首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The amino acid composition and the physicochemical and functional properties of quinoa protein isolates were evaluated. Protein isolates were prepared from quinoa seed by alkaline solubilization (at pH 9, called Q9, and at pH 11, called Q11) followed by isoelectric precipitation and spray drying. Q9 and Q11 had high levels of essential amino acids, with high levels of lysine. Both isolates showed similar patterns in native/SDS-PAGE and SEM. The pH effect on fluorescence measurements showed decreasing fluorescence intensity and a shift in the maximum of emission of both isolates. Q9 showed an endotherm with a denaturation temperature of 98.1 degrees C and a denaturation enthalpy of 12.7 J/g, while Q11 showed no endotherm. The protein solubility of Q11 was lower than that of Q9 at pH above 5.0 but similar at the pH range 3.0-4.0. The water holding capacity (WHC) was similar in both isolates and was not affected by pH. The water imbibing capacity (WIC) was double for Q11 (3.5 mL of water/g isolate). Analysis of DSC, fluorescence, and solubility data suggests that there is apparently denaturation due to pH. Some differences were found that could be attributed to the extreme pH treatments in protein isolates and the nature of quinoa proteins. Q9 and Q11 can be used as a valuable source of nutrition for infants and children. Q9 may be used as an ingredient in nutritive beverages, and Q11 may be used as an ingredient in sauces, sausages, and soups.  相似文献   

2.
Two amaranth glutelin preparations, Gt-bo extracted with borate buffer at pH 10 and Gt-na extracted with 0.1 N NaOH, were characterized and compared with the amaranth polymerized 11S globulin (Gp, globulin-P). Gt-bo and Gt-na presented very similar polypeptidic composition and a similar reactivity against an anti-Gp polyclonal antibody, although lower than that of Gp. It is demonstrated that Gt-na is composed of denatured and dissociated molecules, whereas Gt-bo consists of folded molecules. The size, polypeptidic composition, thermal stability, and denaturation enthalpy of Gt-bo molecules were similar to those of Gp subjected to a borate treatment at pH 10. The Gp immunoreactivity decreased to the level of Gt reactivity when subjected to alkaline treatment; this could be due to conformational changes. Results suggest that, like Gp, amaranth Gt molecules may be hexameric oligomers of approximately 300 kDa. They would be partially unfolded during the alkaline extraction.  相似文献   

3.
Diffusion-based NMR techniques were employed to study effects of pH on beta-lactoglobulin (BLG) conformation and binding affinity to alpha- and beta-ionone. In the first part of the study, the influence of pH on the diffusion coefficient of BLG in D(2)O solution was investigated using a stimulated-echo NMR experiment. The diffusion coefficient of BLG decreased with increasing pH values. A significant decrease in the diffusion coefficient observed at pH 11 may be due to total unfolding (denaturation) of the protein, resulting in hydrophobically driven self-aggregation. A diffusion-based NOE pumping technique was then applied to determine the relative binding affinities between alpha- and beta-ionones and BLG at pH values varying from 3 to 11. An increase in signal intensities for beta-ionone with increasing molar concentration ratios between beta-ionone and BLG was observed at all pH ranges studied. The increased signal intensities reflect increased relative binding affinity. The greatest binding affinity occurred at pH 9 and the lowest at pH 11. alpha-Ionone showed binding evidence only at pH 9, and the binding was significantly weaker than that obtained for beta-ionone at the same pH. The high affinity observed for both aroma compounds at pH 9 may be due to a flexible conformation of BLG at this pH so that the flavor ligand accessibility increases. Conversely, alkaline denaturation occurring at pH 11 gives rise to relatively lower binding affinity compared to that observed at the other pH values.  相似文献   

4.
This research was conducted to evaluate the effect of extraction pH (7.8-9.2) and precipitation pH (4.3-5.7) on four selected quality attributes of protein isolates from amaranth seeds (Amaranthus cruentus) such as protein content (PC), whiteness index (WI), enthalpy of transition (EN), and denaturation temperature (DT). Ten different treatments involving extraction and precipitation pH combinations were analyzed by a central composite design; the experimental data were fitted by a second-order model using a least-squares method for each one of the four dependent variables. Response surface methodology was used for the optimization process; in addition, a common optimum value for the four dependent variables was obtained utilizing the desirability method. A confirmatory test showed that the generated regression equations could adequately predict performance of this isoelectric precipitation method. The results indicate that extraction pH and precipitation pH showed an important effect on PC, WI, and EN. However, the different combinations did not significantly affect the DT. Values of 9.2 and 8.0 for extraction pH and 5.7 for precipitation pH produced the best overall result for all responses. Finally, the results have shown that it is possible to obtain protein isolates from A. cruentus seeds at optimized values of extraction pH and precipitation pH, which presented a high protein content and good physicochemical properties.  相似文献   

5.
Starch was isolated from Amaranthus cruentus seeds by different alkaline treatments and combinations of low alkaline steeping and protease treatments. For low alkaline-protease treatments, amaranth seeds were steeped in a NaOH solution (0.05%, pH 12) for 22 hr to loosen the protein matrix and ground. The pH of the ground slurry was adjusted to 7.5 and subjected to a protease (from Aspergillus sojae) treatment. The slurry was incubated with 1 or 0.5% of the protease (based on total amount of seeds) for 2 hr at 37°C and 50 rpm. The starch was then isolated by screening and centrifugation. This method produced starch with a low protein content (≤0.2%) and a high recovery (≈80%). Amaranth starch isolated by alkaline treatments were also studied by using various concentrations of NaOH steeping solutions and with or without alkaline solution during grinding and washing. The properties of amaranth starch isolated by alkaline and low alkaline-protease treatments were analyzed and compared. The properties of the amaranth starch were also compared with those of normal and waxy maize starches.  相似文献   

6.
Amaranth meal is a rich source of proteins, carbohydrates, and minerals with a low amount of anti‐nutritional factors. It exhibits good functional properties. The effect of NaCl and NaHCO3 salts and pH level on the functional properties of amaranth meal was studied. The water absorption capacity and protein solubility were improved in the presence of the salts. Protein solubility was high at extreme pH values and minimum at pH 4. Foaming capacity was poor in the presence of the two salts, while foam stability was better at lower concentrations of NaCl (0.2–0.6M). Changes in pH had a pronounced effect on the foaming properties of amaranth meal. Salts did not change the emulsification properties but significantly increased the relative viscosity of amaranth seed meal at higher concentrations of NaCl and NaHCO3 (0.6–1.0M). Relative viscosity was highest at pH 10 and lowest at pH 4.  相似文献   

7.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

8.
Interactions between volatile compounds and BLG in aqueous solution were studied using static and dynamic headspace techniques (exponential dilution). The intensity of interactions between methyl ketones (C7-C9), ethyl esters (C6-C9), limonene, myrcene, and beta-lactoglobulin (BLG) were estimated by determination of the relative infinite dilution activity coefficients (gamma(r)). For a constant pH value, the methyl ketones retention by BLG increased significantly with the hydrophobicity of the volatiles, whereas the retention reached a maximum for ethyl octanoate in the ester series, indicating a possible steric hindrance. For limonene and myrcene an unexpected increase in headspace concentration or "salting out" effect was noticed for acid pH. The variations of the retention according to the pH increase of the medium from pH 3 to pH 11 could be related to structural modifications of the BLG. The retention increase observed between pH 3 and pH 9 resulted from the flexibility modification of the protein, allowing better accessibility to the primary or the secondary hydrophobic sites, whereas the dramatic decrease observed at pH 11 was the consequence of the alkaline denaturation of BLG. Electrostatic interactions occurring at pH 7.5 could also explain the observed retention increase.  相似文献   

9.
Helianthinin, the main storage protein of sunflowers, has low water solubility and does not form a gel when heated; this behavior is different from other 11S globulins and limits its food applications. To understand this particular behavior, changes on helianthinin association-dissociation state induced by modifications in pH and ionic strength were analyzed. The influence of these different medium conditions on its thermal stability and tendency to form aggregates was also studied. Helianthinin behavior at different pH values and ionic strengths is similar to other 11S globulins except that it remains in a trimeric form at pH 11. Helianthinin thermal stability is higher than other 11S globulins but is lower than oat 11S globulin. Alkaline pH produces a 10 degrees C decrease of its denaturation temperature and also of the cooperativity of denaturation process, but it does not affect the denaturation activation energy. The decrease in thermal stability with the pH increase is also manifested by its tendency to form aggregates by SH/SS interchange reactions. When thermal treatments at alkaline pH are performed, all helianthinin subunits form aggregates, characterized by a higher proportion of beta-polypeptides than alpha-polypeptides, which is an indication that aggregation is accompanied by dissociation. Treatments at 80 degrees C are sufficient to induce aggregation but not to produce denaturation, and in these conditions hexameric forms remain after the treatment.  相似文献   

10.
The 7S/11S glycinin equilibrium as found in Lakemond et al. (J. Agric. Food Chem. 2000, 48, xxxx-xxxx) at ambient temperatures influences heat denaturation. It is found that the 7S form of glycinin denatures at a lower temperature than the 11S form, as demonstrated by a combination of calorimetric (DSC) and circular dichroism (CD) experiments. At pH 7.6, at which glycinin is mainly present in the 11S form, the disulfide bridge linking the acidic and the basic polypeptides is broken during heat denaturation. At pH 3.8, at which glycinin has dissociated partly into the 7S form, and at pH 5.2 this disruption does not take place, as demonstrated by solubility and gel electrophoretic experiments. A larger exposure of the acidic polypeptides (Lakemond et al., 2000) possibly correlates with a higher endothermic transition temperature and with the appearance of an exothermic transition as observed with DSC. Denaturation/aggregation (studied by DSC) and changes in secondary structure (studied by far-UV CD) take place simultaneously. Generally, changes in tertiary structure (studied by near-UV CD) occur at lower temperatures than changes in secondary structure.  相似文献   

11.
Physicochemical properties of mixtures of native potato and native amaranth (Amaranthus cruentus), heat‐moisture treated (HMT) potato and heat‐moisture treated amaranth, cross‐linked potato and cross‐linked amaranth, native potato and heat‐moisture treated amaranth, and heat‐moisture treated potato, and native amaranth were tested at different ratios. Two peaks were noticed in the pasting curves when large differences of swelling factor and amylose leaching existed between individual components in the mixture. It seems that amylose leaching from one starch in a mixture may affect the swelling and much of the granular break down of the other. The mixtures showed stabilities in hot pastes that were higher than the less stable components in a mixture. Some mixtures such as HMT potato and native amaranth showed very specific nonadditive pasting behavior. Mixing 10% of native amaranth to HMT potato starch caused a large reduction of peak viscosity and cold paste viscosity, resulting in a very soft gel. In the differential scanning calorimeter, each component of a mixture gelatinized independently, showing two peaks corresponding to the individual components. When transition temperatures of both components were similar in DSC, the result was a single endotherm. Dramatic changes of pasting and subsequent gel properties resulted when thermal transition of the two components occurred in the same temperature range. Retrogradation enthalpies as measured by DSC were between the two individual components in all tested mixtures.  相似文献   

12.
Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and the development of elastic modulus of Spirulina protein gels. This is also attributed to the strong temperature dependence of hydrophobic interactions. The aggregation, denaturation, and gelation properties of Spirulina algal protein isolate are likely to be controlled from protein-protein complexes rather than individual protein molecules.  相似文献   

13.
A method for obtaining sunflower protein (SFP) isolate, nondenatured and free of chlorogenic acid (CGA), has been developed. During the isolating procedure, the extent of CGA removal and protein denaturation was monitored. The defatted flour contained 2.5% CGA as the main phenolic compound. Phenolic compounds were removed by aqueous methanol (80%) extraction, before protein extraction at alkaline pH and diafiltration. Differential scanning calorimetry and solubility tests indicated that no denaturation of the proteins had occurred. The resulting protein products were biochemically characterized, and the presence of protein-CGA complexes was investigated. SFPs of the studied variety were found to be composed of two main protein fractions: 2S albumins and 11S globulins. In contrast to what has been previously reported, CGA was found to elute as free CGA, not covalently associated to any protein fraction.  相似文献   

14.
Changes induced by high pressure (HP) treatment (200-600 MPa) on soybean protein isolates (SPI) at pH 3 (SPI3) and pH 8 (SPI8) were analyzed. Changes in protein solubility, surface hydrophobicity (Ho), and free sulfhydryl content (SH(F)) were determined. Protein aggregation and denaturation and changes in secondary structure were also studied. An increase in protein Ho and aggregation, a reduction of free SH, and a partial unfolding of 7S and 11S fractions were observed in HP-treated SPI8. Changes in secondary structure were also detected, which led to a more disordered structure. HP-treated SPI3 was partially denatured and presented insoluble aggregates. A major molecular unfolding, a decrease of thermal stability, and an increase of protein solubility and Ho were also detected. At 400 and 600 MPa, a decrease of the SH(F) and a total denaturation were observed.  相似文献   

15.
Gelation of whey protein concentrate-cassava starch in acidic conditions.   总被引:2,自引:0,他引:2  
Whey protein concentrate (WPC)-cassava starch (CS) gels were prepared by heating WPC-CS dispersions (0-12.5% protein-0-4.2% starch, w/w; pH 3.75 and 4.2). Gels were characterized by measures of water-holding capacity (WHC), estimation of the relative size and/or density distribution of the gel particles, and light microscopy. Differential scanning calorimetry (DSC) of WPC-CS dispersions was also performed. Results show that CS increased the WHC of gels. Mixed gels presented separate zones of gelatinized starch and aggregated protein and a higher proportion of large/high-density particles. DSC assays showed that starch gelatinization preceded protein denaturation during heating. Starch gelatinization shifted to higher temperatures in dispersions containing WPC, due to the presence of whey proteins, lactose, and calcium.  相似文献   

16.
Triticale is being actively explored as a feedstock for bioethanol production in Western Canada. Triticale distillers grains, an important coproduct of the bioethanol industry, are used mainly as animal feed. This study aims to develop methods of protein extraction from triticale distillers wet grains and distillers dried grains with solubles. Osborne fractionation showed low protein extractability because excessive protein denaturation occurred during sample preparation. Five methods were used to extract proteins: pH shifting, 60% ethanol, alkaline‐ethanol solution, glacial acetic acid, and enzyme‐aided extraction. Extracts obtained with the alkaline‐ethanol and glacial acetic acid methods showed comparatively higher protein contents (≈61–65%) when compared with the other extraction methods (≈35–57%). Enzyme‐aided extraction with Protex 6L yielded 75–82% protein at a content of 43–57%, depending on the types of raw materials. Establishing methods of protein extraction from triticale distillers grains would facilitate further studies on new uses of triticale proteins.  相似文献   

17.
Freeze-thaw stability of amaranth, corn, wheat, and rice starches was determined measuring the percent of syneresis by centrifugation. Thermal properties were calculated by differential scanning calorimetry (DSC). The effects of salt (NaCl at 2 and 5%) and sugars (sucrose, glucose, and fructose at 10, 20, and 30%) on the freeze-thaw stability of amaranth starch were also studied. Based on DSC and centrifugation methods, amaranth starch had better stability after freezing and thawing through four cycles than did corn, wheat, and rice starches. Amaranth starch with added salt showed similar stability as compared with a control when measured by centrifugation and showed increased stability when measured by DSC. Adding sugars to amaranth starch gels had varying results, but for the most part, they showed similar or increased stability when compared with a control.  相似文献   

18.
Thermal denaturation and hydration of two soybean protein components were studied using differential scanning calorimetry (DSC). Results showed that temperature of denaturation (Td) of both 11S and 7S globulins decreased sharply with an increase in water content. Enthalpy of denaturation (ΔHd) of 11S increased with increasing water content at first, and then leveled off at high water content. However, ΔHd of both 7S and 11S components in 7S samples first increased and then decreased at high water content. The preparation method of samples influenced the ΔHd value significantly but had little effect on the Td. Nonfreezing water was determined from the DSC results. It increased in both 11S and 7S as water content increased but was more abundant in 7S, probably because of different compositions and structures. Threshold value of water content for the appearance of freezing water was 0.30–0.32 h (g of water/g of protein, mass ratio) for 11S. The water absorbed by both 11S and 7S during denaturation increased quickly at low water contents and remained almost constant at high water contents. The results were attributed to different structure and conformation of proteins before and after denaturation.  相似文献   

19.
The effects of extruding temperatures and subsequent drying conditions on X‐ray diffraction patterns (XRD) and differential scanning calorimetry (DSC) of long grain (LG) and short grain (SG) rice flours were investigated. The rice flours were extruded in a twin‐screw extruder at 70–120°C and 22% moisture, and either dried at room temperature, transferred to 4°C for 60 hr, or frozen and then dried at room temperature until the moisture was 10–11%. The dried materials were milled without the temperature increasing above 32°C. XRD studies were conducted on pellets made from extruded and milled flours with particle sizes of 149–248 μm; DSC studies were conducted from the same material. DSC studies showed that frozen materials retrograded more than the flours dried at room temperature. The LG and SG samples had two distinct XRD patterns. The LG gradually lost its A pattern at >100°C, while acquiring V patterns at higher temperatures. SG gradually lost its A pattern at 100°C but stayed amorphous at the higher extruding temperatures. DSC analysis showed that retrograded flours did not produce any new XRD 2θ peaks, although a difference in 2θ peak intensities between the LG and SG rice flours was observed. DSC analysis may be very sensitive in detecting changes due to drying conditions, but XRD data showed gradual changes due to processing conditions. The gradual changes in XRD pattern and DSC data suggest that physicochemical properties of the extruded rice flours can be related to functional properties.  相似文献   

20.
β-Cyclodextrin (CD) was phosphorylated with phosphoryl chloride in aqueous alkaline media at different temperatures and pH values. The phosphorylated cyclodextrin (PCD) were characterized by phosphorus contents and positions of substitution as determined by 31P-NMR spectroscopy. Reaction of CD with equivmolar POCl3 for 3 hr at pH 12 and 45°C yielded in a PCD with a phosphorus content of 5.67%. The ratio of monoand diphosphate esters increased when the reaction temperature was raised from 25 to 60°C. The monoesterified phosphate groups were mainly located at C-6 of the anhydroglucose units when the reaction pH was 11 or 12. Reactions at pH 10, however, led to a higher degree of substitution at C-2 than at C-6. Phosphorylation enhanced the water solubility of CD. Solubility of a PCD (5.65% phosphorus) was 35% at pH 8 and 25°C. Simultaneously, solubility of the PCD in 25% ethanol in water was much greater than unsubstituted CD (22.3 vs. 2.8%). The PCD enhanced the water solubility of nonpolar compounds, such as β-carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号