首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Double cropping of soybean has progressed less rapidly in the U.S. Southeastern Coastal Plains than expected by the ample rainfall and long frost-free season. Post-emergence herbicides, the management of plant residues to reduce water use by cover crops, and a no-till planter with a combination subsoiler are the innovations that have facilitated this new production. Full-season soybean (Glycine max L.) was planted following a grazed cover crop of winter rye (Secale cereale L.) or late-season soybean was planted following winter wheat harvest. In both cases, a special planter was used with an integral subsoil shank ahead of the opener. Full-season soybean under conservation tillage produced yields equal to or better than yields in conventional clean tillage. In a dry summer, soybean yields under conservation tillage exceeded conventional tillage because of suppressed early biomass production which conserved stored soil water and favored growth during the reproduction phase of the crop-cycle. Late-season soybean yields behind wheat favored the conservation tillage practice of in-row subsoil-planting into stubble. However, planting in burned-off wheat stubble produced the highest yields in this study. In a dry spring, the cover crop accelerated soil water use which resulted in lower soybean yields under conservation tillage. Comparisons of 76 vs. 97 cm row spacing were inconclusive, but the trend suggests that wider rows conserve water under periods of drought and that the narrower-row configuration favors adequate water regimes.  相似文献   

2.
Soil quality is essential for plant growth and terrestrial ecosystem maintenance. Although soil properties can be influenced by the agricultural production system, this influence has seldom been studied under semi-arid Mediterranean conditions. We analyzed the effect of the management system on soil physical and chemical parameters and soil microbial communities over three consecutive years under different conventional and conservation management regimes: conventional tillage (CT), direct seeding (DS), direct seeding with a winter crop cover (DSC), and long-term conservation management after nine consecutive years of direct seeding with winter cover (DSCLT). The study was conducted on a maize (Zea mays L.) crop under irrigation in south western Spain. An improvement of the physical, chemical and biological parameters of the DS and DSC soils with respect to the CT soil was observed after two years management. Soil water content increased around 30% during the three years in the DS and DSC soils; organic C, nitrogen, and aggregate stability increased after the second year; total culturable microorganisms were twice as numerous in DSCLT as in the CT soil; and soil penetration resistance was 50% less in all soils under any of the conservation management regimes. Hence, there was a major improvement in soil quality related to a potential increase of crop yields, and a reduced environmental impact, after short-term as well as after long-term conservation management.  相似文献   

3.
【目的】 农田固碳保水性能是影响作物产量的关键因素,研究耕作方式对耕层 (0—20 cm) 土壤碳、水含量和产量的影响,为选择适宜该地区的最佳耕作措施提供参考。 【方法】 保护性耕作长期定位试验始于2002年,种植制度为冬小麦–夏玉米一年两熟,两季秸秆全量粉碎 (3~5 cm) 还田,试验设传统翻耕、深松、旋耕和免耕4种耕作方式。对2015—2016年作物生长各时期土壤有机碳含量、土壤含水量、碳水储量、产量和等价产量等进行了测定。 【结果】 不同处理麦–玉轮作农田0—20 cm土层有机碳含量有所不同。耕作措施对土壤有机碳含量有显著 (P < 0.05) 影响,表现为深松和免耕能显著增加0—10 cm土层有机碳含量,且以深松效果最为显著 ( P < 0.05)。与传统翻耕相比,免耕和旋耕降低了10—20 cm土层土壤有机碳含量;深松比传统翻耕显著 ( P < 0.05) 增加了小麦季土壤有机碳含量,玉米季没有显著性差异 ( P < 0.05)。0—10 cm土层,玉米季旋耕和免耕处理的土壤含水量高于深松和传统翻耕;在10—20 cm土层小麦季免耕处理土壤含水量高于其他三种耕作方式。产量结果表明,深松能有效增加作物的有效穗数、穗粒数和千粒重,进而增加籽粒产量和周年等价产量;免耕显著 ( P < 0.05) 降低了亚表层 (10—20 cm) 有机碳含量,降低穗粒数和千粒重,不利于作物增产。两年小麦玉米单作产量和周年等价产量均表现为深松 > 传统翻耕 > 旋耕 > 免耕。 【结论】 深松能有效促进耕层土壤有机碳积累和保水性能提高,增加作物的有效穗数、穗粒数和千粒重,从而增加产量;免耕显著 (P < 0.05) 提高了表土层 (0—10 cm) 碳储量,有助于增强耕层土壤的保水性能。   相似文献   

4.
在冬小麦季设置秸秆不还田翻耕(CT)、秸秆还田翻耕(CTS)、秸秆还田旋耕(RTS)和免耕秸秆覆盖(NTS)4种处理,研究耕作方式对华北小麦-玉米两熟区作物周年产量和水分利用的影响。结果表明:耕作方式对当季冬小麦产量和水分利用影响显著,对夏玉米产量和水分利用影响不大,但秸秆还田提高了夏玉米产量。RTS、CTS、CT 3个处理小麦季产量差异不显著,而NTS由于有效穗数不足,产量显著低于其他处理;与CT相比,NTS周年产量平均减产5.13%,RTS增产2.69%,CTS增产2.33%。耕作方式对当季小麦土壤水分含量影响大,而对后茬夏玉米土壤水分含量的影响较小。NTS提高了小麦季土壤水分含量,增加了土壤储水量,与CT相比,0~60 cm土壤储水量2010年和2011年分别增加39.07 mm和26.65 mm。从耗水构成来看,土壤水在冬小麦耗水中所占比例最大,其次为灌水和降水;而夏玉米耗水以降水为主,且降水中有一部分转化为土壤水储存起来。NTS提高了冬小麦季土壤储水量,降低了土壤水分的消耗,冬小麦季耗水最少。与CT相比,NTS小麦季平均节水22.40 mm,周年耗水量也以NTS最少;但NTS冬小麦产量降低导致其小麦季和周年水分利用效率均最低。从作物周年产量和水分利用的角度来看,如何提高免耕秸秆覆盖小麦季产量,进而提高周年产量,发挥其节水优势,是该耕作模式在华北地区冬小麦?夏玉米两熟区推广应用亟需解决的关键问题。  相似文献   

5.
【目的】通过研究保护性耕作对旱地春玉米土壤有机碳(SOC)、产量及水分利用的影响,分析保护性耕作的增产机制,为旱作农田耕作技术应用提供理论和技术支持。【方法】采用2003~2013年连续11年的田间定位试验,设传统耕作(CT)、少耕(RT)和免耕(NT)3种耕作措施,分析土壤0-20 cm和20-40 cm土层有机碳含量、土壤0-20 cm含水量、作物耗水量、玉米产量和水分利用效率的年际变化和耕作处理间的差异,并对玉米产量与影响因素的相关性进行分析。【结果】1)保护性耕作能有效提高土壤有机碳含量,少耕、免耕处理0-20 cm土层有机碳含量11年平均值较传统耕作分别提高了11.2%和3.4%;至2013年少耕、免耕20-40 cm土层有机碳含量分别较传统耕作增加了5.53和3.29 g/kg;土壤0-20 cm有机碳储量净增加速率分别为C 0.365和0.754t/(hm2·a)。2)保护性耕作具有明显的增产效果,少耕产量最高,增产效果最好2003~2013年均产量为5.83t/hm~2,较传统耕作提高了14.7%;免耕次之,年均产量为5.39 t/hm~2,较传统耕作增产6.1%。3)各耕作处理玉米产量与土壤0-20 cm土层含水量之间存在显著的二次方程关系,与作物耗水量之间具有显著的乘幂方程关系。4)保护性耕作可以增加土壤水分减少玉米生育期内的耗水量,提高水分利用效率,其中免耕土壤0-20 cm土层水分含量最高2003-2013年平均含水量为15.2%,较传统耕作和少耕提高了1.90和1.66个百分点,且生育期耗水量最少2003~2013年均耗水量为403.5 mm,较传统耕作和少耕减少了16.1 mm和7.6 mm;少耕、免耕的水分利用效率较传统耕作分别提高了16.1%和10.2%,降水利用效率较传统耕作提高13.9%和5.8%。【结论】长期保护性耕作可以有效地提高土壤有机碳含量、增加土壤水分、减少作物耗水量,从而显著提高了玉米产量和水分利用效率,3种耕作措施中以少耕效果最好,免耕次之在旱作农田推广少、免耕保护性耕作措施是一种增产、节水的有效途径。  相似文献   

6.
The term ‘Konservierende Bodenbearbeitung’ has a somewhat different meaning than conservation tillage as used worldwide. In Germany the term is used not only in relation to the retention of surface residues to reduce erosion but in association with compaction control by carefully timed loosening operations.Field experiments were conducted from 1985 to 1990 on a loamy sand (Dystric-Luvisol) in north-central Germany. The effect of crop rotation-specific soil loosening on some soil physical properties and crop yields was studied in the presence and absence of wheel-induced soil compaction when growing sugar beet, winter wheat, winter barley and a cover crop. Five tillage treatments were studied in a 3-year crop rotation: sugar beet; winter wheat; winter barley; cover crop. These included conventional mouldboard ploughing, conservation tillage with no loosening and conservation tillage where loosening was carried out with a wide blade chisel plough, (1) before winter barley, (2) before the cover crop (mustard or California bluebell) and (3) before winter barley and the cover crop.Wheel-induced compaction decreased the pore space and in most cases eliminated differences due to tillage practice. Pore space on the wheel-tracked plots of the conventional treatment was considerably lower than on the non-wheel-tracked plots. Similar results were obtained for the conservation tillage plots but only where loosening had been carried out within the last 18 months.In summary of the 6 years experiment, there was in general no evidence that conventional tillage was superior to conservation tillage with respect to the yields of sugar beet, winter wheat, or, within certain limits, winter barley on loamy sand.Accordingly, conservation tillage with crop rotation-specific non-inverting soil loosening, promises to be a potential strategy not only with regard to reducing soil erosion, but a programme for reducing costs and alleviating traffic-induced soil compaction.  相似文献   

7.
为了探讨不同覆盖耕作方式对农田土壤物理性状及作物产量的影响,该试验研究了免耕、常规2种耕作方式和4种留茬高度的玉米秸秆还田处理,对麦-玉两熟农田土壤含水率、容重、孔隙度以及作物产量的影响。结果表明:在0~40cm土层内,秸秆还田的集雨和保水效果显著,免耕留茬0.5m还田处理的含水率比免耕无覆盖处理增加了15.95%。秸秆还田量对0~40cm内土壤贮水量的影响不同。耕作措施显著影响了土壤容重,小麦播种前常规留茬1m还田、常规全量还田处理容重低至1.0g/cm3左右。秸秆还田能增加土壤总孔隙度、降低毛管与非毛管孔隙度的比值。单一免耕处理降低了作物产量,而免耕覆盖能增产,其留茬1m还田处理比无还田处理增产22.44%,比常规留茬0.5m还田处理高3.64%。因此,免耕留茬1m还田处理在改善农田土壤物理性状和增加作物产量方面显著,该研究可为农田管理过程中耕作措施和秸秆还田量的选择提供参考依据。  相似文献   

8.
One major objective of tillage is to loosen a soil and, thereby, create an improved soil condition for water infiltration, crop establishment, and plant growth. This implies that where tillage is not performed, as with no-tillage, soil conditions might be inferior to those of a tilled soil. However, no major adverse effects of no-tillage on soil conditions have been noted in the semiarid region of Texas. Also, crop yields on dryland have been favorable. This study was conducted to determine the effects of conventional- and no-tillage crop production methods on water retention, organic matter concentration, mean weight diameter of water-stable aggregates, bulk density, and penetrometer resistance of Pullman clay loam (Torrertic Paleustoll) at Bushland, Texas. These factors were significantly affected, but there was no consistent advantage or disadvantage for either tillage method. Wheat (Triticum aestivum L.) and grain sorghum (Sorghum bicolor (L.) Moench) yields have been favorable in the dryland rotation fields that were sampled for the soil measurements. Grain sorghum yielded 5.10 Mg ha−1 of grain with conventional tillage and an average of 5.32 Mg ha−1 of grain with no-tillage in 1987, the year in which the soil conditions were evaluated. The favorable yields indicate that no-tillage management does not adversely affect any of the measured Pullman (Torrertic Paleustoll) soil physical conditions to the point that crop yields are adversely affected.  相似文献   

9.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   

10.
A water crisis that occurs in Sudan during winter due to the competition for water to irrigate cotton (Gossipium barbadense L.) and wheat (Triticum aestivum L.) and to produce hydroelectric power necessitates a search for efficient means and ways of conserving water. Tillage is one of the methods for soil moisture conservation. Experiments were conducted in Gezira, Sudan on a Vertisol to determine if tillage practices and the lengthening of irrigation interval beyond two weeks during the period October–February would conserve irrigation water and maintain cotton yields. The residual effects of cotton tillage systems on the following wheat were also evaluated. The cotton experiment was conducted in split plot design with three replications. Three irrigation treatments of two-, three- and four-week intervals during the period October–February were used as main plots. Six tillage treatments were used as split plots (combinations of disc ploughing, cultivator and ridging). Treatments were compared by measuring cotton plant height and yields. Significant decreases in cotton yield were found between the four-week, and the two- and three-week irrigation intervals. However, no significant differences in cotton yields between the two- and the three-week irrigation intervals were detected. The lengthening of irrigation interval from two to three weeks during the period of irrigation water crisis (October–February) would result in conservation of about 3000 m3 ha−1 of irrigation water. This corresponds to about 600 000 000 m3 of water for the cotton irrigated area in the Sudan. Therefore, the three-week irrigation interval during the period October–February has the potential for water conservation for cotton production in Gezira Vertisols, with the use of economical shallow tillage. The tested deep and shallow cotton tillage treatments did not have residual effects on the following wheat crop.  相似文献   

11.
Tillage in Australia has evolved from ‘imported’ European practices to tillage systems more in tune with ‘older’ fragile soils and more severe climatic conditions. Cereal yields are commonly limited by water supply and the native fertility of many soils is poor. Crop/pasture rotations involving pasture legumes have been the mainstay of cereal production in the winter rainfall areas while production in much of the summer rainfall area has relied more on exploiting native fertility. Soil erosion and structural decline are still considered major issues facing long-term production. The general trend in tillage methods is for less tillage and greater retention of crop residues for soil and water conservation.

Tillage experiments have shown that management strategies involving retention of crop residues (stubble), reduced tillage and crop rotation can reduce erosion and improve yield. Results from experimentation are highly variable, both in magnitude and direction of responses to tillage treatments. Much of this variation is due to variation in seasonal conditions. Simulation models are being used to examine management options and to design experiments based on a knowledge of climate variability and physical and biological processes.  相似文献   


12.
Soil water conservation is critical to long-term crop production in dryland cropping areas in Northeast Australia. Many field studies have shown the benefits of controlled traffic and zero tillage in terms of runoff and soil erosion reduction, soil moisture retention and crop yield improvement. However, there is lack of understanding of the long-term effect of the combination of controlled traffic and zero tillage practices, as compared with other tillage and traffic management practices.In this study, a modeling approach was used to estimate the long-term effect of tillage, traffic, crop rotation and type, and soil management practices in a heavy clay soil. The PERFECT soil–crop simulation model was calibrated with data from a 5-year field experiment in Northeast Australia in terms of runoff, available soil water and crop yield; the procedure and outcomes of this calibration were given in a previous contribution. Three cropping systems with different tillage and traffic treatments were simulated with the model over a 44-year-period using archived weather data.Results showed higher runoff, and lower soil moisture and crop production with conventional tillage and accompanying field traffic than with controlled traffic and zero tillage. The effect of traffic is greater than the effect of tillage over the long-term. The best traffic, tillage and crop management system was controlled traffic zero tillage in a high crop intensity rotation, and the worst was conventional traffic and stubble mulch with continuous wheat. Increased water infiltration and reduced runoff under controlled traffic resulted in more available soil water and higher crop yield under opportunity cropping systems.  相似文献   

13.
Wheel traffic and tillage effects on runoff and crop yield   总被引:1,自引:0,他引:1  
Traffic and tillage effects on runoff, soil water and crop production under rainfall were investigated over a period of 6 years on a heavy clay vertosols (vertisols) in Queensland, Australia. A split plot design was used to isolate traffic effects, while the cropping program and treatments were broadly representative of extensive grain production practice in the northern grain region of Australia. Treatments subject to zero tillage and stubble mulch tillage each comprised pairs of 90 m2 plots, from which runoff was recorded. A 3 m wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the complete surface area of the other received a single annual wheeling treatment from a working 100 kW tractor.

Mean annual runoff from controlled traffic plots was 81 mm (36.3%) smaller than that from wheeled plots, while runoff from zero tillage was reduced by 31 mm (15.7%). Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from controlled traffic and zero tillage plots, representing best practice, was 112 mm (47.2%) less than that from wheeled stubble mulch plots, representing conventional cropping practice. Rainfall infiltration into controlled traffic zero tillage soil was thus 12.0% greater than into wheeled stubble mulched soil. Rainfall/runoff hydrographs show that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still present in large and intense rainfall events on wet soil.

Plant available water capacity (PAWC) in the 0–500 mm zone increased by 10 mm (11.5%) and mean grain yields increased by 337 kg/ha (9.4%) in controlled traffic plots, compared with wheeled plots. Mean grain yield of zero tillage was 2–8% greater than that of stubble mulch plots for all crops except for winter wheat in 1994 and 1998. Increased infiltration and plant available water were probably responsible for increased mean grain yields of 497 kg/ha (14.5%) in controlled traffic zero tillage, compared with wheeled stubble mulch treatments. Dissipation of tractive and tillage energy in the soil is the apparent mechanism of deleterious effects on the soils ability to support productive cropping in this environment. Controlled traffic and conservation tillage farming systems appear to be a practicable solution.  相似文献   


14.
华北典型区域土壤耕作方式对土壤特性和作物产量的影响   总被引:5,自引:0,他引:5  
华北平原是我国重要的小麦玉米种植区,长期土壤旋耕免耕和秸秆全量还田带来耕层变浅、犁底层变厚和上移、土壤养分表聚等现象,通过耕作方式改变,解决上述问题对维持区域粮食生产有重要意义。试验以冬小麦-夏玉米轮作系统为研究对象,分别在代表华北平原高产区的栾城试验区和代表中低产区的南皮试验区进行,设置冬小麦播种前进行土壤深耕、深松、窄深松3种处理,以生产上常用的旋耕为对照。所有处理夏玉米季均采用土壤免耕播种,测定项目包括土壤容重、作物根系、作物产量和水分利用效率。结果表明,不同耕作方式对土壤特性和作物产量的影响具有区域差异。南皮试验区土壤深耕(松)显著地(P0.05)提高了作物产量,深耕、深松和窄深松处理的冬小麦产量比旋耕分别增加16.5%、19.3%和13.1%,夏玉米产量分别增加17.3%、16.2%和21.9%,周年产量分别增加16.9%、17.6%和17.8%;深耕、深松和窄深松处理间作物产量差异不显著。栾城试验区冬小麦、夏玉米产量和周年产量各处理之间差异不显著。土壤深耕、深松、窄深松和旋耕均能降低0~20 cm土层土壤紧实度和土壤容重。冬小麦播种后,与土壤耕作前比较,土壤深耕、深松和旋耕处理土壤紧实度南皮试验区分别平均降低71.6%和68.2%,栾城试验区分别降低88.8%和?7.7%,常用的旋耕模式在栾城试区没有降低土壤紧实度。小麦收获时不同耕作方式0~40cm土层的土壤容重均低于土壤耕作前的土壤容重,至夏玉米收获时不同耕作处理的土壤容重与耕作前基本一致,不同耕作处理对土壤容重的影响差异不显著。在南皮试验区, 3种耕作方式与旋耕相比,均显著提高了冬小麦和夏玉米水分利用效率;在栾城试验区,各处理冬小麦和夏玉米水分利用效率差异不显著。本研究结果显示在华北平原高产区连续实施土壤旋耕模式没有影响作物产量,而在中低产区实施土壤深耕或者深松模式更利于作物产量提高。  相似文献   

15.
为研究不同轮作模式对渭北旱作冬小麦?春玉米一年1熟轮作田土壤物理性状和产量的影响,于2007—2014年在陕西省合阳县冬小麦?春玉米轮作田连续7年实施了保护性耕作定位试验,测定和分析了免耕/深松、深松/翻耕、翻耕/免耕、连续免耕、连续深松和连续翻耕6种轮耕模式下麦田0~60 cm土层物理性状、0~200 cm土层土壤湿度和小麦产量的变化。结果表明:1)不同轮耕模式0~40 cm土层土壤容重、孔隙度和田间持水量差异显著,其中以免耕/深松效果最显著;0~60 cm土层免耕/深松轮耕处理平均田间持水量较连续翻耕处理提高12.9%;2)轮耕对土壤团聚体特性影响明显,免耕/深松0.25 mm水稳性团聚体含量(R0.25)最高,结构体破碎率和不稳定团粒指数(ELT)最低,水稳性均重直径(WMWD)最高,水稳性和力稳性团聚体分形维数(D)均最低;3)小麦生育期间免耕/深松处理0~200 cm土层土壤蓄水量和小麦产量较连续翻耕分别增加17.7 mm和9.5%。综合可知,轮耕有利于耕层土壤物理结构改善,免耕/深松更有利于耕层土壤大团聚体形成和土壤结构稳定,利于土壤蓄水保墒和作物增产,为渭北旱塬区麦玉轮作田较适宜的轮耕模式。  相似文献   

16.
耕作措施对黑龙江省风沙土区玉米生长发育及产量的影响   总被引:3,自引:1,他引:2  
针对黑龙江省西部风沙土区干旱频繁发生,土壤风蚀严重的特点,采取打茬播种、旋耕播种、免耕三种不同的耕作措施,与当地传统耕作方式破垄种进行了对比试验,研究了耕作措施对玉米生育性状及产量的影响。结果表明,耕作方式对玉米生育前期影响较小,主要影响玉米中后期的生长发育。旋耕处理前期土壤水分储存较多,为后期玉米的生长发育提供了充足的水分供应。旋耕处理的玉米产量最高,与对照相比产量增加了31.2%。打茬播种处理的产量相比对照增加了13%。免耕处理的玉米产量最低,与对照相比产量降低了20.4%。  相似文献   

17.
ABSTRACT

Low, erratic rainfall amounts and restricted accessibility of chemical fertilizer for rural farmers in developing countries may have negative effects on crop production. Agricultural methods like biochar applications, fertilizer microdosing and tied ridging can help to mitigate these constraints, but have rarely been studied in combination and under varying water availability. A field trial was conducted in split-plot design over two contrasting cropping seasons in 2016 and 2017 in Tanzania to study the effect of these agricultural methods on maize grain yield, biomass, leaf area index, plant height and soil moisture content. In both seasons each with contrasting irrigation frequencies, fertilizer microdosing increased the grain yield of maize. Biochar alone affected the yield only at high application rates (10 t/ha) and low irrigation frequency. However, when combined with fertilizer microdosing the yield effect of biochar was more pronounced. For example, combining 5 t/ha biochar with fertilizer microdosing under flat tillage increased yield by 170% compared to the control without biochar and fertilizers. Tied ridges increased soil moisture content and tended to increase maize yield compared to flat tillage, whereas biochar application resulted in significantly higher soil moisture contents. Fertilizer microdosing with biochar application can be recommended to improve maize yields mainly under flat tillage.  相似文献   

18.
Soil compaction caused by random traffic or repetitive tillage has been shown to reduce water use efficiency, and thus crop yield due to reduced porosity, decreased water infiltration and availability of nutrients. Conservation tillage coupled with subsoiling in northern China is widely believed to reduce soil compaction, which was created after many years of no-till. However, limited research has been conducted on the most effective time interval for subsoiling, under conservation tillage. Data from conservation tillage demonstration sites operating for 10 years in northern China were used to conduct a comparative study of subsoiling interval under conservation tillage. Three modes of traditional tillage, subsoiling with soil cover and no-till with soil cover were compared using 10 years of soil bulk density, water content, yield and water use efficiency data. Cost benefit analysis was conducted on subsoiling time interval under conservation tillage. Yield and power consumption were assessed by based on the use of a single pass combine subsoiler and planter. Annual subsoiling was effective in reducing bulk density by only 4.9% compared with no-till treatments on the silty loam soils of the Loess plateau, but provided no extra benefit in terms of soil water loss, yield increase or water utilization. With the exception of bulk density, no-till and subsoiling with cover were vastly superior in increasing water use (+10.5%) efficiency and yield (+12.9%) compared to traditional tillage methods. Four years of no-till followed by one subsoiling reduced mechanical inputs by 62%, providing an economic benefit of 49% for maize and 209% for wheat production compared to traditional tillage. Annual subsoiling reduced inputs by 25% with an increased economic benefit of 23% for maize and 135% for wheat production. Yield and power consumption was improved by 5% and 20%, respectively, by combining subsoiling with the planting operation in one pass compared with multipass operations of subsoiling and planting. A key conclusion from this is that annual subsoiling in dryland areas of northern China is uneconomical and unwarranted. Four years of no-till operations followed by 1 year subsoiling provided some relief from accumulated soil compaction. However, minimum soil disturbance and maximum soil cover are key elements of no-till for saving water and improving yields. Improved yields and reduced farm power consumption could provide a significant base on which to promote combined planter and subsoiling operations throughout northern China. Further research is required to develop a better understanding of the linkages between conservation tillage, soil quality and yield, aimed at designing most appropriate conservation tillage schemes.  相似文献   

19.
Advances in the development of non-residual herbicides have increased the interest in minimum tillage systems as an alternative to conventional cultivation. This study compared the effects of conventional tillage (CT), minimum tillage (MT) and zero-till (ZT) with continuous winter wheat, winter wheat-summerfallow, and winter wheat-barley-summerfallow on various properties of a Brown Chernozemic loam. Saturated hydraulic conductivity (HC), soil moisture retention, bulk density (BD) and infiltration rate of the soil were measured. The effects of crop rotation by tillage or crop rotation on these soil physical properties were not significant after 8 years of tillage. In general, the BD of the soil under ZT was greater than that under CT in the tillage zone and was lower below the tillage zone. The HC of ZT soil was less than that of CT soil in the tillage zone and greater below the tillage zone. Infiltration rates were not different among the tillage treatments. Although significant differences in some soil properties occurred among tillage treatments, these differences were likely to be too small to affect crop production.  相似文献   

20.
为探讨保护性耕作和秸秆还田有机结合对春玉米休闲期蓄水保墒效果、生育期土壤水分时空变化、贮水量季节变化、产量及水分利用效率的影响,设置不同耕作方式(免耕、深松、翻耕)结合秸秆还田(100%秸秆还田、秸秆不还田)6个处理组合,2016-2018年在山西晋中连续2年进行定位试验研究。结果表明:(1)春玉米冬闲期不同耕作处理下土壤贮水量差异显著,且随着时间推移贮水量都有降低趋势,免耕和深松处理分别较翻耕土壤贮水量平均增加10.4,9.3 mm。在玉米的整个生育时期,免耕和深松处理土壤贮水量分别比翻耕提高4.8%,1.2%。(2)平均2年土壤含水量大小顺序为免耕>深松>翻耕,各处理平均土壤含水量分别为23.0%,21.8%,21.5%。丰水年不同耕作方式土壤含水量垂直变化在各生育时期差异较大,干旱年其变化的差异较小。(3)免耕与100%秸秆还田组合下玉米产量和水分利用效率最高,2年平均产量和WUE(水分利用效率)分别为12 679.9 kg/hm2和25.8 kg/(hm2·mm),翻耕与100%秸秆还田处理组合最低。无论是否秸秆还田,免耕和深松处理在春玉米冬闲期土壤蓄水保墒效果、生育期土壤水分状况、产量与水分利用效率均优于翻耕处理;在秸秆还田下免耕和深松耕作方式对玉米田水分的集蓄保用有良好的效果,以免耕秸秆还田效果最佳,可在晋中地区春玉米生产中推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号