首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 208 sows and 288 gilts (PIC line C29) were used to determine the influence of feeding frequency (2 vs. 6 times/d, floor fed) on performance and welfare measurements on a commercial sow farm. Treatments consisted of feeding similar amounts of feed to each sow (2.5 kg) or gilt (2.05 kg) over 2 (0700 and 1530) or 6 times daily (0700, 0730, 0800, 1530, 1600, and 1630). There were 8 sows or 12 gilts in each pen. Gilts and sows were moved to pens 1 to 4 d after breeding. In sows, there were no differences (P > 0.10) in ADG, backfat change, or variation in BW. There was a trend (P < 0.08) for sows fed twice daily to farrow more total pigs born, but number born alive or other reproductive performance traits were not different (P > 0.10) among treatments. Sows fed 6 times per day had increased vocalization during the morning (P < 0.07) and afternoon (P < 0.01) feeding periods compared with sows fed twice daily. Sows fed twice daily had more skin (P < 0.01) and vulva (P < 0.04) lesions as well as a small increase in feet and leg (P < 0.01) and hoof (P < 0.02) problems. In this commercial facility, the standard management protocol required moving gilts to a different gestation facility on d 42. On d 42, two pens of gilts with similar breeding dates and treatment were combined and moved to another facility with larger pens until farrowing. Gilts fed 6 times daily had a tendency for greater ADG (P < 0.07) from d 0 to 42 and a tendency for greater (P < 0.09) backfat on d 42. After movement to the larger groups from d 42 to farrowing, ADG was similar (P > 0.10) for gilts fed 2 or 6 times daily. Gilts fed twice daily had lower BW variation at d 42 (P < 0.04) and tended to at farrowing (P < 0.10). In gilts, there were no differences (P > 0.10) for reproductive performance, skin and vulva lesions, and feet and leg scores. In conclusion, there were few growth, farrowing, or aggression differences among gilts fed 2 or 6 times daily. This suggests that either feeding method is suitable for group-housed gilts. Among sows, feeding frequency resulted in few growth or farrowing performance differences. Feeding 6 times daily resulted in a small but significant reduction in skin and vulva lesions and structural problem scores while increasing vocalization. Increasing the feeding frequency from 2 to 6 times daily does not appear to have a negative or positive impact on performance or welfare of group-housed gilts and sows.  相似文献   

2.
The effect of feeding sows a starch diet or a diet with a high level of nonstarch polysaccharides (NSP) during gestation, lactation, or both gestation and lactation during the first three parities on reproductive performance, body weight, and backfat was studied. Four-hundred and forty-four postpuberal gilts were allotted to a 2 x 2 x 2 factorial experiment. Treatments were diet composition during gestation (including the weaning-to-estrus interval; G-Starch: 274 g/kg of starch and 123 g/kg of fermentable NSP or G-NSP: 86 g/kg of starch and 300 g/kg of fermentable NSP), diet composition during lactation (L-Starch: 293 g/kg of starch and 113 g/kg of fermentable NSP or L-NSP: 189 g/kg of starch and 216 g/kg of fermentable NSP) and group-housing system during gestation (free access stalls or electronic feeding). Both gestation diets were formulated to be isoenergetic. During lactation, sows were given free access to the lactation diets from d 6 after parturition onwards. Body weight and backfat gains during gestation were lower in sows fed the G-NSP diet than in those fed the G-starch diet (P < 0.001). The effects were more pronounced in the electronic feeding system than in the free access stalls. These results indicate an overestimation of the energy value of fermentable NSP. Body weight and backfat losses during lactation were less in sows fed the G-NSP diet during gestation than in those fed the G-starch diet (P < 0.05),which can be explained by a 0.4 kg/d higher (P < 0.001) feed intake during lactation of the sows fed the G-NSP diet. Sows fed the L-NSP diet lost more backfat during lactation than sows fed the L-starch diet (P < 0.05). The number of total piglets born and live-born piglets was 0.5 piglet higher in sows fed the G-NSP diet than in those fed the G-starch diet (P < 0.05). Lactation diet did not affect the number of total piglets born or live-born piglets. This study shows that, although high NSP diets negatively influence body weight and backfat thickness of the sows, it is possible to feed sows a diet with a high level of fermentable NSP diet during both gestation and lactation without negative effects on reproductive performance. Under the conditions of this study, feeding sows a diet with a high level of fermentable NSP during gestation and a high level of starch during lactation seems the most favorable feeding strategy.  相似文献   

3.
The primary objective of this study was to determine the effects of supplemental dietary fat during lactation on sow BW, sow backfat thickness, sow feed consumption, litter size, and pig growth rate. Dietary treatments included 0, 3, 6, and 9% supplemental low acid yellow fat in a traditional corn-soybean meal basal lactation diet. A total of 160 Landrace and crossbred sows (approximately 40 per treatment) were included in the study. Sows fed 3 and 6% supplemental fat had greater (P<0.10) average backfat thickness at weaning. Sow weight change and feed consumption were inconsistent among dietary fat levels. Dietary fat level during lactation did not affect number of pigs born alive or number of stillborns. However, the 9% fat level was associated with more mummified pigs at birth. Number of pigs weaned was greater for the 0% supplemental fat than for the 9% fat level. The largest average pig weights at 21 (5.8±0.29 kg) and 28 (7.48±0.38) d of age were those from sows fed the 3% added fat diet. Sows with ≤25.4 mm backfat at farrowing had more pigs born alive (P<0.05), had less backfat at 21 and 28 d of lactation (P<0.05), and consumed more feed during wk 2 and 3 of lactation. Of all sows fed the control diet, sows with >25.4 mm backfat at farrowing consistently had heavier pigs throughout the lactation phase (P<0.05). Backfat loss during lactation was lower (P<0.05) for sows with ≤25.4 mm at farrowing within all dietary treatments. Consistent significant differences were not observed in sow weight loss or feed consumption between low and high backfat sows for each dietary treatment. Sow backfat loss during lactation is dependent on body condition at farrowing, in that, fatter sows at farrowing have greater backfat loss during lactation. Sows with ≤25.4 mm of backfat at farrowing responded to added dietary fat treatments and produced heavier pigs throughout the lactation period.  相似文献   

4.
Ninety-one primiparous and multiparous sows and their pigs were used to evaluate the effects of a novel carbohydrate- and protein-based feed ingredient (Nutri-Pal, NP) on sow and litter performance during lactation. Nutri-Pal is a feed supplement for sows that consists of a blend of milk chocolate, brewer's yeast, whey products, and glucooligosaccharides. The dietary treatments consisted of a corn-soybean meal control and a corn-soybean meal plus 5% NP fed from d 110 of gestation to weaning. The diets were formulated to be equal in total Lys and ME. Sows were allotted to treatment based on parity, body weight, and the date of d 110 of gestation. There were 46 and 45 sows per treatment over four farrowing groups. Litters were standardized to 10 pigs and weighed within 1 d of farrowing, and all sows weaned at least 8 pigs at an average age of 21 d. Sows were weighed on d 110 of gestation, d 1 postfarrowing, and at weaning. Sows were fed three times daily during lactation. Sows were checked twice daily after weaning for signs of estrus. The weaning weight of sows fed NP was increased (P < 0.10) compared with those fed the control diet. Sows fed the control diet tended (P = 0.11) to lose more weight per day from d 110 of gestation to weaning than the sows fed NP. Otherwise, sow response variables (sow weight on d 110 of gestation and d 1 postfarrowing, d 110 of gestation to d 1 postfarrowing and lactation weight change per day, d 110 of gestation to d 1 postfarrowing, lactation, and total feed intake, days to estrus, pigs born alive or dead, and litter and average pig birth weight) were not affected (P > 0.10) by diet. There were no effects (P > 0.10) of diet on litter performance response variables (pigs weaned, litter and average pig weaning weight and gain, and survival percent). The NP feed ingredient had minor effects on sow productivity, but it did not affect litter productivity indices.  相似文献   

5.
Modern sows are younger and leaner at time of mating and probably have poorer appetites than sows of 10 to 15 years ago. Therefore, feeding strategies should aim to minimize weight loss and maintain a sow's body condition throughout her reproductive life. The efficiency with which gilts are introduced into the breeding herd is as important in economic terms as is the efficiency with which the sow returns to estrus after weaning. Gilts should be selected at 50 to 60 kg, and fed a 16% protein diet ad libitum until mated at their second estrus, when they weigh 115 to 120 kg and have 17 to 20 mm backfat. Flushing gilts before the onset of second or third estrus increases ovulation rate of restricted gilts to the levels achieved by gilts fed ad libitum. During gestation, maintenance represents 75 to 85% of total energy requirements. The aim should be to achieve 20 to 25 mm backfat at farrowing. Increased feed intake from day 2 to 3 after mating will not increase embryo mortality. Feeding an extra 1 kg feed/sow/day for the last 10 days of gestation increases piglet birth weight slightly and prevents a loss of 1.5 to 2.0 mm of sow backfat. Wherever possible, sows should be fed ad libitum from the day after farrowing until weaning. Reduced feed intake by lactating sows, for whatever reason, results in excessive weight and condition loss. Excessive weight loss in lactation causes extended remating intervals, a lower percentage of sows returning to estrus within 10 days of weaning, reduced pregnancy rate, and reduced embryo survival. Ovulation rate is not affected by level of feed intake in lactation. It has been suggested that sows will have minimum weaning-to-service intervals when they weigh 150 kg or more at weaning. It is likely that the sow must be anabolic for about 10 days before she will exhibit postweaning estrus. The decision when to rebreed is made some time prior to weaning and is mediated by a host of substrates, hormones, and neurotransmitters. Sows with a delayed return to estrus also have a lower pregnancy rate and smaller subsequent litters. If sows lose considerable weight or condition during lactation, a high level of feeding in the postweaning period will improve embryo survival.  相似文献   

6.
This study was conducted to investigate the effects of feeding sows a bulky diet during gestation on their physiological and metabolic adaptations during the peripartum period, and to determine how these effects may relate to sow and piglet performances. From d 26 of gestation until farrowing, gilts were fed diets that contained 2.8 or 11.0% crude fiber (control and high-fiber diets, respectively, n = 9/group). Daily feed allowance provided the same amount of DE daily (33 MJ of DE/d). Throughout lactation, sows were allowed to consume a standard lactating sow diet ad libitum. Litters were standardized to 12 piglets beyond 48 h after birth. On d 105 of gestation, a jugular catheter was surgically implanted. Preprandial blood samples were collected from d 109 of gestation to the day after farrowing and on d 4, 18, and 26 of lactation. Meal tests and glucose tolerance tests were performed on d 109 of gestation and d 4 and 18 of lactation. During gestation, BW and backfat gain did not differ between treatment groups. During lactation, sows fed the high-fiber diet ate an average of 0.94 kg/d more than control sows (P < 0.02). Piglets born from sows fed the high-fiber diet grew faster than piglets from control sows (P = 0.03). Body weight and backfat losses did not differ between the 2 treatment groups. Sows fed the high-fiber diet during gestation had lesser concentrations of leptin before farrowing than control sows (P < 0.01). Leptin concentrations were negatively correlated with feed intake during lactation (P < 0.05). The prepartal increase in prolactin concentrations tended to be greater in sows fed the high-fiber diet than in control sows (P < 0.1). Preprandial concentrations of glucose, NEFA, lactate, and IGF-I fluctuated over time without significant treatment effect. Glucose half-life was shorter in late gestation than during both stages of lactation, but did not differ between sows in the 2 groups. In late gestation, the postprandial increases in glucose and insulin were delayed, and smaller, after a high-fiber meal than after a control meal. During lactation, glucose and insulin profiles after a standard meal did not differ between sows from treatment groups. In conclusion, the greater appetite of lactating sows fed a high-fiber diet during gestation does not seem related to changes in glucose and insulin metabolism and may be partly due to decreased secretion of leptin. The greater feed consumption was accompanied by a faster growth rate of piglets without sparing effect on maternal body reserves.  相似文献   

7.
The objective of this experiment was to study the effects of feeding group-housed gestating sows a diet with a high level of fermentable nonstarch polysaccharides (NSP; approximately 45% sugar beet pulp as fed) ad libitum on the development in individual feed intake characteristics and reproductive performance during three successive reproduction cycles. Performance of the ad libitum-fed sows was compared to the performance of sows that were fed a conventional diet restrictedly. Feed intake characteristics during gestation were only measured in the ad libitum-fed sows. One hundred and nineteen sows were assigned to one of two gestation feeding regimens. Gestating sows were fed a conventional Dutch diet restrictedly or a diet with a high level of fermentable NSP ad libitum. During lactation, sows were given free access to a commercial lactation diet from d 6 after parturition onward. The ad libitum-fed sows ate 1.3 kg/d more during gestation than the restrictedly fed sows (P < 0.001), resulting in higher body weight and backfat gains during gestation (P < 0.05). Sows that were fed ad libitum during gestation lost more body weight and backfat during lactation (P < 0.001) than sows that were fed restrictedly during gestation. Feed intake during lactation, however, did not differ between sows that were fed restrictedly or ad libitum during gestation. The numbers of total piglets born, live-born and stillborn piglets, piglet birth weight, weaning-to-estrus interval, and percentage of sows that returned to estrus after first insemination were not affected by gestation feeding regimen. Mean daily voluntary feed intake (as-fed basis) over the three reproduction cycles in the ad libitum-fed gestating sows was 4.2 kg/d. Depending on the number of preceding reproduction cycles during which a sow was fed ad libitum, the maximum voluntary feed intake was reached in Parity 3, 4, or 5 and then remained stable in subsequent parities. Mean daily feed intake of the ad libitum-fed sows increased from wk 2 to 6 of gestation and then decreased to wk 15 of gestation. The mean number of daily visits with feed intake over the three reproduction cycles was 13.8. On average, ad libitum-fed sows spent 90 min/d on eating. This study shows that it is possible to feed gestating sows a diet with a high level of fermentable NSP ad libitum during three successive reproduction cycles without negative effects on reproductive performance.  相似文献   

8.
The effects of feeding additional starch or fat from d 85 of gestation until parturition on litter performance and on glucose tolerance in sows that were fed a diet with a high level of fermentable nonstarch polysaccharides (NSP) were studied. The day after breeding, 141 multiparous sows were assigned to the experiment. At d 85 of gestation, sows were assigned to the treatments. Sows were fed 3.4 kg/d (as-fed basis) of a high-NSP diet or the same quantity of the high-NSP diet and an additional 360 g of starch (from wheat starch) daily, or the same quantity of the high-NSP diet and an additional 164 g of fat (from soybean oil) daily. During lactation, all sows were given free access to the same lactation diet. Approximately 1 wk before the expected time of parturition, an oral glucose tolerance test was performed in 38 randomly chosen sows by feeding pelleted glucose (3 g/kg BW0.75). Blood samples for glucose analyses were taken at -10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 105, and 120 min after glucose was fed. The supply of additional dietary starch or fat did not increase piglet birth weight or total litter weight at birth. Sows that were fed the high-NSP diet had more (P = 0.097) live-born piglets and fewer (P = 0.084) stillborn piglets than did sows that were fed additional fat, whereas sows that were fed additional starch were intermediate for these variables. Piglet mortality after birth was not affected by dietary treatment. Body weight and backfat gains in the last month of gestation were higher for sows fed additional starch or fat than for sows fed the high-NSP diet (P < 0.001 and P = 0.017, respectively). Feed intake in lactation was greatest by sows fed the high-NSP diet, least by sows fed additional starch at the end of gestation, and intermediate by sows fed additional fat (P = 0.099). The differences in lactation feed intake did not result in differences in BW and backfat losses during lactation. Sows that were fed additional fat had the greatest glucose area under the curve (P = 0.044), indicating that these sows were less tolerant to glucose. In conclusion, feeding additional energy (starch or fat) in late-gestating sows that are fed a high-NSP diet did not increase litter weight at birth or piglet survival, but did increase maternal gain. Feeding sows additional energy from fat might induce glucose intolerance, whereas feeding sows additional energy from starch did not induce glucose intolerance.  相似文献   

9.
Sows were fed a control corn-soybean meal gestation diet to d 80 of gestation. One group of sows (n = 25) continued receiving the control diet until the end of lactation, whereas two groups were placed on other treatments. One group (n = 27) was fed a diet containing 5% added solid fat pellets from gestation d 80 through lactation, whereas another group (n = 25) was fed a diet with 10% added solid fat pellet from gestation d 100 through d 14 of lactation. Feed supply was 2.27 kg/d during gestation and to appetite during lactation. Pigs from sows fed the control diet or 5% solid fat pellet diet were weaned with an age range of 22 to 28 d and immediately allotted in a 2 x 3 factorially designed 4-wk feeding trial. Pigs from these two sow groups were fed diets 1) without fat, 2) with 4.5% choice white grease or 3) with 5% solid fat pellet. Sow weight loss, backfat change and pig weights were not different at weaning among treatments. Survival rates of all pigs to 21 d averaged 90% with no significant differences between treatments. Pigs from fat-fed sows had more (P less than .05) glycogen per gram of liver, 41% more total liver glycogen and 16% more serum glucose at birth. Weanling pigs from fat-fed sows grew slower (P less than .05) than pigs from control sows. Supplemental fat during gestation increased liver glycogen of pigs, which should help survival, but the feeding of fat throughout lactation had a negative effect on ADG during a 4-wk postweaning period.  相似文献   

10.
A study was conducted to determine the effects of feeding a corn-soybean meal (control) diet vs. a corn-soybean meal-40% soybean hulls (high fiber) diet, as well as the frequency of feeding (once vs. twice daily), on the welfare and performance of gestating sows. Two hundred thirty-nine mixed-parity sows were assigned to a 2 x 2 factorial arrangement of treatments. Sows fed once daily received their entire meal at 0730, whereas sows fed twice daily received one-half of their feed allotment at 0730 and the other half at 1430. The behavior of 68 focal sows (> or = 16 sows per treatment combination) was observed on d 1 postweaning, and on d 40 and d 80 of gestation. The percentage of time standing, lying, sitting, feeding, inactive, and performing stereotypic behaviors was determined. Saliva samples were collected to determine cortisol concentrations. Sow BW and backfat depth were determined on d 0, 40, and 80 of gestation, within 24 h of farrowing, and at weaning. An energy and nitrogen digestibility study was conducted using 36 sows assigned to each of the 4 treatment combinations. Over a 24-h period, the sows fed the high-fiber diet spent less time lying (P < 0.05) than the sows fed the control diet. The frequency of feeding did not affect sow behavior measured over a 24-h period. During mealtimes, sows fed the high-fiber diet spent more time feeding (P < 0.05) than sows fed the control diet. Feeding the high-fiber diet did not affect stereotypic behavior measured over 24 h or during mealtimes. Neither diet nor feeding frequency affected salivary cortisol concentration. Sows fed the high-fiber diet gained less BW and lost backfat (P < 0.05) during gestation compared with sows fed the control diet, whereas sows fed once daily gained less BW and lost backfat (P < 0.05) compared with sows fed twice daily. Sows fed the high-fiber diet had fewer pigs born (P < 0.05) compared with sows fed the control diet. Feeding frequency had no effect on size or weight gain of litters. Sows fed the high-fiber diet exhibited lower digestibility of DM, energy, and N (P < 0.05) compared with sows fed the control diet. Feeding a high-fiber diet utilizing soybean hulls or increasing feeding frequency did not enhance the welfare of sows by reducing stereotypic behaviors nor did it improve reproductive performance.  相似文献   

11.
Multiparous sows (n = 307) were used to evaluate the effects of added dietary L-carnitine, 100 mg/d during gestation and 50 ppm during lactation, on sow and litter performance. Treatments were arranged as a 2 (gestation or lactation) x2 (with or without L-carnitine) factorial. Control sows were fed 1.81 kg/d of a gestation diet containing .65% total lysine. Treated sows were fed 1.59 kg/d of the control diet with a .23 kg/d topdressing of the control diet that provided 100 mg/d of added L-carnitine. Lactation diets were formulated to contain 1.0% total lysine with or without 50 ppm of added L-carnitine. Sows fed 100 mg/d of added L-carnitine had increased IGF-I concentration on d 60 (71.3 vs. 38.0 ng/mL, P<.01) and 90 of gestation (33.0 vs. 25.0 ng/mL, P = .04). Sows fed added L-carnitine had increased BW gain (55.3 vs 46.3 kg; P<.01) and last rib fat depth gain (2.6 vs. 1.6 mm; P = .04) during gestation. Feeding 100 mg/d of added L-carnitine in gestation increased both total litter (15.5 vs. 14.6 kg; P = .04) and pig (1.53 vs 1.49 kg; P<.01) birth weight. No differences were observed in pig birth weight variation. Added L-carnitine fed during gestation increased litter weaning weight (45.0 vs. 41.3 kg, P = .02); however, no effect of feeding L-carnitine during lactation was observed. No differences were observed in subsequent days to estrus or farrowing rate. Compared to the control diet, feeding added L-carnitine in either gestation, lactation, or both, increased (P<.05) the subsequent number of pigs born alive, but not total born. In conclusion, feeding L-carnitine throughout gestation increased sow body weight and last rib fat depth gain and increased litter weights at birth and weaning.  相似文献   

12.
Forty-five gravid cross-bred sows (mean parity 3.3 +/- .3) were randomly allotted to two dietary treatments: corn-soybean mean (CS) or CS plus 60 mg salinomycin per kilogram of diet (CSS). Sows were fed their respective diets through two successive parities with dietary treatment initiated at 100 d postcoitum and continued until weaning of the second successive litter. Therefore, sows fed CSS received salinomycin for 14 d before the first parturition and for approximately 153 d before the second parturition. Daily feed intake was restricted to 2 kg.hd-1.d-1 during gestation and to 3 kg.hd-1.d-1 from weaning to breeding. All sows. had ad libitum access to feed during lactation. Sows were weighed 7 d prior to parturition, at weaning and at breeding. Weaning-to-estrus interval and farrowing interval were recorded for all sows. Litters were weighed at birth and weaning. There were no differences (P greater than .05) between dietary treatments in sow weights before parturition, at weaning or at breeding for either first or second farrowing. The CSS-fed sows lost more weight from weaning to breeding after the first (P less than .03) and second (P less than .05) lactation periods than CS-fed sows. The CSS-fed sows tended to gain more (P = .06) weight during lactation than CS-fed sows. There were no differences (P greater than .05) between treatments in lactation feed intake, weaning-to-estrus interval, farrowing interval, litter size born or weaned, litter weights at birth or at weaning, or in sow culling rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A regional experiment was conducted at 8 experiment stations, with a total of 320 sows initially, to evaluate the efficacy of adding 13.35% ground wheat straw to a corn-soybean meal gestation diet for 3 successive gestation-lactation (reproductive) cycles compared with sows fed a control diet without straw. A total of 708 litters were farrowed over 3 reproductive cycles. The basal gestation diet intake averaged 1.95 kg daily for both treatments, plus 0.30 kg of straw daily for sows fed the diet containing ground wheat straw (total intake of 2.25 kg/d). During lactation, all sows on both gestation treatments were fed ad libitum the standard lactation diet used at each station. Response criteria were sow farrowing and rebreeding percentages, culling factors and culling rate, weaning-to-estrus interval, sow BW and backfat measurements at several time points, and litter size and total litter weight at birth and weaning. Averaged over 3 reproductive cycles, sows fed the diet containing wheat straw farrowed and weaned 0.51 more pigs per litter (P 相似文献   

14.
Two experiments were conducted to evaluate whether administration of recombinant porcine somatotropin (pST) to sows (Hampshire-Yorkshire) enhanced lactational performance. In Exp. 1, sows (n = 84) were fed a corn-soybean meal diet (17.8% CP), or a similar diet with 8% added fat, from d 108 of gestation to d 28 of lactation. Half of the sows fed each diet were injected with 6 mg/d of pST from d 108 of gestation to d 24 of lactation. Diets were fed at 2.27 kg/d from d 108 of gestation until farrowing and then were self-fed during lactation. By d 3 of lactation, litter size was standardized at 8 to 10 pigs per litter. Treating sows with pST resulted in a 10-fold increase (P less than .001) in serum somatotropin at 4 h postinjection. Serum glucose was increased (P less than .01) and serum triglycerides, creatinine, and urea N were decreased (P less than .01) by pST. During the summer, apparent heat stress occurred in pST-treated sows, resulting in 14 deaths. Most (10) of the deaths occurred just before, during, or shortly after farrowing. Fewer (P less than .08) deaths occurred when pST-treated sows were fed the diet with added fat. Sows treated with pST consumed less feed (P less than .10) and lost more backfat (P less than .10) during lactation than controls. Increasing the dietary fat did not prevent these changes. Weaning weights of pigs and milk yield of sows (estimated by deuterium oxide dilution) were not affected by pST treatment. In Exp. 2, sows (n = 42) were injected weekly with 0 or 70 mg of pST on d 3, 10, 17, and 24 of lactation. Litters were standardized by d 3 at 8 to 10 pigs, and sows were fed the same control (low fat) diet as in Exp. 1. Sows treated with pST consumed less feed and lost more weight and backfat during lactation than untreated sows. Litter size, average pig weaning weights, and milk yield were not influenced by pST treatment. These data indicate that a 6-mg daily injection of pST from 6 d prepartum to d 24 of lactation or a 70-mg weekly injection of pST from 3 d postpartum to d 24 of lactation does not increase milk production in lactating sows.  相似文献   

15.
An experiment was conducted to evaluate feather meal as a source of Val in lactating sow diets. Sows (five farrowing groups; mean parity = 2.34) were allotted to one of two dietary treatments on the basis of ancestry, parity, and weight and date of d 110 of gestation. The treatment diets included 1) corn-soybean meal lactation diet (n = 40) or 2) corn-soybean meal lactation diet with 2.5% feather meal (n = 39). The diets were formulated on an equal Lys basis. All litters were adjusted to 10 pigs within 24 h after farrowing, and all sows weaned at least nine pigs. Sows were bled at 110 d of gestation and at weaning, and serum urea N was determined. Backfat thickness was determined ultrasonically at 110 d of gestation and at weaning. Serum urea N and backfat thickness at d 110 of gestation were used as covariates for serum urea N and backfat thickness at weaning, respectively. The litter response criteria (weaning weight, litter weight gain, and percentage survival) were not affected (P > .10) by feather meal. The sow response criteria (weaning weight, weight loss per day, weaning backfat thickness, change in backfat thickness, ADFI, and days to estrus) were not affected (P > .10) by feather meal. Sows fed feather meal had increased (P < .01) serum urea N and tended (P = .15) to have decreased sow weaning weight. Following the initial analysis of the data, the data set was split into two groups: 1) sows with litters gaining less than 2.17 kg/d (n = 19 and 20 for control and feather meal diets, respectively) and 2) sows with litters gaining more than 2.17 kg/d (n = 21 and 19 for control and feather meal diets, respectively). These two groups were analyzed separately. In sows with litters gaining less than 2.17 kg/d, the litter and sow criteria were not affected (P > .10) by treatment. In sows with litters gaining more than 2.17 kg/d, sow weaning weight was decreased (P < .04) and sow weight loss (P < .02) and serum urea N (P < .01) were increased in sows fed feather meal. Feather meal (as a source of Val) did not improve litter weight gain, but it increased serum urea N.  相似文献   

16.
Sixty-four Large White x Landrace primiparous sows were utilized to evaluate the influence of feeding 6 vs 9 Mcal ME/d during gestation on reproductive performance. The sows remained on their respective gestation diets for four parities if they successfully farrowed, rebred and conceived. Sows fed 9 Mcal ME/d gained more weight (P less than .05) through the gestation period during parities 1 and 2 and were heavier (P less than .01) on d 110 of gestation for combined parities. Lactation weight loss was greater (P less than .05) for the sows fed 9 Mcal ME/d, resulting in similar weights at weaning. Ultrasonic backfat measurements were greater (P less than .01) on d 110 of gestation for sows fed 9 Mcal ME/d during parity 1 and remained higher (P less than .01) through the fourth-parity gestation. Although sow weaning weights were similar, sows receiving 6 Mcal ME/d scanned less backfat thickness. Gestation treatment significantly affected consumption of a common lactation diet provided ad libitum. Sows fed 6 Mcal ME/d during gestation consumed an average of 22 kg more feed (P less than .01) during lactation than those sows receiving 9 Mcal ME/d. Litter performance as measured by number and weights of pigs born alive and weaned was not altered (P greater than .10) by gestation energy intake. Days to return to estrus and the number of sows remaining in the study for four parities were similar (P greater than .10) between the two treatment groups. The number of farrowings for the four parities totaled 164, with 83 and 81 farrowings for the sows fed 6 and 9 Mcal ME/d, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Previous experiments have indicated that reproductive function in lean, modern genotypes may be more dependent on body protein mass than, as previously believed, on body lipid reserves. This was investigated in a 3 x 2 factorial arrangement of treatments, involving 60 first-parity sows, comparing three pregnancy feeding strategies and two lactation diets. During pregnancy, sows were fed either a basal diet (5 g lysine/kg, 13 MJ of DE/kg [C]) or the same quantity of basal diet + energy source [E], or additional basal diet supplying both protein and energy [A]. The level of supplement for E and A was adjusted weekly to achieve a backfat thickness measurement (P2 position) of 28 mm at farrowing. Isoenergetic lactation diets were fed to appetite and provided either high (180 g CP/kg, 9 g lysine/kg [H]) or low lysine (120 g CP/kg, 6 g lysine/kg [L]). From d 21 of lactation, sows were separated from their litters and housed next to a boar for 8 h each day; final weaning occurred on d 31. Pregnancy treatment differences in backfat and weight were achieved, with C sows having less backfat on d 1 of lactation than E and A sows (E = 28.1, A = 28.0, C = 22.7 kg, P < 0.001). Sows fed additional basal diet were heavier than E sows, which were heavier than C sows (E = 190, A = 201, C = 178 kg, P < 0.001). Average feed intake over lactation showed a pregnancy feeding effect, with E sows eating less than A or C sows (E = 4.9, A = 5.2, C = 5.4 kg/d, P < 0.005). Total lactation weight loss was affected by pregnancy feeding (E = 18.0, A = 19.0, C = 8.4 kg, P < 0.05) and by lactation diet (L = 19.0, H = 11.3 kg, P < 0.05), whereas total lactation backfat loss was affected only by pregnancy treatment (E = 6.9, A = 6.5, C = 4.6 mm, P < 0.05). No pregnancy treatment or lactation diet effects were observed for litter performance. Lactation diet affected weaning-to-estrus interval, with more sows on the H diet coming into estrus within 6 d of partial weaning (P < 0.05), but there was no pregnancy treatment effect. Therefore, voluntary feed intake during lactation was suppressed by increased fat reserves at a limited body protein mass but not when body protein mass was also increased. Partial weaning-to-estrus interval was increased by reduced dietary protein.  相似文献   

18.
Two experiments were conducted to investigate the effects of a corn-soybean meal (C-SBM) and a sorghum-soybean meal (S-SBM) diet on reproductive performance and nutrient utilization by sows. In Exp. 1, 75 sows (39 gilts; 36 primiparous) were fed either a C-SBM or a S-SBM gestation diet from breeding to d 109. On d 110, sows were assigned to lactation diets; half of the sows from each dietary treatment were assigned to a lactation diet based on the opposite grain. Sow weight change from d 54 to farrowing was greater (P less than .06) for sows fed S-SBM than for sows fed C-SBM. There was no difference (P greater than .50) in weight change of sows during lactation. Feed consumption during lactation was greater (P less than .01) for sows fed C-SBM than for sows fed S-SBM. Litter size at birth and d 21 did not differ between treatments (P greater than .13). Litter weights at birth were similar, but litters of sows fed C-SBM gained more weight (P less than .05) during the 21-d lactation than those fed S-SBM. There were no differences (P greater than .30) in the number of days from weaning to estrus. In Exp. 2, the energy and N metabolism of the two diets was compared in 12 lactating, primiparous sows from d 15 to 20 of lactation. Dry matter digestibility, DE and ME percentages were not affected by grain source (P greater than .46).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A cooperative regional research study using 194 sows, from which data were collected from 381 litters, was conducted at 3 research stations to determine the effects of added psyllium (a concentrated fiber source) or soybean hulls to gestation diets on reproductive performance of sows and preweaning performance of their pigs. Primiparous and multiparous sows were allotted to the 3 treatments of control (corn and soybean meal-based), 0.30% psyllium, or 20% soybean hulls. Sows fed the control and 0.30% psyllium diets were provided 1.82 kg/d, and sows fed the 20% soybean hulls diet were provided 2.0 kg/d to equalize ME, Lys, Ca, P, and vitamin and trace mineral intake. Treatments 1 to 3 had 130, 130, and 121 litters per treatment from 64, 64, and 63 sows, respectively. Gestating sows fed psyllium had a greater (P < 0.01 to 0.10) d 110 gestation, farrowing, weaning, and 17 d postpartum BW and gestation ADG compared with sows fed soybean hulls. Sows fed psyllium also had a greater (P < 0.10 and 0.08) d 110 gestation BW and gestation ADG than the control sows. Sows fed soybean hulls had a reduced (P < 0.06) farrowing BW compared with the control sows. Sows fed psyllium weaned lighter (P < 0.09) pigs than sows fed the control diet. Litter size was not affected (P > 0.10) by diet. Sows fed psyllium had a reduced (P < 0.03) feed intake compared with sows fed soybean hulls for d 5 to 7 postpartum, and sows fed the control diet were intermediate. Fecal scores (1 to 5 with 1 = dry and 5 = watery) were greater (P < 0.001) and DM content was less (P < 0.001 to 0.01) in the feces of sows fed soybean hulls compared with sows fed psyllium or the control diet on d 112 of gestation and d 4 postpartum. Fecal scores were greater (P < 0.10) and fecal DM content was less (P < 0.02) in sows fed psyllium compared with sows fed the control diet only on d 4 postpartum. In summary, sows fed soybean hulls during gestation had reduced BW compared with sows fed the control diets. In contrast, sows fed psyllium had an increased BW.  相似文献   

20.
Sows of differing parities and genetics were used at different locations to determine the effects of feeding added L-carnitine during lactation on sow and litter performance. In Exp. 1, sows (n = 50 PIC C15) were fed a lactation diet (1.0% total lysine, .9% Ca, and .8% P) with or without 50 ppm of added L-carnitine from d 108 of gestation until weaning (d 21). No differences in litter weaning weight, survivability, sow ADFI, or sow weight and last rib fat depth change were observed. Number of pigs born alive in the subsequent farrowing were not different (P>.10). In Exp. 2, parity-three and -four sows (n = 115 Large White cross) were used to determine the effect of feeding 0, 50, 100, or 200 ppm of added L-carnitine during lactation (diet containing .9% total lysine, 1.0% Ca, and .8% P) on sow and litter performance. No improvements in the number of pigs or litter weights at weaning were observed (P>.10). Sows fed added L-carnitine had increased weight loss (linear; P<.04), but no differences (P>.10) were observed in last rib fat depth change or subsequent reproductive performance. In Exp. 3, first-parity sows (n = 107 PIC C15) were fed a diet with or without 50 ppm of added L-carnitine during lactation (diet containing 1.0% total lysine). Sows fed added L-carnitine tended (P<.10) to have fewer stillborn and mummified pigs than controls (.42 vs .81 pigs). No differences were observed for litter weaning weight, survivability, or subsequent farrowing performance. Feeding 50 to 200 ppm of added L-carnitine during lactation had little effect on sow and litter performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号