首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
【目的】研究工作压力,喷头组合间距、组合斱式和旋转速度对射流式喷头及多喷头组合喷灌均匀性系数(CU)和分布均匀系数(DU)的影响。【斱法】采用不同工作条件下单喷头和多喷头组合喷灌水量分布的动态仿真代码,对射流式喷头开展了水力性能试验;研究了射流式喷头在不同工作压力及安装高度条件下对喷灌强度、水量分布的影响;建立了水量峰值强度与工作压力的回归关系式;模拟了单喷头在正斱形和三角形组合喷灌下的空间水量分布。【结果】喷头在1.5 m安装高度、100~300 kPa压力条件下,水量峰值集中在5 mm/h附近,标准偏差(STD)为0.23。喷头在100 kPa工作压力,安装高度为1.1、1.3 m的水量峰值强度分别可高达8.9、10.5mm/h。不同工作压力下的单喷头喷灌的DU和CU标准偏差分别为15.5%、9.3%,且DU对压力的变化相对更为敏感。【结论】在实际喷灌工程中正斱形组合喷灌的间距应小于8m,三角形组合喷头之间的间距应布置在8m附近,此时的喷灌均匀度最高,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

2.
选取折射式微喷头,在200kPa工作压力下,测试0.5、1.0、1.5、2.0和2.5m安装高度下的单喷头水量分布。利用surfer软件绘出单喷头水量分布等值线图,对图中喷头中心至喷灌强度为0.15mm/h等值线的距离,多次测量取平均值,以确定射程。采用叠加法,计算出不同喷头间距下的组合均匀性系数。结果表明:随着喷头安装高度的升高,射程增加,单喷头喷灌强度峰值降低。不同喷头安装高度下,最高组合均匀性系数对应的最佳喷头间距不同,但均不超过0.9倍射程。0.5m喷头安装高度的射程最小、喷灌强度峰值最大、最高组合均匀性系数最低,为最不利安装高度。  相似文献   

3.
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

4.
为了探究不同工况对射流式喷头喷灌水量的影响,通过对射流式喷头在不同组合间距和工作压力下的水量分布数据进行分析,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数和分布均匀性系数计算了相应的喷灌均匀度.结果发现喷头组合间距在1.0R~1.4R变化时正方形组合喷灌的CU值随喷头间距的增大呈下降趋势,CU值均大于70%;1.0R和1.2R组合间距下正方形组合喷灌低值区域的占比比三角形组合高,而1.4R的组合间距则与上述相反;当压力由0.1 MPa升至0.3 MPa时三角形组合喷灌区域的灌水峰值随着压力的增大呈先减小后增大的趋势;在正方形组合形式下增大工作压力有利于提高喷洒区域内的均匀性;压力损失并不总是降低喷灌的均匀性,0.2~0.3 MPa压力下,10%的压力损失对喷头喷灌均匀性几乎没影响;射流式喷头1.4 m安装高度、0.25 MPa压力下宜采用1.4R间距的三角形组合.  相似文献   

5.
平移式喷灌机行走速度及喷灌均匀度试验研究   总被引:1,自引:0,他引:1  
为研究低压喷灌下喷灌机行走速度合理取值以及喷灌均匀度对土壤含水率均匀度的影响,以自行研制的轻小型平移式喷灌机为研究对象,通过室内单喷头试验和田间喷灌试验,探究了特定灌水定额下喷灌机的工作压力与行走速度关系,并对其水量分布、喷灌均匀度以及土壤含水率均匀度随时间变化进行了分析.结果表明:通过确定灌水定额能够计算出平移式喷灌机的行走速度和工作压力:当灌水定额分别为10,15,20 mm时,40~120 kPa喷灌压力下喷灌机行走速度最小为17.27 m/h,最大为58.65 m/h;增大喷灌压力能小范围提高均匀度,40 kPa工作压力均匀度为0.696,60~120 kPa喷灌压力下均匀度变化范围为0.731~0.788,喷灌水在土壤中的二次分布均匀度明显高于地表喷灌均匀度,40 kPa喷灌压力下喷后6 h土壤含水率均匀度达到0.906,24 h后达到0.953,可相应降低喷灌均匀度设计值以降低运行成本,节约能耗.  相似文献   

6.
为探究流道出口形状、工作压力、喷嘴直径对折射式喷头水力性能的影响,设计了矩形、Y形、垭口形3种流道出口的喷盘,通过正交试验测试单喷头移动水量分布,采用线性插值计算射程,利用直接叠加法计算不同喷头间距下组合均匀性系数,并运用综合加权评分法评价了喷头水力性能。结果表明:喷嘴直径、工作压力和流道出口形状对射程均影响显著,而其对单喷头移动水量分布的影响主要表现在水量区域位置和喷灌强度峰值不同。影响射程、喷灌强度峰值和组合均匀性系数的主次顺序为喷嘴直径、流道出口形状、喷头组合间距、工作压力。喷头水力性能最优的因素组合为:喷嘴直径为2.98mm,喷盘流道出口形状为Y形,喷头组合间距为2.5m,工作压力为100kPa。  相似文献   

7.
为解决非旋转式折射喷头水量分布集中,打击动能较大的问题,构建了动态水压喷灌测试平台。选择Nelson D3000型喷头为研究对象,施加以三角函数型动态变化的水压,对喷头的径向水量分布与能量分布进行测试,并与恒压条件下的水量和能量分布进行对比。结果表明:构建的动态水压测试平台能够满足对动态供水压力的要求,施加了动态水压的Nelson D3000型喷头径向湿润范围由恒压时的0.85~1.36 m增加到2.55~4.42 m,喷灌强度最大值降低67.6%~78.4%,能量通量密度最大值降低52.9%~71.6%,说明采用动态水压供水可以有效地改善Nelson D3000型喷头的径向水量分布和能量分布。  相似文献   

8.
微喷头水力性能及喷灌组合均匀性试验研究   总被引:1,自引:0,他引:1  
为了解不同因素对微喷头水力性能及喷灌组合均匀性的影响,分别研究了喷嘴直径1.2和1.4 mm的微喷头在工作压力为250,300和350 k Pa下流量、射程、水量分布和喷灌组合均匀性系数变化规律.结果表明:喷嘴直径为1.2 mm的喷头,流量系数为0.005 9;喷嘴直径为1.4mm的喷头,流量系数为0.005 2;工作压力分别为250,300和350 k Pa下,1.4 mm喷嘴直径相比1.2 mm喷嘴直径流量分别增加5.0%,2.4%和3.0%,射程分别增加11%,8%和14%.距喷头距离近处,喷灌强度随着工作压力增大而增大;分别得到喷嘴直径为1.2和1.4 mm的微喷头喷灌强度、距喷头距离和工作压力之间的关系多项式;对于工作范围较小的微喷头,喷嘴直径对于射程影响较大;在相同工作压力下,组合喷灌均匀系数随喷头间距增加而减小,通过计算组合均匀系数发现喷嘴直径1.4 mm的微喷头在300 k Pa下,组合间距为1.0R时,喷灌均匀度最高.  相似文献   

9.
为探索大尺寸半固定式喷灌系统适宜的灌水技术参数,通过田间试验研究不同工作压力、不同喷头间距以及不同风速组合条件下大尺寸半固定式喷灌灌水均匀度。试验结果表明,在推荐工作压力范围内,单喷头的喷灌均匀度系数随着工作压力的增加呈提高趋势;无风环境下,工作压力为425 k Pa时,喷头间距不大于35和39 m时,灌水均匀度可以达到90%和80%以上,喷头间距控制在35~39 m比较适宜;风速在0~1、1~3和3~5 m/s范围内,喷灌灌水均匀度达到75%以上的喷头间距组合分别为不大于39、30和20 m,说明风速在0~1和1~3 m/s范围时,喷头适宜间距分别为39和30 m,当风速超过3 m/s时,风速是影响喷灌均匀度系数的主要因子。大尺寸半固定式喷灌系统适宜的间距为30~39 m。  相似文献   

10.
为研究喷头压力对水量分布模型的影响,以低压喷头为例,对其进行水力性能试验.通过计算矩形组合下不同压力的喷灌组合均匀系数Cu和组合分布均匀系数Du,探索喷头压力对水量分布模型的影响.结果表明:对于低压喷头,喷灌强度随压力增大先逐渐增大,达到一定值后基本保持不变.在距喷头不同距离时,不同压力下的喷灌强度变化情况不同.在低压范围内,压力对喷灌组合均匀系数和组合分布均匀系数的影响较明显.在100~200 kPa范围下,CuDu均随着压力的增大而增大.在200~300 kPa范围下,CuDu均变化不大.最终提出二者的函数关系式,为多因素下水量分布模型的建立提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号