首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in sensitivity to soil conditions across tree species and developmental stage are important to predicting forest response to environmental change. This study was conducted to compare elemental concentrations in leaves, stems, and roots of (1) sugar maple (Acer saccharum Marsh.) seedlings vs. mature trees and (2) mature sugar maple vs. mature American beech (Fagus grandifolia Ehrh.) in two sites that differ in soil base saturation and pH. Both sites are located in Huntington Forest, NY, USA; one site (hereafter ‘H’) has higher soil pH and Ca, Mg, and Mn concentrations than the other site (hereafter ‘L’). Sugar maple growth at H (14.8 cm2 year−1 per tree) was much greater than at L (8.6 cm2 year−1 per tree), but the growth of beech was not different between the two sites. Leaves, roots, and stem wood of mature beech trees and sugar maple seedlings and mature trees were sampled for nutrient analysis. Foliar Ca, K, and Al concentrations were positively correlated with soil elements, but Mn concentrations were negatively correlated. Sugar maple differed more than beech between sites in foliar K and Mn concentrations. Root Mg and P concentrations reflected soil chemistry differences, in contrast to foliar concentrations of Mg and P, which were indistinguishable between the sites. In sugar maple, seedlings differed more than in mature trees in nutrient concentrations in roots, especially for Mg and Mn. Although beech was not as responsive to nutrient availability as sugar maple in foliar and root nutrient concentrations, Ca and Mg concentrations in beech wood were higher in H (52% higher for Ca and 68% higher for Mg), while sugar maple did not differ between sites. Sugar maple regeneration failure on acidic soils in the same region is consistent with our finding that sugar maple seedlings were very sensitive to nutrient availability. This sensitivity could ultimately contribute to the replacement of sugar maple by American beech in regions of low pH and base cations if base cation leaching by anthropogenic deposition and tree harvesting continues.  相似文献   

2.
Characteristics of vegetation and soils in the serpentine area of northern Hokkaido were studied in comparison with non-serpentine areas of the same region, and with other serpentine areas of Japan and elsewhere in the world. The relationship between vegetation and soils is discussed.

Although forest vegetation of northern Hokkaido is generally represented by deciduous forest, coniferous forest, predominantly Picea glehnii, develops in the serpentine area. Deciduous trees are limited both in number and in size. Forest floor is densely covered with Sasa kurilensis. The shrub layer is also well developed, whereas the herb layer is poor but contains characteristic species. Soils developing in the serpentine area are determined as Podzol (Wet Iron Podzol), while Brown Forest Soil is commonly found in the non-serpentine areas of the region. The serpentine soils are shallow and moist, showing general morphology and chemistry of podzolic soil in upper horizons of the profile. In lower horizons, however, physico-chemical properties are strongly affected by the parent rock. In comparison with other serpentine areas of Japan and elsewhere, northern Hokkaido is unique in that the vegetation is represented by a relatively closed forest of fair-sized trees, and the soils by a podzol.

Such Picea glehnii forests and podzolic soils are considered an intrazonal phytogeocoenosis strongly affected by serpentine substrate. In this regard, the cool and humid climate as well as undulating relief of northern Hokkaido are also important factors for the development of the unique phytogeocoenosis.  相似文献   


3.
Factors influencing red expression in autumn foliage of sugar maple trees   总被引:1,自引:0,他引:1  
We evaluated factors influencing the development of autumn red coloration in leaves of sugar maple (Acer saccharum Marsh.) by measuring mineral nutrient and carbohydrate concentrations, water content, and phenology of color development of leaves from 16 mature open-grown trees on 12 dates from June through October 1999. Mean foliar nutrient and carbohydrate concentrations and water content were generally within the range published for healthy sugar maple trees. However, foliar nitrogen (N) concentrations were near deficiency values for some trees. The timing and extent of red leaf coloration was consistently correlated with both foliar N concentrations and starch or sugar concentrations, which also varied with N status. Leaves of trees with low foliar N concentrations turned red earlier and more completely than those of trees with high foliar N concentrations. Low-N trees also had higher foliar starch concentrations than high-N trees. During the autumn development of red leaf coloration, foliar starch, glucose and fructose concentrations were positively correlated with red leaf color expression. At peak red expression, the concentrations of glucose, fructose, sucrose and stachyose were all positively correlated with red color expressed as a percent of total leaf area.  相似文献   

4.
Sager EP  Hutchinson TC 《Tree physiology》2006,26(10):1351-1361
Anticipated effects of climate change involve complex interactions in the field. To assess the effects of springtime warming, ambient ultraviolet-B radiation (UV-B) and nitrogen fertilization on the foliar chemistry and herbivore activity of native sugar maple (Acer saccharum Marsh.) seedlings, we carried out a field experiment for 2 years at two sugar maple forests growing on soils of contrasting acidity. At the Oliver site, soils are derived from a strongly calcareous till, whereas the naturally acidic soils and base-poor soils of the Haliburton site are derived from the largely granitic Precambrian Shield. At both sites, removal of ambient UV-B led to increases in chlorogenic acid and some flavonoids and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar manganese (Mn), whereas at Oliver there were no such changes. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites, but seedlings at Oliver had significantly higher concentrations of flavonoids and chlorogenic acid than seedlings at Haliburton. We suggest that this could be associated with increased mobilization of Mn due to increased soil acidity, which interferes with the role of calcium (Ca) in the phenolic biosynthetic pathway. It appears that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors.  相似文献   

5.
Leaf nutrition and photosynthetic performance of sugar maple (Acer saccharum Marsh.) were compared between two sugar maple stands in northwestern Vermont with contrasting health conditions as indicated by annual basal area growth, degree of crown dieback, and foliar appearance. Observations made during the diurnal cycle of both stands showed no apparent leaf water stress. In both stands, leaves had similar concentrations of major non-structural carbohydrates (starch and sucrose). Over two consecutive growing seasons (1991 and 1992), we consistently observed lower leaf Ca and Mg concentrations in the declining stand than in the healthy stand. Compared with the healthy stand, lower leaf chlorophyll concentrations and apparent leaf chlorosis were observed in the declining stand, and some trees had very low foliar Ca and Mg concentrations (0.31 +/- 0.03% and 0.09 +/- 0.01%, respectively). Trees in the declining stand had lower light-saturated net photosynthetic rates on a dry mass basis at both ambient CO(2) (P(n,amb)) and saturating CO(2) (P(n,sat)) than trees in the healthy stand. There were significant linear correlations between P(n,amb) and leaf mass per unit area (LMA) and between P(n,sat) per unit leaf area and LMA. There were also linear correlations between both P(n,amb) and P(n,sat) and leaf N when expressed on an area basis in both stands, indicating that variation in LMA may have been largely responsible for the observed photosynthesis-nitrogen relationship. The values of P(n,amb) and P(n,sat) were not significantly correlated with leaf N on a mass basis but were weakly correlated with leaf Ca and Mg on a mass basis. We conclude that low leaf Ca or Mg concentrations may limit leaf CO(2) assimilation and tree carbohydrate status in the declining stand.  相似文献   

6.
Partitioning of elements in tree xylem is being increasingly studied, as it suggests that elements are potentially mobile within the xylem long after their uptake. A recent study revealed that only the most mobile xylem fraction (water-soluble) of base cations (calcium [Ca], magnesium [Mg], and potassium [K]) increased at higher soil acidity, while the two mobile fractions (water- and acid-soluble) of acidic metals—potentially phytotoxic aluminium (Al), cadmium (Cd) and manganese (Mn)—were significantly enhanced on very acid soils. The current paper presents an investigation of soil-wood chemistry relationships with basal area tree growth. It was hypothesized that the growth of sugar maple would be reduced by low base cation and high acidic metal concentrations in the xylem mobile fractions. Sugar maple trees (n = 55) from six watersheds in southern Quebec, Canada were analysed by sequential chemical extractions for the water-soluble, acid-soluble and residual fractions of base cations (Ca, K, Mg) and acidic metals (Al, Cd, Mn) in xylem. Generally, tree growth was positively correlated to concentrations of base cations in wood (ρ = 0.27-0.50) and soil (ρ = 0.41-0.67), and negatively correlated to concentrations of acidic metals in wood (ρ = −0.33 to −0.52) and soil (ρ = −0.67). However, these relations differed depending on the element fraction considered. Water- and acid-soluble xylem concentrations of base cations and Al were among the best predictors of growth trends (R2 = 0.46-0.51). The relationship between acidic metals and tree growth is further discussed.  相似文献   

7.
Soil water tables and the rooting depth of trees were studiedin two areas of gleyed soils in Lisnaskea Forest, Co. Fermanagh,where growth of Sitka spruce is far from uniform. On both areas,poor tree growth is associated with high water tables and shallowrooting. Soils under good trees had a sandy-tertured horizonassociated with rotten rock fragments. This horizon could improvedrainage conditions and must have been present before planting.It is therefore considered that high soil water tables are acause rather than a consequence of poor tree growth.  相似文献   

8.
Cantharellus formosus is one of the most abundantly collected commercial mushrooms in western North America. Despite its importance to commercial harvesting, little information is known about the habitat requirements of C. formosus. The purpose of this study was to identify the environmental factors that correlate with the distribution of the basidiomata of C. formosus. Fifty-five plots (5 m × 5 m) with basidiomata and 60 comparison plots without basidiomata (5 m × 5 m) were established in Sitka spruce stands in Patrick’s Point State Park. Thirty plots with basidiomata and 30 without basidiomata were randomly selected for measurement of all variables. The latter included total percent cover of the following categories: shrubs, forbs, bryophytes and canopy cover. Diameter at breast height (DBH), height of trees, and other factors were also measured including duff depth, exchangeable cations, exchangeable acidity and aluminum, pH, and organic matter. Data were analyzed using logistic regression analysis to determine which environmental variables significantly correlated to the distribution of basidiomata. The Chi-squared test of homogeneity was used to determine if presence of chanterelle basidiomata was related to soil classification characterisitcs. The results indicate that chanterelles are associated with areas with low exchangeable acidity (2.09 ± 0.30 cmol+/kg soil), moderate duff depth (11.01 ± 0.45 cm), and areas with bare humus and needle cover less than 30% (29.05 ± 3.04%). Identification of these variables is important to assist land managers in identifying habitats where C. formosus basidiomata are likely to occur.  相似文献   

9.
The objective of this study is to analyse the performance of Quercus ilex plantations established under semiarid conditions on different soils formed on calcareous and gypsiferous parent material. We studied eighteen 300?m2 plots in which 1?year-old seedlings had been planted after subsoiling on the contour. Plots were stratified according to aspect (north and south) and previous land use/parent material: shrubland on limestone (LM-SH), shrubland on gypsum rock (GY-SH), and cropland on colluvium (CO-AG). Soils developed on limestone and colluvium had average rooting depths of 27 and 37?cm, respectively, and mean concentrations of active lime and phosphorus (P) of 130 and 190?mg?g?1 and 10 and 19?mg?kg?1, respectively. Soils developed on gypsum had a mean rooting depth of 26?cm, and a mean gypsum concentration of 73?%. Height and diameter of trees varied significantly according to parent material/previous land use but not to slope aspect. Mean height and diameter of trees were significantly higher in CO-AG plots than in LM-SH and GY-SH plots. Soil P and depth were the main variables explaining differences in dominant height across all 18 plots. In CO-AG plots mean height was negatively related to soil pH but positively related to soil P concentration. In LM-SH plots, mean diameter and height were negatively related to active lime concentration. This study suggests that soil P is a major determinant of holm oak performance in shallow calcareous soils and highlights the importance of conducting detailed soil studies in order to assess the viability of plantations with this species.  相似文献   

10.
To better understand the effects of sugar accumulation on red color development of foliage during autumn, we compared carbohydrate concentration, anthocyanin expression and xylem pressure potential of foliage on girdled versus non-girled (control) branches of 12 mature, open-grown sugar maple (Acer saccharum Marsh.) trees. Half of the study trees were known to exhibit mostly yellow foliar coloration and half historically displayed red coloration. Leaves from both girdled and control branches were harvested at peak color expression (i.e., little or no chlorophyll present). Disruption of phloem export by girdling increased foliar sucrose, glucose and fructose concentrations regardless of historical tree color patterns. Branch girdling also increased foliar anthocyanin expression from 50.4 to 66.7% in historically red trees and from 11.7 to 54.2% in historically yellow trees, the latter representing about a fivefold increase compared with control branches. Correlation analyses indicated a strong and consistent relationship between foliar red coloration and sugar concentrations, particularly glucose and fructose, in both girdled and control branches. Measures of xylem pressure potentials confirmed that girdling was a phloem-specific treatment and had no effect on water transport to distal leaves. Results indicate that stem girdling increased foliar sugar concentrations and enhanced anthocyanin expression during autumn in sugar maple foliage. Native environmental stresses (e.g., low autumn temperatures) that reduce phloem transport may promote similar physiological outcomes.  相似文献   

11.
Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage.  相似文献   

12.
This paper examines the maple syrup production potential of American forests by analyzing Forest Inventory & Analysis (FIA) data provided by the US Forest Service on the resource of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) trees in twenty states. The analysis is based on tree species and size (diameter at breast height, or dbh), ownership category, jurisdiction, the density of maple trees in a stand, and the distance of the stand to an access road. Although there are over 2 billion sugar and red maple trees of tappable size growing in US forests, when narrowed down according to the attributes of an optimal ‘sugarbush’, there are 100 million potential taps from sugar maples alone and 286 million potential taps with sugar and red maples combined. Overall, 45 % of the tappable-size maple trees are found in stands whose density is not high enough to support commercial sap extraction whereas only 6 % are found in stands that are at least 1.6 km from an access road. The ten states with commercial maple syrup industries have a much higher percentage of their maple trees occurring in stands of optimal density and also contain a higher percentage of sugar maple than red maple trees. States that are utilizing the highest percentage of their potential sugarbushes include Vermont and Maine, whereas states that have significant room for expansion include Michigan, New York, and Pennsylvania.  相似文献   

13.
The chemical composition of green leaves and leaf litters of sweet chestnut (Castanea sativa), oak (Quercus robur) and beech (Fagus sylvatica) were determined for 26 sites grouped into high fertility (HF) and low fertility (LF) soils according to base saturation and N-mineralization potentials. Measurements were made of total carbon, acid detergent fibre (ADF), Klason lignin, holo-cellulose, sugar constituents of hemicellulose and phenylpropanoid derivatives of lignin, and nutrient concentrations (N, Ca, P, Mg, K and Mn). Leaf and litter constituents varied within and between species according to soil groups, but beech showed contrasting responses to oak and chestnut. Beech leaves had lower ADF, lignin and cellulose on HF soils than LF soils, whereas oak and chestnut leaves had higher ADF, lignin and cellulose on HF than the LF soils. Conversely, the same constituents in beech leaf litter were higher on HF soils than LF soils, but lower in oak and chestnut leaf litter on HF soils than LF soils. The phenylpropanoid derivatives of lignin and sugar constituents of hemicellulose also showed similar variations in relation to soil groups with contrasting patterns for in leaves and litters. Re-absorption of N from leaves before litter fall was negatively correlated with soil N mineralization potential for beech (highest on LF soils) but showed an unexpected, positive relationship for oak and chestnut (highest on HF soils). These intra-specific differences of leaf and litter chemistry in relation to soil fertility status are unprecedented and largely unexplained. The observed patterns reflect phenotypic responses to soil type that result in continuum of litter quality, within and between tree species, that have been shown in related studies to significantly influence litter decomposition rates.  相似文献   

14.
Liu X  Tyree MT 《Tree physiology》1997,17(3):179-185
Soil and root characteristics were contrasted between a "declining" and a "healthy" sugar maple (Acer saccharum Marsh.) stand in Vermont, USA. The declining stand had lower basal area increment and more crown dieback than the healthy stand. Soil pH and base cation content were lower and soil water content was higher at the site of the declining stand than at the site of the healthy stand, whereas soil temperature did not differ significantly between the sites. In live fine roots, concentrations of K and Ca were marginally (P < 0.07) lower in the declining than in the healthy stand, whereas concentrations of N, P, Mg, and Al were not significantly different (P = 0.13 to 0.87) between stands. Starch and soluble sugar concentrations of fine and coarse roots did not differ significantly between stands, indicating that crown dieback did not affect carbohydrate supply to the roots in the declining stand. Throughout the growing season, the standing live and dead root biomass were significantly higher in the declining stand than in the healthy stand, indicating that more carbon was allocated to roots and that root turnover was higher in the declining stand than in the healthy stand.  相似文献   

15.
Many forest species can be found in understory vegetation of old plantation plots, despite the fact that the native vegetation was a poor savanna growing on highly nonfertile sandy soils. The aim of the present paper is to describe the changes that occur in the environmental conditions when savanna is planted with fast-growing trees, and is particularly concerned with vegetation and soil macrofauna. The study was carried out in industrial eucalyptus plantations, and in experimental Acacia and pine plantations. Most plots were located on sandy soil, but some measurements were also carried out on clay soil planted with the same species in order to assess the influence of soil type.

A strong correlation was shown between the age of the eucalyptus trees and the percentage of forest species in undergrowth, emphasizing the progressive change from savanna vegetation towards forest vegetation.

Biomass and density of macrofauna were very low in both sandy and clayey savanna soils, total biomass being 3.3 and 5.8 g/m2 respectively. Soil macrofauna became more important as the age of plantations increased, and biomass reached 29 g/m2 in the 20-year-old eucalyptus plot on sandy soil, and 74 g/m2 in 26-year-old eucalyptus plantation on clay soil, compared to 33 g/m2 in the natural forest plot on sandy soil; however, frequency of occurrence and number of taxa were lower in old eucalyptus plot as compared to forest. Large differences in the abundance of macrofauna were observed in relation to planted species. Acacia was most favourable to soil macrofauna, with a total biomass of 60 g/m2 on sandy soil and many taxa present. Pine plantations had a poor macrofauna and several taxa were lacking, particularly in the sandy soil.

Total macrofauna frequency was significantly correlated with the percentage of forest species in understory vegetation. Both were correlated with soil pH and soil organic-matter content. The results suggest that soil organic matter and litter quality are of main importance in changing the above- and below-ground habitat in plantations.  相似文献   


16.
The long-term nature of forest crop rotations makes it difficult to determine impacts of forestry on soil nutrients that might be depleted by forest growth. We used small scale, highly stocked plots to compress the length of the rotation and rapidly induce nutrient depletion. In the study, two species (Pinus radiata D. Don and Cupressus lusitanica Miller) are compared under two disturbance regimes (soil undisturbed and compacted), and two fertiliser treatments (nil and plus fertiliser), applied in factorial combination at 33 sites, covering the range of climatic and edaphic variation found in plantation forests across New Zealand. To assess our ability to rapidly highlight important soil properties, foliar nutrient concentrations were determined 20 months after planting. It was hypothesised that the densely planted plots, even at a young age, would create sufficient pressure on nutrient resources to allow development of relationships between properties used as indicies of soil nutrient availability and foliar nutrient concentrations. For both species significant relationships between foliar nutrients and 0–10 cm layer soil properties from unfertilised plots were evident for N (total and mineralisable N) and P (total, acid extractable, organic, Bray-2 and Olsen P). With the exception of Ca in C. lusitanica, foliar K, Ca and Mg were correlated with their respective soil exchangeable cation measures. The results thus confirm the utility of the experimental approach and the relevance of the measured soil properties for forest productivity.

In unfertilised plots foliar N and P concentrations in P. radiata exceeded those in C. lusitanica, the differences being eliminated by fertiliser application. Foliar N/P ratios in P. radiata also exceeded those in C. lusitanica. In contrast to N and P, foliar K, Ca and Mg concentrations were all higher in C. lusitanica, the difference being particularly marked for Ca and Mg. P. radiata contained substantially higher concentrations of the metals Zn, Mn and Al than C. lusitanica, whereas the latter contained higher B concentrations. Possible reasons for differences between species in foliar nutrient concentrations are discussed.  相似文献   


17.
Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions, chlorophyll, polyamines, and amino acids were studied in three hardwood species, namely sugar maple, yellow birch, and American beech. We further analyzed these effects in relation to elevation at Ca-supplemented WS1 and reference WS3 watersheds. Foliar soluble Ca increased significantly in all species at mid and high elevations at Ca-supplemented WS1. This was accompanied by increases in soluble P, chlorophyll, and two amino acids, glutamate and glycine. A decrease in known metabolic indicators of physiological stress (i.e., the amino acids, arginine and γ-aminobutyric acid (GABA), and the diamine, putrescine) was also observed. In general, these changes were species-specific and occurred in an elevation dependent manner. Despite an observed increase in Ca at high elevation for all three species, only sugar maple exhibited a decrease in foliar putrescine at this elevation indicating possible remediation from Ca deficiency. At higher elevations of the reference WS3 site, foliar concentrations of Ca and Mg, as well as Ca:Mn ratios were lower, whereas Al, putrescine, spermidine, and GABA were generally higher. Comparison of metabolic data from these three species reinforces the earlier findings that sugar maple is the most sensitive and American beech the least sensitive species to soil Ca limitation. Furthermore, there was an increase in sensitivity with an increase in elevation.  相似文献   

18.
The effects 50 years after clearcutting on the vegetation and soil of an ecosystem type dominated by sugar maple (Acer saccharum) were studied at four locations along the boundaries of the Sylvania Recreation Area (Ottawa National Forest) in western Upper Michigan, U.S.A. Commercially clearcut areas along the boundaries of the undisturbed 8500-ha tract enabled study of vegetation and soil in paired cut and uncut plots. Overstories of the clearcut plots exhibit increased stem densities and decreased basal area and stem diameters compared to those of uncut plots. Both the relative density of understory sugar maple and the total density of all understory trees decreased significantly on the clearcut plots. Groups of herbaceous species characteristic of the ground cover of the clearcut plots were identical to those found on the uncut plots.There was no change in (1) thickness, mass, or total nutrient (K+, Mg2+, Ca2+) contents of the forest floor, or (2) acidity of the upper horizons of the mineral soil. The exchangeable potassium levels in the upper horizons of the mineral soil decreased significantly, and also there was a decreasing trend in the levels of exchangeable calcium and magnesium.  相似文献   

19.
The effect of municipal solid waste (MSW) leachate spray irrigationon a mature northern hardwood forest was investigated. Canopyfoliar samples and stem increment cores were collected fromtwo indicative species, sugar maple (Acer saccharum Marsh.)and American beech (Fagus grandifolia Ehrh.), within each ofa heavily sprayed, lightly sprayed and control area. Foliarconcentrations of N and P were significantly higher in bothmaple and beech foliage within the sprayed areas when comparedto an unsprayed area (control). Levels of Mg and K were markedlyhigher in maple but not beech foliar samples within the heavilysprayed areas when compared to foliage sampled within the unsprayedcontrol. While no significant trends were observed within themaple foliage, both Fe and B levels increased significantlyin beech foliar samples obtained from within the heavily sprayedarea in comparison to foliage samples from the control. Directporometric measurements of the transpiration rate and diffusive(stomatal) resistance of canopy and understory plant leavesrevealed a significant increase in diffusive resistance anda decline in transpiration rate with leachate spraying. Afterfour years of spraying a significant effect of leachate applicationon radial stem growth of both maple and beech trees has notbeen observed.  相似文献   

20.
At the Bear Brook Watershed in Maine (BBWM), we examined the effects of long-term experimentally elevated N and S deposition on foliar chemistry, growth, and photosynthetic capacity of sugar maple (Acer saccharum) saplings. The BBWM is a paired watershed system; one watershed has been acidified bimonthly with granular ammonium sulfate ((NH4)2SO4) since 1989. The adjacent watershed is used as a reference. We observed a 56% increase in foliar Al and a 25% reduction in foliar Ca for sugar maple saplings on the treated watershed compared to reference. Foliar N (+15%), P (+10%), and K (+15%) were significantly elevated in treated saplings. Along with changes in foliar nutrients, there were significant differences in photosynthetic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号