首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
于室内对桃蚜进行高效氯氰菊酯抗药性筛选,选育至10代后抗性倍数增长到49.9倍.生化分析表明,抗性品系乙酰胆碱酯酶(AChE)活性均显著高于敏感品系.比较两个品系乙酰胆碱酶活性个体频率分布发现,更多的桃蚜个体向酶活性高的区域分布.酶动力学测定结果显示,抗性桃蚜酯酶对底物的Vmax、Km显著大于敏感品系.  相似文献   

2.
桃蚜对噻虫嗪代谢抗性机制研究   总被引:1,自引:0,他引:1  
对桃蚜进行室内噻虫嗪抗性品系筛选,选育至15代后抗性倍数达到75.6倍。对噻虫嗪敏感品系(THI-S)和抗性品系(THI-R)桃蚜的谷胱甘肽S-转移酶(GSTs)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(ALP)、羧酸酯酶(CarE)、多功能氧化酶(MFO)O-脱甲基活性进行了比较,结果显示:敏感品系(THI-S)和抗性品系(THI-R)的谷胱甘肽S-转移酶比活力分别为3.127 5和3.215 9,差异不显著,桃蚜抗性品系体内酸性磷酸酯酶、碱性磷酸酯酶、羧酸酯酶和多功能氧化酶O-脱甲基活性均显著高于敏感品系,分别达到了1.57、2.10、6.12、2.03倍。表明桃蚜对噻虫嗪抗性的产生与酸性磷酸酯酶、碱性磷酸酯酶、羧酸酯酶和多功能氧化酶O-脱甲基的活性相关。  相似文献   

3.
桃蚜对有机磷和氨基甲酸酯抗性机制研究   总被引:11,自引:0,他引:11  
1986—1990年对桃蚜(Myzus persicae Sulz.)抗药性的系统研究结果表明,北京地区桃蚜对乐果的抗性最高为230倍,氧乐果为185倍,马拉硫磷为32倍,喹硫磷为19倍,倍硫磷为123倍,马拉氧磷为100倍,毒死蜱为39倍,抗蚜威为245倍,灭多威为39倍,呋喃丹为84倍,对西维因没有产生明显抗性。TPP 与氧乐果、乐果混用分别增效3.2倍和12.1倍;异稻瘟净与倍硫磷、马拉硫磷混用,共毒系数分别为236和234。增效醚(Pb)使乐果和氧乐果分别增效7.1倍和6.0倍。说明桃蚜的抗药性与羧酸酯酶和多功能氧化酶(MFO)有关。在敏感种群中,β-NA 羧酸酯酶活性大于0.5(OD_(555)值/蚜·15分钟)的个体仅占1%,而在抗性种群中,这种类型的个体占78%—98%。不同抗性水平的桃蚜种群,乙酰胆碱酯酶对抑制剂敏感度的分布与其抗性水平具有明显的相关性,马拉氧磷、抗蚜威对乙酰胆碱酯酶的抑制中浓度(I_(50)),抗性种群是敏感种群的20倍和150倍。北京地区桃蚜的抗药性与磷酸酯酶和 GSH—S-转移酶没有明显的关系。  相似文献   

4.
测定了白背飞虱不同品系体内与抗药性相关酶系如酯酶、羧酸酯酶、谷膦甘肽S-转移酶和乙酰胆碱酯酶等活性。与敏感品系S相比,抗马拉硫磷品系顺具高水平羧酸酯酶活性。酶反应动力学试验表明,羧跋酯酶的质与量均发生改变;等电聚焦电泳显示与pI5.26~5.84酯酶扩增有关。耐弄丙威品系IT乙酰胆碱酯酶活性相对较低,而药剂对其I50则明显高于S。不同品系的谷胱甘肽S—转移酶活性无显著差弄。作者认为,白背飞虱对马拉硫磷和异丙威产生抗性分别与羧酯酯酶活性增高和乙酰胆碱酯酶对药剂敏感性降低有关。  相似文献   

5.
棉铃虫对久效磷抗性的毒理学机制   总被引:1,自引:1,他引:0  
就棉铃虫田间种群对久效磷抗性的毒理学机制进行了研究。久效磷对敏感品系和高抗品系的乙酰胆碱酯酶抑制率存在显著差异,在同等剂量浓度下,对敏感品系的抑制率为73.48%,对高抗品系的抑制率仅为59.67%,说明棉铃虫对久效磷产生高水平抗性与乙酰胆碱酯酶不敏感性有关。在不同田间抗性品系中,PBO和TPP对久效磷均具有明显的增效作用,增效比分别为5.6~23.4倍和2.9~4.6倍;而相应地BPO和TPP对  相似文献   

6.
朱砂叶螨的抗药性选育及其解毒酶活性研究   总被引:14,自引:2,他引:14       下载免费PDF全文
在室内模拟田间药剂的选择压力,用阿维菌素和甲氰菊酯对朱砂叶螨Tetranychus cinnabarinus 进行逐代处理,以选育其抗药性品系。阿维菌素品系选育至42代,抗性增长到8.7倍,甲氰菊酯品系选育至40代,抗性增长到68.5倍。阿维菌素抗性品系羧酸酯酶(CarE)、谷胱甘肽-S-转移酶(GSTs)、多功能氧化酶(MFO)的活性分别为敏感品系的2.7、3.4和1.4倍,差异达显著水平。推测3种解毒酶活性显著升高是朱砂叶螨对阿维菌素产生抗性的重要原因。甲氰菊酯抗性品系GSTs的活性为敏感品系的2.8倍,差异显著,表明该抗性品系的形成与GSTs活性增强有关。羧酸酯酶动力学测定结果表明,朱砂叶螨阿维菌素抗性品系体内存在变构的羧酸酯酶。  相似文献   

7.
兰州市桃蚜抗药性监测及治理对策研究   总被引:4,自引:0,他引:4  
以甘肃省宕昌县桃蚜为敏感种群,测定了兰州、永登等地桃蚜对6种杀虫剂抗药性。结果表明兰州市安宁区桃蚜对溴氰菊酯已产生低水平抗性(6.84倍),对氰戊菊酯则处于耐药力增高或敏感性降低阶段,对灭多威、敌敌畏、氧乐果和乐果已显示出早期抗性;永登县桃蚜对溴氰菊酯和氰戊菊酯处于敏感性降低阶段,对灭多威、敌敌畏、氧乐果和乐果仍属敏感阶段;皋兰县和榆中县桃蚜对上述6种杀虫剂则处于敏感阶段。用酶抑制剂进行增效作用测定结果显示,兰州地区桃蚜的抗药性与羧酸酯酶和多功能氧化酶有关。针对兰州市桃蚜的抗药性现状和抗性机制,提出了以建立抗性监测制度、合理用药为主的抗性治理对策。  相似文献   

8.
通过棉蚜Aphis gossypii吡虫啉和啶虫脒抗性、敏感品系解毒酶活性测定和增效剂试验,明确与抗药性产生密切相关的解毒酶。采用室内生物测定和生化分析方法,研究棉蚜吡虫啉和啶虫脒品系解毒酶活性变化和增效剂的增效作用。解毒酶活性测定表明,棉蚜吡虫啉和啶虫脒抗性品系羧酸酯酶、谷胱甘肽-S-转移酶、细胞色素P450s O-脱乙基比活力都高于敏感品系,其中抗感品系中羧酸酯酶、细胞色素P450-O-脱乙基比活力差异都达到了显著水平(P0.05)。吡虫啉抗性品系三种解毒酶活性分别为敏感品系的3.26倍、1.08倍、1.60倍和1.58倍;啶虫脒抗性品系三种解毒酶活性分别为敏感品系的2.91倍、1.04倍、1.69倍和1.46倍。增效剂磷酸三苯酯(TPP)、增效醚(PBO)、顺丁烯二酸二乙酯(DEM),在吡虫啉敏感品系中的增效比分别为1.12、1.09、0.97,在吡虫啉抗性品系中的增效比分别为2.02、1.75、1.05;在啶虫脒敏感棉蚜品系中的增效比为1.02、1.03、1.02,在啶虫脒抗性棉蚜品系中的增效比为1.77、1.61、1.04。增效剂试验和解毒酶试验表明,酯酶和多功能氧化酶在棉蚜对吡虫啉、啶虫脒的抗性产生中起到了重要的作用。  相似文献   

9.
林佳  谢佳燕 《植物保护》2014,40(4):115-117
采用生化分析方法研究了取食不同植物对禾谷缢管蚜酯酶、乙酰胆碱酯酶活性及对吡虫啉敏感性的影响。结果发现,取食不同植物的禾谷缢管蚜的酯酶活性存在显著差异,但其乙酰胆碱酯酶活性无显著差异。取食不同寄主植物的禾谷缢管蚜对吡虫啉的敏感性也存在显著差异,且与其酯酶活性的变化规律相一致。结果表明寄主植物可诱导禾谷缢管蚜体内酯酶活性的改变,从而影响其对吡虫啉敏感性的变化,但寄主植物对其乙酰胆碱酯酶活性无明显影响。  相似文献   

10.
采用玻璃管药膜法,建立了以吡虫啉、啶虫脒、噻虫嗪、噻虫胺、烯啶虫胺5种新烟碱类杀虫剂及氟啶虫胺腈对桃蚜室内敏感品系(SN)的LC90值作为区分剂量,测定桃蚜对6种杀虫剂敏感性变化的方法,并与浸叶法测得的抗性水平进行了相关性分析,验证了利用区分剂量快速测定桃蚜田间种群对6种杀虫剂抗性水平的准确性。结果表明:6种杀虫剂对桃蚜室内敏感品系的LC90值分别为150.01、1 170.81、54.19、951.34、245.98及133.60 ng/cm2。在此区分剂量下,河南省驻马店地区桃蚜种群(ZM)的死亡率在82%~96%之间;河北省玉田地区甘蓝桃蚜种群(GL)的死亡率在35%~82%之间,桃树桃蚜种群(TS)死亡率在3%~30%之间。分析表明,在选定的区分剂量下,桃蚜田间种群的死亡率与其对杀虫剂的抗性水平呈负相关,相关系数在0.818 8~0.999 9之间。同时,通过相关性方程计算得到的江苏省南京地区桃蚜种群(NJ)对6种杀虫剂的理论抗性水平与实际检测所得抗性水平结果接近。因此,以玻璃管药膜法确定的吡虫啉、啶虫脒、噻虫嗪、噻虫胺、烯啶虫胺及氟啶虫胺腈对桃蚜室内敏感品系的LC90值作为区分剂量,通过测定桃蚜田间种群的死亡率,可以快速表征田间种群对6种杀虫剂的敏感性变化,从而对其抗性水平进行初步评估。  相似文献   

11.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

12.
A field population of the rice stem borer (Chilo suppressalis Walker) with 203.3-fold resistance to triazophos was collected. After 8-generation of continuous selection with triazophos in laboratory, resistance increased to 787.2-fold, and at the same time, the resistance to isocarbophos and methamidophos was also enhanced by 1.9- and 1.4-fold, respectively, implying some cross-resistance between triazophos and these two organophosphate insecticides. Resistance to abamectin was slightly enhanced by triazophos selection, and fipronil and methomyl decreased. Synergism experiments in vivo with TPP, PBO, and DEM were performed to gain a potential indication of roles of detoxicating enzymes in triazophos resistance. The synergism results revealed that TPP (SR, 1.92) and PBO (SR 1.63) had significant synergistic effects on triazophos in resistant rice borers. While DEM (SR 0.83) showed no effects. Assays of enzyme activity in vitro demonstrated that the resistant strain had higher activity of esterase and microsomal O-demethylase than the susceptible strain (1.20- and 1.30-fold, respectively). For glutathione S-transferase activity, no difference was found between the resistant and the susceptible strain when DCNB was used as substrate. However, 1.28-fold higher activity was observed in the resistant strain when CDNB was used. These results showed that esterase and microsomal-O-demethylase play some roles in the resistance. Some iso-enzyme of glutathione S-transferase may involve in the resistance to other insecticides, for this resistant strain was selected from a field population with multiple resistance background. Acetylcholinesterase as the triazophos target was also compared. The results revealed significant differences between the resistant and susceptible strain. The Vmax and Km of the enzyme in resistant strain was only 32 and 65% that in the susceptible strain, respectively. Inhibition tests in vitro showed that I50 of triazophos on AChE of the resistant strain was 2.52-fold higher. Therefore, insensitive AChE may also involved in triazophos resistance mechanism of rice stem borer.  相似文献   

13.
Wheat aphid, Sitobion avenae (fabricius), is one of the most important wheat pests and has been reported to be resistant to commonly used insecticides in China. To determine the resistance mechanism, the resistant and susceptible strains were developed in laboratory and comparably studied. A bioassay revealed that the resistant strain showed high resistance to pirimicarb (RR: 161.8), moderate reistance to omethoate (32.5) and monocrotophos (33.5), and low resistance to deltamethrin (6.3) and thiodicarb (5.5). A biochemistry analysis showed that both strains had similar glutathione-S-transferase (GST) activity, but the resistant strain had 3.8-fold higher esterase activity, and its AChE was insensitive to this treatment. The I50 increased by 25.8-, 10.7-, and 10.4-folds for pirimicarb, omethoate, and monocrotophos, respectively, demonstrating that GST had not been involved in the resistance of S. avenae. The enhanced esterase contributed to low level resistance to all the insecticides tested, whereas higher resistance to pirimicarb, omethoate, and monocrotophos mainly depended on AChE insensitivity. However, the AChE of the resistant strain was still sensitive to thiodicarb (1.7-fold). Thus, thiodicarb could be used as substitute for control of the resistant S. avenae in this case. Furthermore, the two different AChE genes cloned from different resistant and susceptible individuals were also compared. Two mutations, L436(336)S in Sa.Ace1 and W516(435)R in Sa.Ace2, were found consistently associated with the insensitivity of AChE. They were thought to be the possible resistance mutations, but further work is needed to confirm this hypothesis.  相似文献   

14.
药剂对小菜蛾抗性及敏感品系乙酰胆碱酯酶抑制作用比较   总被引:5,自引:1,他引:4  
采用浸叶法测定了云南通海、元谋和澜沧的小菜蛾plutella xylostella田间种群对常用杀虫剂的抗药性。结果表明,云南上述地区小菜蛾田间种群对各类杀虫剂均产生了不同程度的抗性。对有机磷类药剂的抗药性为1.74~31.1倍;对菊酯类药剂的抗药性为7.41~764倍;对阿维菌素类药剂则产生了 5.60~4.06×104倍的抗性。通过离体和活体试验测定了药剂对小菜蛾头部乙酰胆碱酯酶(AChE)的抑制作用。敌敌畏和灭多威对通海抗性品系AChE离体和活体内的抑制中浓度(I50)分别是敏感品系的209、26.5倍和2.21、2.16倍;敌敌畏对通海小菜蛾种群的离体和活体内抑制中时间(IT50)小于敏感品系,分别是敏感品系的0.32和0.17倍;而灭多威对通海小菜蛾种群的离体和活体内抑制中时间(IT50)则大于敏感品系,分别是敏感品系的1.37和1.74倍。  相似文献   

15.
The San Roman strain of the southern cattle tick, Boophilus microplus, collected from Mexico was previously reported to have a high level of resistance to the organophosphate acaricide coumaphos. An oxidative detoxification mechanism was suspected to contribute to coumaphos resistance in this tick strain, as coumaphos bioassay with piperonyl butoxide (PBO) on larvae of this resistant strain resulted in enhanced coumaphos toxicity, while coumaphos assays with PBO resulted in reduced toxicity of coumaphos in a susceptible reference strain. In this study, we further analyzed the mechanism of oxidative metabolic detoxification with synergist bioassays of coroxon, the toxic metabolite of coumaphos, and the mechanism of target-site insensitivity with acetylcholinesterase (AChE) inhibition kinetics assays. Bioassays of coroxon with PBO resulted in synergism of coroxon toxicity in both the San Roman and the susceptible reference strains. The synergism ratio of PBO on coroxon in the resistant strain was 4.5 times that of the susceptible strain. The results suggested that the cytP450-based metabolic detoxification existed in both resistant and susceptible strains, but its activity was significantly enhanced in the resistant strain. Comparisons of AChE activity and inhibition kinetics by coroxon in both susceptible and resistant strains revealed that the resistant San Roman strain had an insensitive AChE, with a reduced phosphorylation rate, resulting in a reduced bimolecular reaction constant. These data indicate a mechanism of coumaphos resistance in the San Roman strain that involves both insensitive AChE and enhanced cytP450-based metabolic detoxification.  相似文献   

16.
The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in the resistant and susceptible strains (SS) of Liposcelis bostrychophila were investigated. The two resistant strains were the dichlorvos-resistant strain (DDVP-R) and the phosphine-resistant strain (PH3-R) with resistance ratios of 22.36 and 4.51, respectively. Compared to their susceptible counterpart, the AChE activity per insect and the specific activity of AChE in DDVP-R and PH3-R were significantly higher. There were also significant kinetic differences between DDVP-R and PH3-R. The apparent Michaelis-Menten constant (Km) for acetylthiocholine iodide (ATChI) was obviously lower in SS than that in PH3-R, indicating a higher affinity to the substrate ATChI in the susceptible strains. The affinity for the substrate ATChI in DDVP-R and SS were not significantly different. The Vmax value of the PH3-R was significantly greater when compared to the Vmax for the SS suggesting a possible over expression of AChE in this resistant strain. The inhibition of AChE to insecticide exposure in vitro revealed that all six insecticides were inhibitory for the extracted AChE’s. Based on the I50 values, AChE of the SS were more sensitive to dichlorvos, paraoxon-ethyl, malaoxon and demeton-S-methyl than those of the two resistant strains. As for carbaryl and eserine, the PH3-R suggested a significantly higher I50s compared to the susceptible strain, while, no significant differences were found between SS and DDVP-R.  相似文献   

17.
棉蚜对吡虫啉抗性的初步研究   总被引:1,自引:1,他引:1       下载免费PDF全文
李菁  韩召军 《农药学学报》2007,9(3):257-262
用吡虫啉对棉蚜进行室内抗性筛选,用药处理25次后抗性是筛选前的20.03倍;2007年对田间棉蚜进行抗性调查,发现不同地区种群对吡虫啉的抗性差异显著,江苏南京种群最为敏感,河南安阳、山东泰安和北京地区棉蚜与之相比,抗性分别为2.21、7.63和9.53倍;抗、感品系解毒酶活力分析发现,抗性品系的谷胱甘肽S-转移酶活性增加很少(比活力1.12倍),但酯酶活力显著高于敏感品系(比活力1.71倍);增效试验结果表明,顺丁烯二酸二乙酯(DEM)在抗、感品系中对吡虫啉均没有明显的增效作用,而磷酸三苯酯(TPP)和增效醚(PBO)虽然在敏感品系中对吡虫啉的增效作用较小(SR 1.24和1.29),但在抗性品系中的增效作用显著增高(SR 2.13和1.74);此外还发现,吡虫啉处理可提高棉蚜群体的酯酶活力。由此认为,棉蚜至少具有对吡虫啉产生中等水平抗性的风险,其抗性可能是由于棉蚜的酯酶和P450单加氧酶的解毒能力提高所致。  相似文献   

18.
The BERTS strain of Colorado potato beetle (CPB) was found to be highly resistant to N-methyl carbofuran but relatively susceptible to azinphosmethyl. N-Methyl carbofuran resistance was found to correlate well with acetylcholinesterase (AChE) insensitivity. In becoming resistant to N-methyl carbofuran, the AChE of the BERTS strain became more sensitive to N-propyl carbofuran inhibition. This negative cross-insensitivity correlated well to the increased relative toxicity of the BERTS strain to N-propyl carbofuran compared to the susceptible SS strain. BERTS beetles were sorted into BERTS-R and BERTS-S substrains using their AChE activity profiles. Sequence comparisons of AChE cDNAs from the two substrains revealed the presence of the point mutation that results in the S291G substitution previously found in the AChE of the azinphosmethyl-resistant AZ-R strain of CPB. A novel mutation present only in BERTS-S CPB, however, resulted in an additional I392T substitution in the AChE and apparently reverses the resistance conferring properties of the S291G substitution.  相似文献   

19.
The activity and sensitivity of acetylcholinesterase (AChE, EC 1.1.1.7) from an organophosphate-susceptible (OSS) and three resistant (OR-0, OR-1 and OR-2) strains of the greenbug (Schizaphis graminum) were biochemically compared. All three resistant strains displayed higher frequencies of individuals with respect to both increased activity of AChE toward the model substrate acetylthiocholine (ATC) and reduced sensitivity of AChE to inhibition by paraoxon as compared with the OSS strain. Kinetic study indicated that AChE from the OR-0, OR-1 and OR-2 strains had 3.3-, 2.7- and 2.3-fold, respectively, lower affinity, but 1.5-, 2.2- and 2.0-fold, respectively, higher catalytic activity toward ATC than AChE from the OSS strain. Significantly increased activity of AChE in the resistant strains was also confirmed by non-denaturing polyacrylamide gel electrophoresis, and appeared to be associated with the increase of general esterase activity. Inhibition kinetics revealed that AChE from the OR-0, OR-1 and OR-2 strains was 2.1-, 2.2- and 2.7-fold less sensitive to inhibition by paraoxon than that from the OSS strain. The study suggested that both qualitative and quantitative modifications of AChE had evolved in the resistant strains and were likely to significantly enhance the overall resistance level in greenbugs. © 1999 Society of Chemical Industry  相似文献   

20.
小菜蛾对溴氰菊酯抗性选育及其机理   总被引:15,自引:3,他引:15  
本研究用溴氰菊酯在室内以点滴法处理小菜蛾4龄幼虫,连续继代药剂淘汰选育其抗药性,至F65代,抗药性提高到1163倍,已形成高抗生品系。其抗性的形成发展趋势为前期相对缓慢,中期较快,后期迅速增长。于1992、1993、1994年分别以氯氰菊酯、敌敌畏、杀虫双、灭虫剂有明显 正交互抗性,对其它非菊酯类杀虫虫没有产生交互抗性。用聚丙烯酰胺凝胶电泳地(PAGE)测定表明,小菜蛾对溴氰菊酯抗性的产生可能与非  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号