首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feline infectious peritonitis virus (FIPV) positive cells are present in pyogranulomas and exudates from cats with FIP. These cells belong mainly to the monocyte/macrophage lineage. How these cells survive in immune cats is not known. In this study, FIPV positive cells were isolated from pyogranulomas and exudates of 12 naturally FIPV-infected cats and the presence of two immunologic targets, viral antigens and MHC I, on their surface was determined. The majority of the infected cells were confirmed to be cells from the monocyte/macrophage lineage. No surface expression of viral antigens was detected on FIPV positive cells. MHC I molecules were present on all the FIPV positive cells. After cultivation of the isolated infected cells, 52+/-10% of the infected cells re-expressed viral antigens on the plasma membrane. In conclusion, it can be stated that in FIP cats, FIPV replicates in cells of the monocyte/macrophage lineage without carrying viral antigens in their plasma membrane, which could allow them to escape from antibody-dependent cell lysis.  相似文献   

2.
The types of feline coronaviruses that are prevalent throughout Japan were determined by competitive enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody (MAb) to feline infectious peritonitis virus (FIPV) Type II and neutralizing test using Type II FIPV as challenge virus. A total of 1,079 cat serum samples were tested by indirect fluorescent antibody (IFA) assay for FIPV Type II antigen, all 42 sample from natural cases of FIP, 138 of 647 (21.3%) from cases with some chronic diseases and 57 of 390 (14.6%) from apparently non-diseased cases were positive. Of the 42 cases with FIP, 29 (69%) and 13 (31%) were found to have infection with FIPV Types I and II, respectively. Of the cases with chronic diseases, 111 (80.4%) were shown to have infection with FIPV or FECV Type I, while 14 (10.1%) with FIPV or FECV Type II. All of the 57 apparently non-diseased cases seemed to have been infected with FIPV or FECV Type I. These results indicated that feline coronavirus Type I is more high prevalent in Japan.  相似文献   

3.
Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). The antibody-dependent enhancement (ADE) of FIPV infection has been recognised in experimentally infected cats, and cellular immunity is considered to play an important role in preventing the onset of FIP. To evaluate the importance of cellular immunity for FIPV infection, monoclonal antibodies (MAbs) against feline interferon (fIFN)-γ were first created to establish fIFN-γ detection systems using the MAbs. Six anti-fIFN-γ MAbs were created. Then, the difference in epitope which those MAbs recognise was demonstrated by competitive enzyme-linked immunosorbent assay (ELISA) and IFN-γ neutralisation tests. Detection systems for fIFN-γ (sandwich ELISA, ELISpot assay, and two-colour flow cytometry) were established using anti-fIFN-γ MAbs that recognise different epitopes. In all tests, fIFN-γ production from peripheral blood mononuclear cells (PBMCs) obtained from cats experimentally infected with an FIPV isolate that did not develop the disease was significantly increased by heat-inactivated FIPV stimulation in comparison with medium alone. Especially, CD8(+)fIFN-γ(+) cells, but not CD4(+)fIFN-γ(+) cells, were increased. In contrast, fIFN-γ production from PBMCs isolated from cats that had developed FIP and specific pathogen-free (SPF) cats was not increased by heat-inactivated FIPV stimulation. These results suggest that cellular immunity plays an important role in preventing the development of FIP. Measurement of fIFN-γ production with the anti-fIFN-γ MAbs created in this study appeared to be useful in evaluating cellular immunity in cats.  相似文献   

4.
The Type II feline infectious peritonitis virus (FIPV) infection of feline macrophages is enhanced by a monoclonal antibody (MAb) to the S protein of FIPV. This antibody-dependent enhancement (ADE) activity increased with the MAb that showed a neutralizing activity with feline kidney cells, suggesting that there was a distinct correlation between ADE activity and the neutralizing activity. The close association between enhancing and neutralizing epitopes is an obstacle to developing a vaccine containing only neutralizing epitopes without enhancing epitopes. In this study, we immunized cats with cell lysate with recombinant baculovirus-expressed N protein of the Type I FIPV strain KU-2 with an adjuvant and investigated its preventive effect on the progression of FIP. Cats immunized with this vaccine produced antibodies against FIPV virion-derived N protein but did not produce virus-neutralizing antibodies. A delayed type hypersensitivity skin response to N protein was observed in these vaccinated cats, showing that cell mediated immunity against the FIPV antigen was induced. When these vaccinated cats were challenged with a high dose of heterologous FIPV, the survival rate was 75% (6/8), while the survival rate in the control group immunized with SF-9 cell-derived antigen was 12.5% (1/8). This study showed that immunization with the cell lysate with baculovirus-expressed N protein was effective in preventing the progression of FIP without inducing ADE of FIPV infection in cats.  相似文献   

5.
Delayed-type hypersensitivity (DTH)-like reactions to feline infectious peritonitis (FIP) virus (FIPV) were induced in the skin of nine cats that were asymptomatic after a previous challenge-exposure with FIPV. Four of the nine previously challenge-exposed cats were negative for virus-neutralizing antibodies against FIPV at the time of intradermal (ID) testing for DTH. Two other cats tested for DTH when acutely ill with clinical FIP did not have cutaneous DTH responses to FIPV. Gross skin reactions to FIPV injected ID were observed in six of nine asymptomatic cats (67%) at postintradermal inoculation hours (PIH) 24, 48, and/or 72. The reactions consisted of focal, 1-5-mm to 2.5-cm diameter indurated or semi-firm, nonerythematous, slightly raised nodules. Microscopically, DTH-like reactions were observed in biopsies taken from the FIPV-inoculated skin of asymptomatic cats at PIH 24 to 72. The lesions consisted of perivascular and diffuse dermal infiltrations by macrophages, lymphocytes, and polymorphonuclear leukocytes (PMN). The dermal infiltrates, which were maximal at PIH 48 or 72, were predominantly mixed inflammatory cells (five of nine cats) or PMN (four of nine cats) at PIH 24, but later were predominantly mononuclear cells (six of nine cats) or mixed inflammatory cells (two of nine cats) at PIH 72. Five of nine cats (56%) with positive DTH skin responses had increased survival times after lethal ID challenge-exposure with FIPV compared to mean survival times in FIPV-naive, non-immune control cats that were DTH-negative when ID challenge-exposed. Four of nine DTH-positive cats (44%) resisted an ID challenge-exposure dose of FIPV that was fatal in both control cats, and two of the four remaining DTH-positive cats survived a third challenge-exposure with highly lethal doses of FIPV given intraperitoneally. Four of the six DTH-positive cats (67%) that died after re-challenge and were necropsied had lesions of noneffusive FIP, suggesting that cellular immunity may also be involved in the pathogenesis of noneffusive disease, whereas both control cats and both DTH-negative cats with clinical disease succumbed to effusive FIP. Seemingly, DTH responses to FIPV can be associated with an increased level of resistance to disease; however, this state of immunity is variable and apparently can be lost with time in some cats.  相似文献   

6.
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.  相似文献   

7.
Preexisting antibody to feline infectious peritonitis virus (FIPV) causes acceleration and enhancement of disease on subsequent infection of cats with FIPV. Other workers have shown that canine coronavirus (CCV) can infect cats subclinically, but have found no evidence of enhancement of, or protection against, subsequent FIPV infection. With various isolates of CCV, we determined that 1 strain of CCV can induce transient mild diarrhea in cats and, furthermore, that previous infection with CCV causes acceleration and enhancement of subsequent infection with FIPV. In addition, sequential inoculation of cats with another strain of CCV caused lesions indistinguishable from those of FIP, without exposure at any time to FIPV.  相似文献   

8.
A closed household of 26 cats in which feline coronavirus (FCoV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) were endemic was observed for 10 years. Each cat was seropositive for FCoV on at least one occasion and the infection was maintained by reinfection. After 10 years, three of six surviving cats were still seropositive. Only one cat, which was also infected with FIV, developed feline infectious peritonitis (FIP). Rising anti-FCoV antibody titres did not indicate that the cat would develop FIP. The FeLV infection was self-limiting because all seven of the initially viraemic cats died within five years and the remainder were immune. However, FeLV had the greatest impact on mortality. Nine cats were initially FIV-positive and six more cats became infected during the course of the study, without evidence of having been bitten. The FIV infection did not adversely affect the cats' life expectancy.  相似文献   

9.
Immunologic phenomena in the effusive form of feline infectious peritonitis   总被引:15,自引:0,他引:15  
The effusive form of feline infectious peritonitis (FIP) was reproduced by injecting 12- to 16-week-old kittens intraperitoneally with a cell-free inoculum derived from the tissues of infected cats. The kittens used for the study were either positive for FIP virus-reacting antibodies before inoculation or they were seronegative. Seropositive kittens were obtained from a cattery where the natural infection was enzootic, and seronegative kittens were obtained from a specific-pathogen-free cattery. Only about half the kittens that were seronegative before inoculation developed disease or serum antibodies to the tissue-derived virus. Seronegative kittens that developed disease showed no signs of illness until 8 to 10 days after inoculation, and they lived for 7 to 14 days after clinical signs appeared. The onset of clinical disease coincided with the appearance of serum antibodies. In contrast, all of the seropositive kittens became ill within 36 to 48 hours after inoculation, and died within 5 to 7 days. If seronegative kittens were treated with immune serum or immunoglobulin (Ig)G, they developed disease with the same frequency, acuteness, and severity as seropositive kittens. Foci of hepatitis and serositis in seropositive kittens contained viral antigen, IgG bound to antigen, and complement. Serum complement activity also decreased several days before death in seropositive kittens inoculated with tissue-derived FIP virus. The temporal relationship of clinical disease and the appearance of serum antibodies, the more acute and severe nature of the disease produced in seropositive kittens, and the presence of antibody and complement in the lesions indicated that effusive FIP is immunologically mediated.  相似文献   

10.
Disseminated intravascular coagulation was induced in kittens by intraperitoneal inoculation of feline infectious peritonitis virus (FIPV). Kittens seronegative to FIPV survived significantly (P less than 0.05) longer than those seropositive to FIPV. Pyrexia, anemia, icterus, hyperbilirubinemia, and elevated concentrations of liver-specific enzymes were detected in the inoculated cats. Lesions induced included disseminated fibrinonecrotic and pyogranulomatous inflammation, hepatic necrosis, and widespread phlebitis and thrombosis. Localization of FIP viral antigen and immunoglobulin G was demonstrated in foci of heptic necrosis by immunofluorescence miroscopy. Lymphopenia, thrombocytopenia, hyperfibrinogenemia, and increased quantities of fibrin-fibrinogen degradation products were present in cats after the onset of clinical illness. Depression of factor VII, VIII, IX, X, XI, and XII plasma activities and prolongation of prothrombin and partial thromboplastin times also developed in infected cats. The accelerated onset of clinical disease and mortality in seropositive kittens vs seronegative kittens and the association of virus and antibody in multiple foci of hepatic necrosis suggest an immune-mediated component is involved in the pathogenesis of this disease.  相似文献   

11.
Specific pathogen free kittens were vaccinated with an unattenuated field isolate of canine coronavirus (CCV) either by aerosol or subcutaneously, and received boosting vaccinations four weeks later. Aerosolisation elicited a homologous virus-neutralising (VN) antibody response that increased steadily over a four-week period and levelled off one to two weeks after revaccination. The initial aerosolised dose produced an asymptomatic infection with excretion of CCV from the oropharynx up to eight days after vaccination; virus shedding was not detected, however, after the second inoculation. Cats vaccinated subcutaneously developed low VN antibody titres after the first CCV dose and experienced a strong anamnestic response after the second dose. Neutralising antibody titres then levelled off one to two weeks after revaccination at mean values somewhat lower than in cats vaccinated by aerosol. CCV was not isolated from the oropharynx after either subcutaneous dose. Four weeks after CCV boosting inoculations, vaccinated cats and sham-vaccinated control cats were divided into three subgroups and challenged by aerosol with the virulent UCD1 strain of feline infectious peritonitis virus (FIPV UCD1) at three different dosage levels. Five of six cats (including sham-vaccinated controls) given the lowest challenge dose showed no signs of disease, while all other cats developed lesions typical of feline infectious peritonitis (FIP). The five surviving cats developed FIP after subsequent challenge with a fivefold higher dose of FIPV. Thus heterotypic vaccination of cats with CCV did not provide effective protection against FIPV challenge.  相似文献   

12.
Non-immune kittens passively immunized with feline serum containing high-titered antibodies reactive with feline infectious peritonitis virus (FIPV) developed a more rapid disease after FIPV challenge than did kittens pretreated with FIPV antibody-negative serum. Antibody-sensitized, FIPV challenged—kittens developed earlier clinical signs (including pyrexia, icterus, and thrombocytopenia) and died more rapidly than did non-sensitized, FIPV-challenged kittens. Mean survival time in sensitized kittens was significantly (P < 0.05) reduced compared to non-sensitized kittens (mean ± SEM, 10.0 ± 0.6 days vs. 28.8 ± 8.3 days, respectively). Lesions induced included fibrinous peritonitis, disseminated pyogranulomatous inflammation and necrotizing phlebitis and periphlebitis. FIPV antigen, immunoglobulin G, complement (C3) and fibrinogen were demonstrated in lesions by immunofluorescence microscopy.The pathogenesis of dengue hemorrhagic fever (DHF) in persons bears striking resemblance to that of FIP in experimental kittens. In both FIP and DHF, non-neutralizing antibody may promote acute disease by enhancement of virus infection in mononuclear phagocytes or by formation of immune complexes, activation of complement and secondary vascular disturbances.  相似文献   

13.
Two cats previously challenge-exposed and seropositive to feline infectious peritonitis virus (FIPV) were evaluated for delayed-type hypersensitivity (DTH) skin responses to intradermal FIPV. Before testing, cat 1 (FIP-resistant) had survived a severe experimental FIPV challenge-exposure and had remained asymptomatic, whereas cat 2 (FIP-susceptible) developed acute fulminant FIP after a considerably smaller virus challenge-exposure. Cat 1 developed a focal thickened plaque at the FIPV-injected skin site at 48 hours after injection. Histological examinations of serial punch biopsies from virus-inoculated skin revealed perivascular and diffuse dermal infiltrations of macrophages, lymphocytes and polymorphonuclear leucocytes which were maximal at 48 to 72 hours after injection. In contrast, cat 2 did not react grossly and showed only very mild dermal infiltrates at 72 hours after injection. The present findings of strong DTH responses to FIPV in a resistant cat and minimal responses in a cat with acute fulminant FIP suggest that certain in vivo cellular immune reactions may be associated with disease resistance.  相似文献   

14.
Seventy-four cats (52 treated and 22 untreated) were evaluated in efficacy studies of interferon (IFN), Propionibacterium acnes, or a combination of these drugs against experimentally induced feline infectious peritonitis (FIP). Cats were given doses of recombinant human leukocyte (alpha) IFN (rHuIFN-alpha), feline fibroblastic (beta) IFN (FIFN-beta) or P acnes at regular intervals before and after inoculation of virulent FIP virus (FIPV). Prophylactic and therapeutic administration of high doses (10(6) U/kg of body weight) or moderate doses (10(4) U/kg) of rHuIFN-alpha, FIFN-beta (10(3) u/kg), or P acnes (0.4 or 4 mg) did not significantly reduce mortality in treated vs untreated cats. However, the mean survival time in cats treated with 10(6) U of rHuIFN-alpha-/kg alone or combined with doses of P acnes was significantly (P = 0.03) increased after inoculation of highly lethal amounts (200 LD100) of FIPV vs survival time in untreated cats. Although P acnes alone was ineffective, there was some indication that a combination of P acnes and high doses of rHuIFN-alpha was more effective than rHuIFN-alpha alone. Seemingly, the efficacy of rHuIFn-alpha treatment was improved in cats challenge-exposed with less FIPV; in 1 trial, 4 of 5 cats (80%) treated with high doses of rHuIFN-alpha survived after inoculation of minimal lethal amounts (0.6 LD100) of FIPV, whereas only 2 of 5 untreated cats (40%) survived. Pretreatment of cats with 10(6) U of rHuIFN-alpha/kg resulted in detectable serum IFN activity 24 hours later; serum IFN activity was not detected in cats pretreated with P acnes, FIFN-beta, or 10(4) U of rHuIFn-alpha/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Monospecific antisera were prepared in rabbits against canine coronavirus (CCV) and transmissible gastroenteritis virus of pigs (TGEV), and in 24 pigs and 3 cats against TGEV alone. Neutralizing antibody titres were higher for the immunizing than the heterologous virus, although cross-neutralization usually was detected. This confirmed that CCV and TGEV are distinct, but antigenically related coronaviruses. In sera from 41 dogs, CCV-neutralizing titres were on average 2.7 fold higher than TGEV-neutralizing titres, suggesting that CCV was the causal agent. Sera from 29 cats in colonies with feline infectious peritonitis (FIP) and known to contain TGEV-neutralizing antibody, were found to have titres 12.3 fold higher against CCV. The FIP virus (FIPV) is probably more closely related to CCV than TGEV as judged by antigens involved in virus neutralization.Antisera to two isolates of bovine coronavirus, three isolates of haemagglutinating encephalomyelitis virus, seven strains of avian infectious bronchitis virus and the 229E strain of human coronavirus all failed to neutralize CCV and TGEV. Thus CCV, TGEV and probably FIPV fall into a group of antigenically related agents, separable from other members of the family Coronaviridae, by both virus neutralization and immunofluorescence tests.  相似文献   

16.
Immune complexes purified from sera and ascitic fluids of cats after inoculation with feline infectious peritonitis (FIP) virus contained proteins and proteolytic fragments of the peplomer, nucleocapsid, and envelope polypeptides; in addition, host proteins were demonstrated in the immune complexes. Free (uncomplexed) antibodies against the 3 classes of virion polypeptides were detected and quantitated; the weakest and latest response was directed against the peplomer protein. Immunofluorescence titers showed the best correlation with the antibody response directed against the envelope polypeptides. Differences in reactivity were not found between sera and ascitic fluids from the same animals and between seropositive healthy cats and cats which had died of FIP. Humoral antibody and hypergammaglobulinemia showed a linear correlation, but the wide variation in antiviral titers at a given concentration of gamma-globulin indicated that additional (autoimmune) reactions occur during the pathogenesis of FIP.  相似文献   

17.
18.
Serologic virus neutralization tests, indirect immunofluorescence tests, and ELISA, using tissue culture-adapted feline infectious peritonitis virus (FIPV) or feline enteric coronavirus (FECV) were compared for their ability to distinguish specific virus exposure in cats. Sera of specific-pathogen-free cats inoculated with virulent or modified FIPV or FECV were used to compare the sensitivity and specificity of the homologous assays to a heterologous assay that measures antibody reactivity with transmissible gastroenteritis virus of swine. The geometric means of the serologic titers in FIPV and FECV assays were higher for FIPV- or FECV-infected specific-pathogen-free cats than the geometric means of the transmissible gastroenteritis virus assays for most groups. None of the assays was specific enough to discern the virus to which a cat had been exposed. However, the FIPV virus neutralization test appeared to be more sensitive for detection of an early response to FIPV infection than did the FIPV immunofluorescence test or FIPV-ELISA.  相似文献   

19.
A new monoclonal antibody (mAb), CCV2-2, was compared with the widely used FIPV3-70 mAb, both directed against canine coronavirus (CCoV), as a diagnostic and research tool. Western blot showed that both anti-CCoV mAbs only reacted with a protein of 50 kD, a weight consistent with the feline coronavirus (FCoV) viral nucleocapsid. A competitive inhibition enzyme-linked immunosorbent assay showed that the 2 recognized epitopes are distinct. Preincubation of CCV2-2 mAb with FCoV antigen suppressed the immunostaining. Formalin-fixed, paraffin-embedded sections from brains of 15 cats with the dry form of feline infectious peritonitis (FIP) were examined by immunohistochemistry. Immunohistochemistry was performed with both anti-CCoV mAbs, either on consecutive or on the same sections. A myeloid-histiocytic marker, MAC 387, was also used to identify FIP virus-infected cells. In all regions where MAC 387-positive cells were present, positive staining with the CCV2-2 mAb was systematically detected, except at some levels in 1 cat. In contrast, none or only a few cells were positive for the FIPV3-70 mAb. Double immunostaining showed macrophages that were immunopositive for either CCV2-2 alone or alternatively for CCV2-2 and FIPV3-70 mAbs. This reveals the coexistence of 2 cohorts of phagocytes whose FIP viral contents differed by the presence or absence of the FIPV3-70-recognized epitope. These findings provide evidence for antigenic heterogeneity in coronavirus nucleocapsid protein in FIP lesions, a result that is in line with molecular observations. In addition, we provide for the first time morphologic depiction of viral variants distribution in these lesions.  相似文献   

20.
Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683   总被引:13,自引:0,他引:13  
Two feline coronavirus isolates were characterized by their disease-causing potential in cats. The 79-1683 feline coronavirus isolate caused an inapparent-to-mild enteritis when given oronasally to specific-pathogen-free kittens and was not a cause of feline infectious peritonitis (FIP). Target tissues for the virus were the mature apical epithelium of the small intestine, mesenteric lymph nodes, tonsils, thymus, and (to a lesser extent) the lungs. Inoculated kittens shed high numbers of virus in their feces for 14 to 17 days, but remained infectious to susceptible kittens for longer periods of time, as evidenced by contact-exposure studies. Because the 79-1683 isolate induced only enteritis, it was designated feline enteric coronavirus (FECV) 79-1683. The 79-1146 feline coronavirus isolate induced effusive abdominal FIP in specific-pathogen-free kittens after oronasal and intraperitoneal inoculation. Clinical signs of disease appeared within 12 to 14 days in almost all inoculated kittens. Because this isolate caused FIP, it was designated FIP virus (FIPV) 79-1146. Cross-protective immunity was not induced by the various coronavirus infections. Kittens preimmunized with the UCD strain of FECV (FECV-UCD) or with FECV-79-1683 were not immune to infection with FIPV-79-1146. Likewise, kittens previously inoculated with FECV-79-1683 were not immune to infection with FIPV-UCD1. In fact, preexisting heterologous FECV-79-1683 immunity often accelerated and enhanced the severity of disease caused by inoculation with FIPV-UCD1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号