首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黎耀辉 《土壤学报》1964,12(1):78-82
在前一报告中[1],作者通过室内化学分析及生物试验证明,在所试的六种测定土壤有效磷的方法中,以Olsen的0.5M NaHCO3法与生物反应的相关性最好,马乞金的1%(NH4)2CO3法和Radet的3.5%柠檬酸钠法次之,Egner-Rim的乳酸钙法、Burriel-Hern-ando的混合浸提液法和Joret-Herbert的草酸铵法又次之。另外,从浸提出的磷量看,碳酸氢钠法、马乞金法和柠檬酸纳法相当接近,可以列为同一数量级。乳酸钙法、混合浸提液法和草酸铵法浸出的磷量也很接近,可以列为另一较高的数量级。  相似文献   

2.
Iron hydroxides are subdivided into thermodynamically unstable (ferrihydrite, feroxyhyte, and lepidocrocite) and stable (goethite) minerals. Hydroxides are formed either from Fe3+ (as ferrihydrite) or Fe2+ (as feroxyhyte and lepidocrocite). The high amount of feroxyhyte in ferromanganic concretions is proved, which points to the leading role of variable redox conditions in the synthesis of hydroxides. The structure of iron hydroxides is stabilized by inorganic elements, i.e., ferrihydrite, by silicon; feroxyhyte, by manganese; lepidocrocite, by phosphorus; and goethite, by aluminum. Ferrihydrite and feroxyhyte are formed with the participation of biota, whereas the abiotic formation of lepidocrocite and goethite is possible. The iron hydroxidogenesis is more pronounced in podzolic soils than in chernozems, and it is more pronounced in iron-manganic nodules than in the fine earth. Upon the dissolution of iron hydroxides, iron isotopes are fractioned with light-weight 54Fe atoms being dissolved more readily. Unstable hydroxides are transformed into stable (hydr)oxides, i.e., feroxyhyte is spontaneously converted to goethite, and ferrihydrite, to hematite or goethite.  相似文献   

3.
Moisture content and redox conditions are factors determining the dynamics of the content of mobile phosphorus in chernozem-like soils moistened and waterlogged by groundwater and surface water. When the moisture content increases and oxidizing conditions are still present in soils belonging to the chernozem type that contain a high concentration of calcium phosphates, the latter transform from apatite into more mobile forms, Ca-PI and Ca-PII. In chernozem-like soils with a high concentration of iron phosphates under reducing conditions, the amount of phosphorus extracted with 0.1 N H2SO4 increases owing to the transition of iron phosphates into a mobile state. Precipitations enriching the soil with atmospheric oxygen promote the increase in the value of the oxidation-reduction potential (Eh), thereby decreasing the mobility of iron phosphates.  相似文献   

4.
Potassium (K) and nitrogen (N) are essential nutrients for plants. Adsorption and desorption in soils affect K+ and NH + 4 availabilities to plants and can be affected by the interaction between the electrical double layers on oppositely charged particles because the interaction can decrease the surface charge density of the particles by neutralization of positive and negative charges. We studied the effect of iron (Fe)/aluminum (Al) hydroxides on desorption of K+ and NH + 4 from soils and kaolinite and proposed desorption mechanisms based on the overlapping of diffuse layers between negatively charged soils and mineral particles and the positively charged Fe/Al hydroxide particles. Our results indicated that the overlapping of diffuse layers of electrical double layers between positively charged Fe/Al hydroxides, as amorphous Al(OH) 3 or Fe(OH) 3 , and negatively charged surfaces from an Ultisol, an Alfisol, and a kaolinite standard caused the effective negative surface charge density on the soils and kaolinite to become less negative. Thus the adsorption affinity of these negatively charged surfaces for K+ and NH + 4 declined as a result of the incorporation of the Fe/Al hydroxides. Consequently, the release of exchangeable K+ and NH +4 from the surfaces of the soils and kaolinite increased with the amount of the Fe/Al hydroxides added. The greater the positive charge on the surfaces of Fe/Al hydroxides, the stronger was the interactive effect between the hydroxides and soils or kaolinite, and thus the more release of K+ and NH + 4 . A decrease in pH led to increased positive surface charge on the Fe/Al hydroxides and enhanced interactive effects between the hydroxides and soils/kaolinite. As a result, more K+ and NH + 4 were desorbed from the soils and kaolinite. This study suggests that the interaction between oppositely charged particles of variable charge soils can enhance the mobility of K+ and NH + 4 in the soils and thus increase their leaching loss.  相似文献   

5.
The amorphous iron content in the upper soil horizons, the profile distribution of iron oxides and hydroxides, and the Schwertmann (Feo/Fed) ratio can be used as diagnostic criteria for the degree of gleyization in the classification of hydromorphic soils. Drainage removes chemical elements, e.g., nonsilicate Fe, from soils.  相似文献   

6.
The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also necessary. In this study, a Pb and As-contaminated soil was collected from an abandoned lead/zinc mine in Shaoxing, Zhejiang province of China, which has been treated with three phosphates, i.e., calcium magnesium phosphate (CMP), phosphate rock, and single super-phosphate (SSP) for 6 months in a field study. The ferrous sulfate (FeSO4) at 20 g kg?1 was then amended to the soil samples and incubated for 8 weeks in a greenhouse. The solubility and bioaccessibility tests were used to assess the effectiveness of the in situ immobilization. The result showed that phosphates addition decreased the concentrations of CaCl2-extractable Pb; however, the concentrations of water-soluble As increased upon CMP and SSP addition. With the iron addition, the water-soluble As concentrations decreased significantly, but CaCl2-extractable Pb concentrations increased. The bioaccessibility of As and Pb measured in artificial gastric and small intestinal solutions decreased with phosphate and iron application except for the bioaccessibility of As in the gastric phase with SSP addition. Combined application of phosphates and iron can be an effective approach to lower bioaccessibility of As and Pb, but has opposing effects on mobility of As and Pb in contaminated soils.  相似文献   

7.
Cadmium, Ni and Zn ions in aqueous solution were allowed to react with clay fractions (< 2 μm) separated from soils with a wide range of mineralogical composition and properties. Sorbed metals were separated into two components, termed specifically and non-specifically bound, by a controlled washing procedure using 10?2M Ca(NO3)2.Sorption reactions were characterized by Δ pH50 values, by shapes of adsorption curves, and by measuring separation factors and distribution coefficients under prescribed conditions. Three reaction types were identified, viz., (i) those associated with soil adsorbing surfaces dominated by iron oxides; these appear to be controlled by mechanisms which involve metal-ion hydrolysis and result accordingly in relative sorption affinities of Zn > Ni > Cd; (ii) those associated with organic surfaces for which metal-ion hydrolysis was of little significance and little difference in metal-ion affinity was evident; at lower pH-values, Cd and Ni were somewhat preferred over Zn, with the converse at higher pH-values; (iii) those associated with 2:1 layer lattice silicates which exhibit greater preference for Zn, i.e., Zn >> Ni, Cd and higher affinities for each metal at lower pH-values (< 5) than is shown by clays dominated by iron oxides. There was also evidence of greater relative affinity for Ni shown by clay fractions dominated by fine kaolinites when compared with other clays.This investigation has shown that a range of sorption processes are involved in reactions of heavy metals with soils. We caution against undue emphasis on any particular sorption process in developing theoretical sorption models as a basis of understanding and solving problems connected with pollution and plant nutrition; we also stress the need for studies with colloids separated from soils in conjunction with those using synthetic adsorbents as models for soil constituents.  相似文献   

8.
In some alkaline soils of Punjab (India) the adsorption, desorption and solubility relationships of lead and cadmium were investigated and the results analysed by the Langmuir equation. Both the metals are retained in soils by adsorption on mineral interfaces and interaction with organic matter and calcium carbonate. At high concentrations, these probably precipitate as hydroxides. Sequential desorption of Pb and Cd with 1 MKCI and 0.05 MCu(CH3COO)2 provided a measure of their exchangeable and chelated form.  相似文献   

9.
The clay fractions of four seasonally flooded soils from East Pakistan have been studied using X-ray, DTA, and infra-red methods, total chemical analysis, surface area determination, and electron microscopy. The soils represent young alluvium (Borda), a juvenile groundwater laterite (Nunni), a groundwater lateritelatosol intergrade (Noadda), and a surface-water glei (Chhiata). Mica and kaolinite were present in all the soils, and vermiculite in all except possibly Noadda. Vermiculite, total magnesium content, and SiO2/Al2O3 ratio decreased and kaolinite increased in the sequence Borda–Nunni–Noadda. Electron micrographs indicated that in the Borda soil, which is the youngest and subjected to the longest period of annual flooding, iron hydroxides are present as gels coating the surfaces of the clay mineral particles. Such coatings are less apparent in the Nunni clay, and in the Noadda clay most of the ‘free iron oxides’ appear as small granules. The Chhiata soil has about 12.5 per cent of its clay fraction in the form of an amorphous gel rich in silica, and much of the mica and vermiculite in a randomly interstratified complex.  相似文献   

10.
We evaluated the effect of 1 N NH4OAc and sodium-citrate dithionite extractable forms of soil Fe, Al, and Mn on P-sorption of a flooded acid sulfate soil (Sulfic Tropaquepts) and a non-acid sulfate soil (Typic Tropaquepts) under different soil oxidation-reduction and pH conditions. We used Maha-Phot soil (Sulfic Tropaquepts) and Bangkok soil (Typic Tropaquepts) from the Bangkok Plain, Thailand, and incubated them with 0.2% rice straw under aerobic (O2 atmosphere) and anaerobic (N2 atmosphere) conditions at three different levels of pH (4.0, 5.0, and 6.0) for 6 weeks in stirred soil suspensions with a soil to 0.01 M CaCl2 solution ratio of 1:7. After the incubation period, the soil suspensions in the first treatment (control) were not washed or pretreated with any extractants. For the second treatment (II), the soil suspensions were treated with 1 N NH4OAc (buffered to pH 4.0) to remove Fe, Al, and Mn in exchangeable form. In the third treatment (III), the soils suspensions were treated with sodium citrate dithionite solution (20%) to remove Fe, Al, and Mn in the form of free oxides. The soil residues were then equilibrated with KH2PO4 ranging from 0 to 500 mg P kg-1 soil. Sorption isotherms were described by the classical Langmuir equation. The P-sorption parameters under study were standard P requirement (SPR), Langmuir maximum sorption capacity (X m), Langmuir sorption constant (k), and buffering index (BI). Treating soils with 1 N NH4OAc reduced X m by 32–55%, SPR by 68–84%, and also decreased the differences in P-sorption due to the effects of pH and oxidation-reduction conditions. Significant correlations between the P-sorption parameters and the amount of free iron oxides indicated the primary role of iron oxides in P-sorption of acid sulfate soils. Aluminium oxides seemed to play a secondary role in P-sorption of these soils. Manganese also showed an important effect on P-sorption, but the mechanism is ambiguous.This is a contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511  相似文献   

11.
Aerating pyritic soils causes acidification and the forrnation of acid sulphate soils, or cat-clay. The Oxidation of pyrite in soils is associated with the deposition in tile drains of a form of ochre quite distinct from that formed by the action of filamentous iron bacteria. Pyrite-derived ochre results from the action of Thiobacillus ferrooxidans, which, below pH 3.5–4.0, catalyses the Oxidation of Fe2+ and pyrite. In soils less acid than c. pH 4, pyrite oxidizes relatively slowly by chemical reactions to Fe2+ and SO24?. Under these conditions iron enters the drains as Fe2+ and is there oxidized by T. ferrooicidans and deposited as hydrated ferric oxide. Once the soil becomes acid enough for T. ferrooxidans to multiply, the rate at which pyrite oxidizes increases several-fold, and at c. pH 3 iron appears in the drainage water in the ferric form. Liming seems to decrease the rate of Oxidation.  相似文献   

12.
Published information, both theoretical and experimental, on As chemical behavior in soils is reviewed. Because of many emission sources, As is ubiquitous. Thermodynamic calculations revealed that As(V) species (HAsO 4 2- >H2AsO 4 - at pH 7) are more abundant in soil solutions that are oxidized more than pe+pH>9. Arsenic is expected to be in As(III) form (HAsO 2 0 =H3AsO 3 0 >AsO 2 - =H2AsO 3 - at pH 7) in relatively anoxic soil solutions with pe+pH<7. Adsorption on soil colloids is an important As scavenging mechanism. The adsorption capacity and behavior of these colloids (clay, oxides or hydroxides surfaces of Al, Fe and Mn, calcium carbonates, and/or organic matter) are dependent on ever-changing factors, such as hydration, soil pH, specific adsorption, changes in cation coordination, isomorphous replacement, crystallinity, etc. Because of the altering tendencies of soil colloids properties, adsorption of As has become a complex, empirical, ambiguous, and often a self contradicting process in soils. In general, Fe oxides/hydroxides are the most commonly involved in the adsorption of As in both acidic and alkaline soils. The surfaces of Al oxides/hydroxides and clay may play a role in As adsorption, but only in acidic soils. The carbonate minerals are expected to adsorb As in calcareous soils. The role of Mn oxides and biogenic particles in the As adsorption in soils appears to be limited to acidic soils. Kinetically, As adsorption may reach over 90% completion in terms of hours. Precipitation of a solid phase is another mechanism of As removal from soil solutions. Thermodynamic calculations showed that in the acidic oxic and suboxic soils, Fe-arsenate (Fe3(AsO4)4)2) may control As solubility, whereas in the anoxic soils, sulfides of As(III) may control the concentrations of the dissolved As in soil solutions. In alkaline acidic oxic and suboxic soils, precipitation of both Fe- and Ca-arsenate may limit As concentrations in soil solutions. Field observations suggest that direct precipitation of discrete As solid phases may not occur, except in contaminated soils. Chemisorption of As oxyanions on soil colloid surfaces, especially those of Fe oxide/hydroxides and carbonates, is believed to a common mechanisms for As solid phase formation in soils. It is suggested that As oxyanions gradually concentrate on colloid surfaces to a level high enough to precipitate a discrete or mixed As solid phase. Arsenic volatilization is another As scavenging mechanism operating in soils. Many soil organisms are capable of converting arsenate and arsenite to several reduced forms, largely methylated arsines which are volatile. These organisms may generate different or similar biochemical products. Methylation and volatilization of As can be affected by several biotic (such as type of organisms, ability of organism for methylation, etc.) and abiotic factors (soil pH, temperature, redox conditions, methyl donor, presence of other ions, etc.) factors. Information on the rate of As biotransformations in soils is limited. In comparison to the biologically assisted volatilization, the chemical volatilization of As in soils is negligible.  相似文献   

13.
R. Kickuth  K. Tubail 《Geoderma》1976,16(5):433-442
The precipitation of Fe(II)-phosphates and -hydroxides by interactions of Fe(II)-sulphate and Na3PO4 in aqueous solutions of pH 2–13 at room temperature has been investigated. The results of potentiometric titration were similar to those reported in literature. On the other hand, no stoichiometric compound has been found among the precipitation products in the whole pH-range, as for example, FeHPO4, Fe3(PO4)2 and Fe(OH)2. All precipitation products contain PO4-groups and OH-groups in various proportions depending on the pH during their formation. FeHPO4 may be regarded as a hypothetical initial compound, when precipitation begins at about pH 2 and Fe(OH)2 as the end-product at very high pH-values, respectively. Fe3(PO4)2 does not occur except in the form of partially hydrolyzed species in a neutral milieu. All these compounds form a continuous system of non-stoichiometric phosphates and hydroxydes, respectively. The situation is even more complicated with sodium present in solutions, and this is not due to surface adsorption.The composition of the precipitates plotted against the pH-values do show some peculiarities, which clearly divide the “field of precipitation” into two regions: that of non-stoichiometric phosphates and that of non-stoichiometric hydroxides. The transition point has been defined as a pH-value at which PO4- and OH-groups in the precipitates are interchangable most easily. This occurs at a pH of 8,8. The composition of this “transition product” may be written as FeOH(PO4)0,33.  相似文献   

14.
Technogenically contaminated urban soils contain a substantial amount of magnetite Fe3O4, whereas another ferrimagnetic, i.e., maghemite αFe2O3, more often prevails in unpolluted soils. The content of magnetite may exceed the content of another iron oxide, hematite, in contaminated soils. In the town of Chusovoi, where emissions from a single enterprise, a metallurgical plant, predominate among pollutants, the upper soil horizons are contaminated with magnetite of one type. In the much larger city of Perm, the polluting sources are diverse, which results in a wide variation of magnetic susceptibility of technogenic magnetite. The difference in magnetite properties may depend on the composition and the content of heavy metals associated with this mineral. A considerable amount of oxalate-soluble magnetite in technogenically contaminated soils produces two important consequences. Schwertmann’s criterion Feox: Fedit as a gleying index turns out to be overestimated and, therefore, does not work in technogenically contaminated soils. The second consequence is that Tamm’s reagent is inapplicable to extracting heavy metals bound to amorphous iron compounds from contaminated soils. On the other hand, a high solubility (30–60%) of technogenic magnetite by oxalate favors the use of Tamm’s reagent for the complete extraction of iron (hydr)oxides and heavy metals bound to them.  相似文献   

15.
磷胁迫条件下油菜、肥田萝卜对难溶性磷的活化与利用   总被引:1,自引:2,他引:1  
通过砂培试验研究了北方食用油菜和南方绿肥作物肥田萝卜两种植物在缺磷胁迫条件下对难溶性磷酸盐Ca3(PO4)2和AlPO4的活化利用情况。试验结果表明,在仅供应一种难浴性磷酸盐时,油菜和肥田萝卜对磷酸铝和磷酸三钙都有较大程度的活化与利用。在施用AlPO4时肥田萝卜地上部吸磷量达到供应等磷量水溶性磷酸盐时的90%;在施用Ca2(PO4)2时油菜地上部吸磷量达到供应等磷量水溶性磷酸盐时的49%。植物干物重的测定结果说明,在缺磷时,难溶性的Ca3(PO4)2及AlPO4对油菜和肥田萝卜均有促进生长的作用。但是,油菜与肥田萝卜对Ca3(PO4)2和AlPO4的活化利用程度却存在着一定差异。表现为油菜对Ca3(PO4)2的利用能力强,而肥田萝卜对AlPO4的利用能力强。  相似文献   

16.
Abstract

The release of solid‐phase soil aluminum (Al) from two soils was studied under acidic conditions and also in the presence of monosilicic acid. The soils support mixed‐conifer forests in the mid‐elevation Western Sierra Nevada in northern California, but differ in their state of development and mineralogy as shown by Al, iron (Fe), and silicon (Si) concentrations. The pyrophosphate‐extractable Al (Alp) pool, which was a main source of released Al, decreased after a two‐month leaching with nitric (HNO3) or oxalic (HO2C‐CO2H) acids. Addition of monosilicic acid (SiO2.XH2O) to the acid extractants resulted in a further decrease of Al. Solution monosilicic acid was removed from solution by sorption on Fe oxides/hydroxides in the soil with the higher dithionite‐extractable Fe pool. In the less developed soil with lower pedogenic Fe, the formation of short‐range‐ordered aluminosilicates, even in the presence of a strong Al chelator, was responsible for the removal of a portion of the monosilicic acid from solution. Pedogenic Fe inhibited the formation of short‐range‐ordered aluminosilicates more than the presence of a strong Al chelator. Both the solution phase and surface reactions are important in the pedogenic formation of alumino‐silicate minerals.  相似文献   

17.
The regime of observations revealed that the Eh dynamics in soddy-podzolic and alluvial soils in the Middle Cis-Urals region depends not only on the rate of iron (hydr)oxides reduction but also on the rate of opposite reactions in the gleyed horizons. Both processes depend on the temperature. The Eh value decreases on heating in automorphic soils, when the reduction of Fe(III)-(hydr)oxide particles accelerates. On the contrary, in gley soils, the Eh decreases on cooling, probably, because of the reactions opposing the reduction of Fe(III)-(hydr)oxide particles, including Fe(II) fixation on the surface of mineral particles. Fe(III)-(hydr)oxides are, for the most part, preserved in gleyed soils of the Cis-Urals; the content of (Fe2O3)dit reaches 3.3% with iron minerals being usually represented by goethite. The increase in moistening influences the soil parameters (i.e., the redoxpotential rH and the content of conventional red pigment Hemconv) in an intricate manner. Both direct and reverse branches on the curve of the Hemconv-rH dependence point to the equilibrium and nonequilibrium conditions in the soil. The reverse branch probably stands for the initial phase of gleying in strongly humified soils, where, despite extra electrons in the solution, the brown pigment in the form of Fe(III)-(hydr)oxides is preserved.  相似文献   

18.
Fifty-five soil samples representing Egyptian alluvial and lacustrine soils were chemically analyzed for total Se which was found to vary from 0.18 to 0.85 ppm with an average of 0.45 ppm. These levels are positively correlated with organic matter, total carbonate and clay content of the soils. Minimum variation of total Se with soil depth was found. The chemical fractionation of soil Se, expressed as percent of the total, indicates that on the average about 25.4 % exists in 0.2 M K2SO4-extractable form, 18.5 % is extracted with 0.5 N NH4OH, 9.7 % as 6 N HCl-extractable form and 13.8 % as extractable with 9 N HNO3. Amounts of K2SO4-Se and HNO3-Se in soils correlated significantly with soil organic matter, total carbonate, free iron oxide and clay content. The NH4OH-Se and HCl-Se fractions correlated significantly only with organic matter and clay content. There is also significant correlation between total Se and the studied Se fractions. Specific adsorption of Se by soils was low as expressed by the Langmiur adsorption maximum values. The high soil pH has a reducing effect on Se adsorption.  相似文献   

19.
<?show $38#Bo;>Phosphorus fertilization effect of sewage sludges treated with iron compounds The result of waste water treatment with iron salts are sewage sludges with higher P but also Fe contents. The effect of such sludges on P availability in soils is not clear and was, therefore, compared with CaHPO4 as a P mineral fertilizer. In experiments (Mitscherlich pots, 6 kg soil) two sandy soils (pH 4.3 and 4.9), two luvisols ( pH 6.3 and 7.2), a loess (13 % CaCO3), and quartz sand all differing in their P status were treated with two sewage sludges which differed in their molar Fe:P ratios (sludge Gö: 1:0.3, sludge Sh: 1:1.2). For sludge Gö the P elimination had been carried out with FeSO4 and the sludge was stabilized with FeCl3 + Ca(OH)2 (filter press). For sludge Sh P was eliminated by FeCl3 in the aerobic basin. The first crop was maize (total shoot dry matter), the second red clover. In case of sludge Sh both crops took up in comparison to CaHPO4 the same amount of P from all substrates with the exception of quartz sand. The effect of sludge Gö was quite different: from the neutral luvisol soils maize was able to take up only 64—82 % P and red clover 77—82 % P only as compared to CaHPO4. On the sandy soils maize and red clover grew after sludge Gö as good or better than after CaHPO4 application and P uptake was quite similar (83—106 %). This result was concomitant to an increase of pH values (from 4.3 to 4.9, 4.9 to 5.6, respectively). The negative efficiency of P uptake in heavy soils after application of sludge Gö resulted from an increase of P sorption and decrease of orthophosphate concentration in soil solution. This sludge contains a high proportion of iron hydroxides/oxides with free sorption sites for P. In future P elimination from waste water should be done without iron salts. At least during the process of conditioning no Fe salts should be used.<?show $6#>  相似文献   

20.
Using a soil from a newly reclaimed area where high dispersibility of fine particles had led to poor physical properties in the field, changes in dispersibility and charge characteristics after artificial precipitation of Al hydroxides onto the soil were investigated. Al hydroxides were precipitated by neutralization with NaOH of an acidic A1C13 solution in which the soil samples were placed.

When the titration rates were changed, no significant differences in dispersibility were observed in the resultant soils. In the systems with the addition of 2 g kg-1 or less of A1(OH)3, dispersion ratios of clays were almost identical with those of blank samples although the specific surface areas were reduced. In the systems with 5 g kg-1 or more of A1(OH)3, considerable effects of Al hydroxides on reduction of clay dispersibility were recognized (e.g. 10 g kg-1 addition yielded less than one-third of the original ratio of the clay dispersion). A slightly larger decrease in dispersion was observed by the addition of 15 g kg-1 or more. As the amount of added Al increased, the amount of negative charges of the soil decreased while that of positive charges increased. The charge characteristics of the system with the addition of 20 g kg-1 of A1(OH)3 were closer to those of the adjacent forest soil which was characterized by a very low dispersibility. It was inferred that added Al hydroxides polymerized to form Al polycation species that were not readily exchangeable, neutralizing negative charges of clays, and acting as interparticle bonding between the clays. On the other hand, forest soils were considered to have acquired a physical stability against the dispersion of fine particles as free Al oxides had been accumulated in the process of natural weathering. It was concluded that charge characteristics primarily determined the dispersion and flocculation behavior of soils and that Al hydroxides were important modifiers of charge characteristics of soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号