首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.  相似文献   

2.
The present study was designated to evaluate the antimicrobial and antioxidant activities of the essential oil, obtained by using a Clevenger distillation apparatus, water soluble (polar) and water insoluble (nonpolar) subfractions of the methanol extracts from aerial parts of Satureja hortensis L. plants, and methanol extract from calli established from the seeds using Gamborg's B5 basal media supplemented with indole-3-butyric acid (1.0 ppm), 6-benzylaminopurine (N(6)-benzyladenine) (1.0 ppm), and sucrose (2.5%). The antimicrobial test results showed that the essential oil of S. hortensis had great potential antimicrobial activities against all 23 bacteria and 15 fungi and yeast species tested. In contrast, the methanol extract from callus cultures and water soluble subfraction of the methanol extract did not show antimicrobial activities, but the nonpolar subfraction had antibacterial activity against only five out of 23 bacterial species, which were Bacillus subtilis, Enterococcus fecalis, Pseudomonas aeruginosa, Salmonella enteritidis, and Streptococcus pyogenes. Antioxidant studies suggested that the polar subfractions of the methanol extract of intact plant and methanol extract of callus cultures were able to reduce the stable free radical 2,2-diphenyl-1-picrylhydrazyl to the yellow-colored diphenylpicrylhydrazine. In this assay, the strongest effect was observed for the tissue culture extract, with an IC(50) value of 23.76 +/- 0.80 microgram/mL, which could be compared with the synthetic antioxidant agent butylated hydroxytoluene. On the other hand, linoleic acid oxidation was 95% inhibited in the presence of the essential oil while the inhibition was 90% with the chloroform subfraction of the intact plant. The chemical composition of a hydrodistilled essential oil of S. hortensis was analyzed by gas chromatography (GC)/flame ionization detection (FID) and a GC-mass spectrometry system. A total 22 constituents representing 99.9% of the essential oil were identified by GC-FID analaysis. Thymol (29.0%), carvacrol (26.5%), gamma-terpinene (22.6%), and p-cymene (9.3%) were the main components.  相似文献   

3.
The chemical composition of the aerial and root essential oils, hydrodistilled from Artemisia absinthium L. and Artemisia vulgaris L. (wild-growing populations from Serbia), were studied by gas chromatography, gas chromatography-mass spectrometry, and 13C nuclear magnetic resonance. During the storage of plant material under controlled conditions, a significant decrease of essential oil yields (isolated directly after drying and after 1 year of storage) and significant differences in their chemical compositions were observed. A possible mechanism for the observed oil component interconversion has been discussed. The noticeable differences in the chemical composition of the oils isolated from roots and aerial parts of A. absinthium and A. vulgaris were also correlated with the diverging biosynthetic pathways of volatiles in the respective plant organs. The antimicrobial activities against the common human pathogens of all of the isolated oils were tested according to National Committee on Clinical Laboratory Standards. The oils showed a broad spectrum of antimicrobial activity against the tested strains. Therefore, these oils can be used as flavor and fragrance ingredients.  相似文献   

4.
Bioactivity of Backhousia citriodora: antibacterial and antifungal activity   总被引:2,自引:0,他引:2  
Backhousia citriodora products are used as bushfoods and flavorings and by the aromatherapy industry. The antimicrobial activity of 4 samples of B. citriodora oil, leaf paste, commercial tea (0.2 and 0.02 g/mL), and hydrosol (aqueous distillate) were tested against 13 bacteria and 8 fungi. Little or no activity was found to be associated with the leaf tea and hydrosol, respectively. Leaf paste displayed antimicrobial activity against 7 bacteria including Clostridium perfringens, Pseudomonas aeruginosa, and a hospital isolate of methicillin resistant Staphylococcus aureus (MRSA). The 4 essential oils were found to be effective antibacterial and antifungal agents; however, variation was apparent between oils that did not correlate with citral content. The antimicrobial activity of B. citriodoraessential oils was found to be greater than that of citral alone and often superior to Melaleuca alternifolia essential oil. B. citriodora has significant antimicrobial activity that has potential as an antiseptic or surface disinfectant or for inclusion in foods as a natural antimicrobial agent.  相似文献   

5.
We evaluated 17 plant essential oils and nine oil compounds for antibacterial activity against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in apple juices in a bactericidal assay in terms of % of the sample that resulted in a 50% decrease in the number of bacteria (BA(50)). The 10 compounds most active against E. coli (60 min BA(50) range in clear juice, 0.018-0.093%) were carvacrol, oregano oil, geraniol, eugenol, cinnamon leaf oil, citral, clove bud oil, lemongrass oil, cinnamon bark oil, and lemon oil. The corresponding compounds against S. enterica (BA(50) range, 0.0044-0.011%) were Melissa oil, carvacrol, oregano oil, terpeineol, geraniol, lemon oil, citral, lemongrass oil, cinnamon leaf oil, and linalool. The activity (i) was greater for S. enterica than for E. coli, (ii) increased with incubation temperature and storage time, and (iii) was not affected by the acidity of the juices. The antibacterial agents could be divided into two classes: fast-acting and slow-acting. High-performance liquid chromatography analysis showed that the bactericidal results are related to the composition of the oils. These studies provide information about new ways to protect apple juice and other foods against human pathogens.  相似文献   

6.
The presence of antiadhesive component(s) in the hen egg yolk against foodborne pathogens was anticipated from results of a previous animal study conducted by the authors. The previous work showed egg yolk powder without specific antibodies is effective in controlling Salmonella enteritidis,Salmonella typhimurium, and Escherichia coli O157:H7 colonization in laying hens. Therefore, this study was necessary to locate the activity and identify the effective component(s). In vitro experiments were conducted using confluent Caco-2 cell monolayers. S. enteritidis, S. typhimurium, and E. coli O157:H7 were investigated against the various extracted granule and plasma fractions in three different assays: adhesion elimination, adhesion prevention, and antimicrobial. This study revealed original findings and identified the protective yolk fraction against the foodborne pathogens as the granule component, high-density lipoproteins (HDL). The protective activity conveyed by HDL was confirmed to remain intact despite peptic and tryptic enzymatic digestion and to have antiadhesive but not antimicrobial effect.  相似文献   

7.
Essential oils of Salvia macrochlamys and Salvia recognita were obtained by hydrodistillation of dried aerial parts and characterized by gas chromatography and gas chromatography-mass spectrometry. One hundred and twenty identified constituents representing 97.7% in S. macrochlamys and 96.4% in S. recognita were characterized, and 1,8-cineole, borneol, and camphor were identified as major components of the essential oils. The oils were evaluated for their antimalarial, antimicrobial, and antifungal activities. Antifungal activity of the essential oils from both Salvia species was nonselective at inhibiting growth and development of reproductive stroma of the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. S. macrochlamys oil had good antimycobacterial activity against Mycobacterium intracellulare; however, the oils showed no antimicrobial activity against human pathogenic bacteria or fungi up to a concentration of 200 microg/mL. S. recognita oil exhibited a weak antimalarial activity against Plasmodium falciparum.  相似文献   

8.
The antioxidant activity of a commercial rectified clove leaf essential oil (Eugenia caryophyllus) and its main constituent eugenol was tested. This essential oil comprises in total 23 identified constituents, among them eugenol (76.8%), followed by beta-caryophyllene (17.4%), alpha-humulene (2.1%), and eugenyl acetate (1.2%) as the main components. The essential oil from clove demonstrated scavenging activity against the 2,2-diphenyl-1-picryl hydracyl (DPPH) radical at concentrations lower than the concentrations of eugenol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA). This essential oil also showed a significant inhibitory effect against hydroxyl radicals and acted as an iron chelator. With respect to the lipid peroxidation, the inhibitory activity of clove oil determined using a linoleic acid emulsion system indicated a higher antioxidant activity than the standard BHT.  相似文献   

9.
The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.  相似文献   

10.
Two strains of Pediococcus pentosaceus were isolated from refrigerated pork and found to produce antimicrobial substances that may inhibit foodborne pathogens and have potential as natural food preservatives. They were named P. pentosaceus L and S. The antimicrobial substances were purified to electrophoretical homogeneity by chloroform extraction and designated pentocins L and S with molecular masses (M) of 27 and 25 kDa, respectively. Both pentocins also had broad inhibition spectra and were thermostable. They inhibit the growth of tested spore-forming G+ and G- strains and the germination of Bacillus subtilis ATCC 10225, B. subtilis ATCC 10254, and Bacillus cereus ATCC 11778 spores. The inhibition activities decreased as the glucose in the medium decreased from 8.0 to 2.0%.  相似文献   

11.
Scutellaria baicalensis Georgi (SBG), commonly named Huangqin, showed strong in vitro antimicrobial effects. However, limited research is available to systematically evaluate the effects of extraction methods on the phytochemical composition of SBG and its associated antimicrobial effects. In addition, limited studies have tested SBG as a natural antimicrobial agent on fresh produce such as tomatoes. In the current study, powered roots of SBG were extracted with 60, 80, and 100% ethanol, and their antiviral and antibacterial activities were evaluated. SBG ethanol extracts (SBGEEs) at 6.25 mg/mL showed limited antiviral activities against coliphage MS2 and hepatitis A virus. The SBG 80% ethanol extract (SBG80%EE) exhibited the lowest minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) against six foodborne pathogens. SBG80%EE had the highest contents of flavonoids and phenolic acids determined by high-performance liquid chromatography (HPLC). Among these bioactive compounds, ferulic acid had the lowest MIC and MBC values, 0.4 and 1.0 mg/mL, respectively, followed by baicalein and baicalin. Washing with SBG80%EE (12.5 mg/mL) resulted in >1 log reduction of Salmonella enterica serovars Typhimurium, Kentucky, Senftenberg, and Enteritidis on surface-inoculated grape tomatoes. None of SBGEE solutions changed the total phenolic content, color, or pH values of grape tomatoes. The quantification of these antimicrobial flavonoids and phenolic acids is important to maintain the quality and antimicrobial efficacy of SBG extracts. In addition, the application of SBG on tomatoes has provided valuable insights on the potential usage of this antimicrobial extract.  相似文献   

12.
Essential oil of Haplopappus greenei A. Gray was obtained by hydrodistillation of aerial parts, which were subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. Major components were identified as carvacrol (8.7%), beta-pinene (7.6%), trans-pinocarveol (6.2%), and caryophyllene oxide (5.8%), respectively. In total, 104 components representing 84.9% of the investigated essential oil were characterized. Furthermore, the essential oil was evaluated for antimalarial, antimicrobial, and antifungal activities. However, only antifungal activity was observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides using the direct overlay bioautography assay. Major essential oil components were also evaluated for antifungal activity; the carvacrol standard demonstrated nonselective activity against the three Colletotrichum species and the other compounds were inactive.  相似文献   

13.
Essential oils were extracted from the fruits of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) and assayed in vitro for antibacterial activity to Escherichia coli and Bacillus megaterium, bacteria routinely used for comparison in the antimicrobial assays, and 27 phytopathogenic bacterial species and two mycopathogenic ones responsible for cultivated mushroom diseases. A significant antibacterial activity, as determined with the agar diffusion method, was shown by C. sativum essential oil whereas a much reduced effect was observed for F. vulgare var. vulgare oil. C. sativum and F. vulgare var. vulgare essential oils may be useful natural bactericides for the control of bacterial diseases of plants and for seed treatment, in particular, in organic agriculture. The significant antibacterial activity of essential oils to the bacterial pathogens of mushrooms appears promising.  相似文献   

14.
The essential oil, obtained by using a Clevenger distillation apparatus, and water-soluble (polar) and water-insoluble (nonpolar) subfractions of the methanol extract of Thymus pectinatus Fisch. et Mey. var. pectinatus were assayed for their antimicrobial and antioxidant properties. No (or slight) antimicrobial activity was observed when the subfractions were tested, whereas the essential oil showed strong antimicrobial activity against all microorganisms tested. Antioxidant activities of the polar subfraction and the essential oil were evaluated using 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide radical scavenging, and lipid peroxidation assays. The essential oil, in particular, and the polar subfraction of the methanol extract showed antioxidant activity. The essential oil was analyzed by GC/MS, and 24 compounds, representing 99.6% of the essential oil, were identified: thymol, gamma-terpinene, p-cymene, carvacrol, and borneol were the main components. An antimicrobial activity test carried out with fractions of the essential oil showed that the activity was mainly observed in those fractions containing thymol, in particular, and carvacrol. The activity was, therefore, attributed to the presence of these compounds. Other constituents of the essential oil, such as borneol, gamma-terpinene, and p-cymene, could be also taken into account for their possible synergistic or antagonistic effects. On the other hand, thymol and carvacrol were individually found to possess weaker antioxidant activity than the crude oil itself, indicating that other constituents of the essential oil may contribute to the antioxidant activity observed. In conclusion, the results presented here show that T. pectinatus essential oil could be considered as a natural antimicrobial and antioxidant source.  相似文献   

15.
The essential oil of long-time stored seeds of dill (Anethum graveolens L.) from Bulgaria was analyzed by physicochemical methods, gas chromatography (GC), GC-mass spectrometry (MS) (achiral and chiral phases), and olfactometry, and its antimicrobial activity was tested by using different strains of microorganisms. More than 40 constituents of the essential dill oil, obtained from seeds stored for more than 35 years, could be identified as essential volatiles, responsible for the pleasant fresh (D-limonene) and spicy (D-carvone) odor of a high quality. As aroma impact compounds, D-carvone (50.1%) and D-limonene (44.1%) were found. Antimicrobial testings showed high activity of the essential A. graveolens oil against the mold Aspergillus niger and the yeasts Saccharomyces cerevisiae and Candida albicans.  相似文献   

16.
The volatile composition of the essential oils from leaves and roots of Eupatorium betonicaeforme (D.C.) Baker was analyzed by GC-MS. A total of 12 compounds were identified. beta-Caryophyllene (12.4-41.7%), alpha-humulene (11.7-14.6%), gamma-muurolene (10.4-19.0%), bicyclogermacrene (15.0-17.5%), 2,2-dimethyl-6-vinylchroman-4-one (10.3-25.5%), and 2-senecioyl-4-vinylphenol (8.5-41.0%) were the most prominent constituents. The former two compounds were isolated and characterized by spectroscopic data. The essential oils and the isolated compounds were tested against Aedes aegypti larvae survival. The results obtained show that the essential oil from roots and 2,2-dimethyl-6-vinylchroman-4-one (10.3-25.5%) could be considered as natural larvicidal agents.  相似文献   

17.
Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.  相似文献   

18.
A new active paper package based on the incorporation of cinnamon essential oil to solid wax paraffin as an active coating is proposed, developed, and evaluated. The antifungal activity of the active paper is tested against Rhizopusstolonifer, and the results demonstrate that 6% (w/w) of the essential oil in the active coating formulation completely inhibits the growth of R. stolonifer, whereas 4% still has strong antimicrobial activity in in vitro conditions. Then, active paper is evaluated with actual food, sliced bread, using different storage times. After 3 days of storage, almost complete inhibition is obtained with 6% cinnamon essential oil. Qualitative analysis by solid-phase microextraction and determination of cinnamaldehyde in the sliced bread were also performed and confirmed the strong correspondence between the inhibition of the mold and the amount of cinnamaldehyde in the bread.  相似文献   

19.
The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.  相似文献   

20.
The aim of the study presented here was to gain knowledge about the vapor-phase antimicrobial activity of selected essential oils and their major putatively active constituents against a range of foodborne bacterial and fungal strains. In a first step, the vapor-phase antimicrobial activities of three commercially available essential oils (EOs)-cinnamon (Cinnamomum zeylanicum), thyme (Thymus vulgaris), and oregano (Origanum vulgare)-were evaluated against a wide range of microorganisms, including Gram-negative bacteria (Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Salmonella choleraesuis), Gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis), molds (Penicillium islandicum and Aspergillus flavus), and a yeast (Candida albicans). The minimum inhibitory concentrations (MICs) were generally lower for oregano EO than for the thyme and cinnamon EOs, especially against the relatively resistant Gram-negative. The persistence of the EOs' antimicrobial activities over time was assessed, and changes in the composition of the atmosphere they generated over time were determined using single-drop microextraction (SDME) in combination with gas chromatography-mass spectrometry (GC-MS) and subsequent analysis of the data by principal component analysis (PCA). More relevant chemicals were selected. In addition, the vapor-phase activities of putatively key constituents of the oils were screened against representative Gram-positive (L. monocytogenes) and Gram-negative (S. choleraesuis) bacteria, a mold (A. flavus), and a yeast (C. albicans). Of the tested compounds, cinnamaldehyde, thymol, and carvacrol showed the strongest antimicrobial effectiveness, so their MICs, defined as the minimum vapor concentrations that completely inhibited detectable growth of the microorganisms, were calculated. To check for possible interactions between components present in the EOs, cinnamon EO was fortified with cinnamaldehyde and thyme EO with thymol, and then the antimicrobial activities of the fortified oils were compared to those of the respective unfortified EOs using fractional inhibitory concentration (FIC) indices and by plotting inhibition curves as functions of the vapor-phase concentrations. Synergistic effects were detected for cinnamaldehyde on A. flavus and for thymol on L. monocytogenes, S. choleraesuis, and A. flavus. In all other cases the fortification had additive effects, except for cinnamaldehyde's activity against S. choleraesuis, for which the effect was antagonistic. Finally, various microorganisms were found to cause slight changes over time to the atmospheres generated by all of the EOs (fortified and unfortified) except the fortified cinnamon EO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号