新进行优化设计,取隔板起始位置、曲线方程中的常数、蜗壳第Ⅷ断面至隔板末端的长度3个参数为影响因素,每个因素各取两个水平,制定L (2 )标准正交试验,并对每一试验方案进行数值模拟,试验结果表明隔板起始位置(因素A)对泵的水力性能和径向力影响最为显著.由正交试验得到隔板的最优方案,并对其构成的双蜗壳泵进行内部流场分析和试验验证.结果表明:最优隔板应为隔板起始位置旋转至与蜗壳隔舌成180°对称结构、曲线方程中的常数为蜗壳基圆半径、隔板终止位置与隔舌处于同一铅直线,由此隔板构成的双蜗壳泵在保持泵原有的水力性能的同时,平均削减1/2的叶轮径向力.  相似文献   

16.
基于大涡模拟的离心泵蜗壳内压力脉动特性分析   总被引:3,自引:0,他引:3  
为了研究由离心泵内部非定常流动引起的蜗壳流道内的压力脉动这一现象及其特性,针对带有三长三短叶片叶轮的离心泵,采用大涡模拟方法计算包括吸水室、叶轮和蜗壳全流道的流场,获得蜗壳流道压力脉动分布特性,并对其进行了频域和时域分析.结果表明:由于叶片和蜗壳的动静相干作用,蜗壳内的压力脉动比较明显;在设计工况下,叶轮与蜗壳交界面周向上的隔舌处脉动最大;蜗壳内各监测点压力脉动的主频都是长叶片的通过频率,次主频为叶片的通过频率;蜗壳流道不同断面上的压力脉动基本一致,而扩压管内的压力脉动要比螺旋段的更有规律性;设计工况下,蜗壳内压力脉动没有明显的高频成分.  相似文献   

17.
带小叶片螺旋离心泵压力脉动特性分析   总被引:5,自引:0,他引:5  
为了研究带小叶片的单叶片螺旋离心泵压力脉动特性,采用Navier-Stokes方程和标准的k-ε湍流模型对带小叶片和单叶片的螺旋离心泵的内部流场进行非定常数值计算。通过模拟分别获得了带小叶片和单叶片的螺旋离心泵蜗壳出口以及蜗壳内部压力脉动特性,并对其进行对比分析。结果表明:各个工况下,带小叶片和单叶片的螺旋离心泵蜗壳出口以及蜗壳内部压力脉动特性呈周期性变化,且主频均为各自叶片通过频率,压力波动的幅度大部分集中在低频区域;采用小叶片后周期变为原模型周期的一半,蜗壳及蜗壳内部出口压力波动的幅度明显减小,脉动幅值也明显减小,且高频脉动有所减少。研究表明单叶片螺旋离心泵叶轮小叶片的添加可以有效改善泵内部压力脉动特性,且对降低蜗壳上的振动噪声有一定积极作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号