首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soybean cyst nematode (SCN) is a major yield-limiting pest of soybean. In this study, experiments were conducted to examine the diversity of parasitic fungi from SCN associated with disease-suppressive soil fields in Northeast China. Soil samples were collected from three fields under different rotation systems that were established in 1991: (1) a continuous long-term cropping field with soybean (SSSS) that had been shown to be SCN-suppressive, (2) cycles of three-year rotation with corn, soybean, and wheat (WCS), and (3) continuous cropping field with three-year cycles of two years soybean and one-year corn (SSC). In the traditional method result, cyst densities of SCN declined as increase of parasitic fungi, and the percentage of parasitic fungi associated with cyst of SCN was higher in SSSS field than other two fields. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) also showed that parasitic fungi of SCN were also increased in SSSS field, compared with the other two fields. Principal component analysis based on PCR-DGGE data revealed that fungal communities on cysts could be divided into three groups: one group occurred in SSSS, and the other two groups were in WCS and SSC fields, respectively. Long-term cropping with soybean monoculture in the black soil field might increase parasitic fungi of SCN. These fungal communities may play an important role in the ecological suppression of SCN in disease-suppressive soil.  相似文献   

2.
Field experiments were set up in 1991 to test if suppressive soil to soybean root diseases could be developed with continuous long-term soybean cropping in black soil of Northeast China. Based on the field observation in 2007, 2009, and 2011, soybean root growth was promoted, and the severities of root disease were reduced in a field with continuous long-term cropping with soybean. Population densities of the pathogens (Fusarium spp. and Heterodera glycines) in the soybean cropping field were significantly (P < 0.05) lower than rotation of soybean with wheat or corn. Higher levels of biological control agents (Trichoderma harzianum, Pochonia chlamydosporia, or Paecilomyces lilacinus) also were found in the long-term soybean cropping field. Therefore, continuous long-term cropping of soybean in black soil of Northeast China could develop suppressive soil to soybean root diseases.  相似文献   

3.
Abstract

Iron-deficiency chlorosis (IDC) and soybean cyst nematode (SCN) result in yield and income losses for soybean growers in the U.S. Breeding programs are identifying soybean genotypes with resistance to IDC using calcareous soils infested with SCN, where SCN might interfere with evaluation. Our first objective was to examine whether associations could be established for chlorosis symptoms with SCN infestation of soybean grown on SCN-infested calcareous soils. Two breeding populations, their parents, and five SCN-susceptible, IDC-control genotypes (IDC controls) were evaluated for IDC symptoms on SCN-infested calcareous soils in 2000 and 2001. In general, no significant correlations were detected between chlorosis expression and SCN infestation in either year, although a negative correlation (r = ?0.93, p ≤ 0.05) was observed for the IDC controls in 2001. For our second objective, we examined the relationship between genotype resistance to SCN and IDC. Although IDC controls were all equally susceptible to SCN and chlorosis observed in the field and nutrient solution was similar, SCN-resistant genotypes expressed resistance to IDC in the field, but severe susceptibility to IDC in nutrient solution. Our third objective was to investigate the value of calcareous soil properties to predict IDC in soybean grown on SCN-infested calcareous soils. For one breeding population in 2001, positive correlations (p ≤ 0.05) were detected for chlorosis with calcium carbonate (r = 0.62) and electrical conductivity (r = 0.59), and a negative correlation (r = –0.41) with soil Fe-DTPA-TEA. No significant correlations were observed for the remaining genotypes. Our study indicated that associations between IDC, SCN, and calcareous soil properties are dependent on genotype and environment. In addition, our study demonstrated a potential association between plant health and SCN reproduction in SCN-susceptible genotypes, the possibility that SCNresistant genotypes may be sensitive to iron availability, and the importance of genotype on the detection of associations between IDC expression and SCN infestation.  相似文献   

4.
Despite a general consent about the beneficial contribution of arbuscular mycorrhizal fungi (AMF) on natural ecosystems, there is an intense debate about their role in agricultural systems. In this work, soybean (Glycine max L.) and sunflower (Helianthus annuus L.) field plots with different P availabilities were sampled across the Pampean Region of Argentina (> 150 samples from Mollisols) to characterize the relationship between available soil P and indigenous mycorrhizal colonization. A subsequent pot experiment with soybean and sunflower was carried out to evaluate the effect of P supply (0, 12, and 52 mg P kg–1) and AMF inoculation on AMF colonization and crop responsiveness to P in a Mollisol. Both crops showed high AMF colonization in the field (average: 55% for soybean and 44% for sunflower). While mycorrhizal colonization in soybean was significantly and negatively related to available soil P, no such trends were apparent in sunflower. Also, total biomass was 3.5 and 2.0 times higher in mycorrhizal than in nonmycorrhizal pot‐grown soybean under low‐ and medium‐P conditions, respectively. Sunflower, on the other hand, did not benefit from AMF symbiosis under medium and high P supply. While mycorrhization stimulated P‐uptake efficiency in soybean, the generally high P efficiency in sunflower was not associated with AMF symbiosis.  相似文献   

5.
Investigations into the effect of soybean cyst nematode (SCN, Heterodera glycines, Ichinoe) on the yield components of soybean [Glycine max (L.) Merr.] have shown that pod numbers are reduced with increasing SCN initial populations (Pi) present in the soil at planting. The main method by which SCN alters pod numbers is through reductions in the number of branches per plant. Foliar applications of boron (B) and B in combination with magnesium (Mg) (B+Mg) increase yield of soybean not infected with SCN by increasing pod number per plant, especially the number of pods on branches. The objective of this research was to determine if foliar applications of B and B+Mg ameliorates the effect of SCN by increasing yield on branches. Field experiments were conducted in 1993 and 1994 in 1 m2 microplots to compare foliar applied B and B+Mg to a control treatment. Foliar applications were made at four intervals spaced throughout soybean reproductive development of Pioneer brand 9391, an SCN susceptible cultivar. There were 12 levels of SCN Pi in 1993 and 11 levels in 1994. For each treatment, including control, grain yield was regressed on SCN Pi. Yield was reduced with increasing SCN Pi in both years, but the rate of decrease did not differ among treatments. In addition, ANOVA of yield components revealed no treatment effects on the number of branches per plant, the number of branch pods per plant, or the total number of pods per plant. Thus, foliar applications of B or B+Mg did not ameliorate the effects of SCN on soybean.  相似文献   

6.
Low soil fertility and soil acidity are among the major bottlenecks that limit agricultural productivity in the humid tropics. Soil management systems that enhance soil fertility and biological cycling of nutrients are crucial to sustain soil productivity. This study was, therefore, conducted to determine the effects of coffee‐husk biochar (0, 2.7, 5.4, and 16.2 g biochar kg?1 soil), rhizobium inoculation (with and without), and P fertilizer application (0 and 9 mg P kg?1 soil) on arbuscular mycorrhyzal fungi (AMF) root colonization, yield, P accumulation, and N2 fixation of soybean [Glycine max (L.) Merrill cv. Clark 63‐K] grown in a tropical Nitisol in Ethiopia. ANOVA showed that integrated application of biochar and P fertilizer significantly improved soil chemical properties, P accumulation, and seed yield. Compared to the seed yield of the control (without inoculation, P, and biochar), inoculation, together with 9 and 16.2 g biochar kg?1 soil gave more than two‐fold increment of seed yield and the highest total P accumulation (4.5 g plant?1). However, the highest AMF root colonization (80%) was obtained at 16.2 g biochar kg?1 soil without P and declined with application of 9 mg P kg?1 soil. The highest total N content (4.2 g plant?1) and N2 fixed (4.6 g plant?1) were obtained with inoculation, 9 mg P kg?1, and 16.2 g biochar kg?1 soil. However, the highest %N derived from the atmosphere (%Ndfa) (> 98%) did not significantly change between 5.4 and 16.2 g kg?1 soil biochar treatments at each level of inoculation and P addition. The improved soil chemical properties, seed yield, P accumulation and N2 fixation through combined use of biochar and P fertilizer suggest the importance of integrated use of biochar with P fertilizer to ensure that soybean crops are adequately supplied with P for nodulation and N2‐fixation in tropical acid soils for sustainable soybean production in the long term.  相似文献   

7.
Nutrient composition and yield of soybean [Glycine max (L.) Merr] seeds are heritable traits affected by environmental factors. This study determined the effects of arbuscular‐mycorrhizal (AM) fungi on seed protein, lipid, and phosphorus (P) composition and yield in soybean grown under a high nitrogen (N) regime. Plants were grown in pot cultures without AM fungi in P‐fertilized (+P) or unfertilized (‐P) soil, or in ‐P soil inoculated with one of the AM fungi Glomus mosseae (Nicol. & Gerd.) Gerd, and Trappe (Gm), Glomus etunicatum Becker and Gerd.(Ge), or Gigaspora rosea Nicol. and Schenck (Gr). Seed yields of+AM plants, as a group, were halfway between those of the +P and ‐P plants. Seed size was highest in Gm plants. Differences in protein concentrations between Ge and Gr and the other treatments were highly significant. Seed P and protein concentrations were not significantly correlated (p=0.162), but a highly significant (r =‐0.949) negative correlation between seed P and lipid concentrations was observed. Phosphorus concentration was highest and that of lipids lowest in +AM plants. Seed yield and nutrient composition were independent of the intensity of root colonization. The seed protein/lipid ratio was highly correlated with seed P concentration and was significantly higher for +AM plants, as a group, than for both +P and ‐P ‐AM plants. Differences in seed dry weight, size, seed/ stem ratio, P content, and protein concentration among +AM plants showed mycorrhiza‐specific host responses. These responses suggest that AM fungi can modify soybean seed development and chemical composition.  相似文献   

8.
The soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a major pest of soybeans (Glycine max L. Merrill) in the central and southern United States. Soybean cyst nematode causes stunted top growth, root pruning and symptoms of mineral element deficiency in soybeans. The objective of this study was to determine the effect of two selections of SCN (I selected on PI209332 and IV selected on PI 89772) on macronutrient uptake, translocation, and tissue concentrations of soybean and to determine the elemental composition of cysts isolated from roots. Soybeans were grown in plastic tubes in the greenhouse where the middle one‐third of the Hodge fine sand (Typic Udipsamment) contained 0, 25,000, or 50,000 SCN eggs. After 35 days, plants were harvested and tissue nutrient element concentrations were determined. Plants infested with both SCN selections were smaller and had much less root volume than controls. Dry weight of each plant tissue decreased as SCN population was increased. Root concentration of potassium (K) and magnesium (Mg) was decreased, whereas root calcium (Ca) and phosphorus (P) concentrations were increased with SCN treatments. Leaf Mg and Ca concentrations increased with SCN treatment. Magnesium uptake per unit root volume was decreased, but Mg translocation (% of total plant content in aerial portion) was increased with SCN treatment. Calcium uptake per unit of root volume was increased, but translocation was unchanged by SCN treatment. The Ca and P concentration of cysts isolated from the soybean roots was high. This high concentration of Ca in cysts is interesting based on the greater root Ca concentration and uptake per unit of root volume in SCN infested plants. Since total uptake and root concentrations of both K and Mg were decreased by SCN treatment, infested soybeans might require very high levels of K and Mg fertilization. These results indicate that K and Mg fertility should be followed closely in SCM‐infested soybean fields.  相似文献   

9.
采用平板计数法测定了3个抗病性不同的大豆品种在生育期内根面和根际微生物区系的变化情况,并应用荧光计数法直接测定了根际细菌和真菌的生物量。结果表明,土体的微生物种类最丰富、根际的次之、根面的较单一。播种后从三叶期到鼓粒初期,根面和根际的可培养细菌总数随生育期逐渐增加,鼓粒初期达最大值,而成熟期则有明显的下降;大豆根际细菌生物量也存在相同的变化规律。抗病性不同的大豆品种其根面、根际可培养细菌总数存在差异;抗病品种大豆的根瘤重明显高于感病品种。种植一季后感病品种根际积累的病原生物(镰孢霉Fusarium.sp.和大豆胞囊线虫Heterodera.glycines的胞囊数)明显高于抗病品种。说明大豆根系分泌物对微生物具有选择性的促进或抑制作用,不同大豆品种以及同一大豆品种在不同生育时期根系分泌物的组成和数量不同,从而使大豆根面及根际形成了特定的微生物区系组成。  相似文献   

10.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

11.
Continuous cropping can be a serious problem in Chinese soybean production. This can result in yield reduction, root diseases, and changes in microbial community structure. We studied community structure, clone libraries, and abundance of ammonia oxidizing bacteria (AOB) in soybean fields there were in continuous soybean production for up to 17 years (SC17). Results showed that the potential nitrification rate (PNR) and amoA gene abundance of soybean in continuous cultivation for seven years (SC7) was 0.34 µg NO3? g?1 and 4.71 × 10?5 amoA gene copies/g dry soil, respectively. These values were lower than other treatments. Phylogenetic affiliation analysis based on blast results of amoA gene clone sequencing showed that the sequences belonged to seven clusters: Cluster 1, Cluster 3b, Cluster 3a.1, Cluster 3a.2, Cluster 9, Cluster 10, and Cluster 4. Correlation of AOB community compositions with environmental factors was performed using canonical correspondence analysis (CCA). Results indicated that the composition of AOB communities in maize–soybean (MS) rotation and continuous cropping of soybean for two years (SC2) were positively related to the PNR of soil, soil moisture, and soil total nitrogen content. Soybean fields continuously cropped for 11 years (SC11) and SC7 fields had AOB community compositions that were negatively related to these factors. The AOB community composition of SC17 was positively correlated to the soil total carbon content of soil. The results in this study indicate that the potential activity and abundance of AOB community in soil significantly changed after seven years continuous cropping compared to other continuous cropping intervals. Cropping systems have important effect on the diversity of functional microorganisms and associated nitrogen cycles.  相似文献   

12.
A field and greenhouse experiments were conducted to determine the requirement of Fe nutrient supplied through foliar and soil application in soybean inoculated with different selected isolates of exotic and native Bradyrhizobium spp. in saline soils. Six soybean genotypes and three Bradyrhizobium spp. were used for the greenhouse experiments, whereas only two soybean genotypes, namely TGx-1336424 and GIZA, were selected for further study under field conditions. Two levels of FeSO4 (0 and 4 mg Fe kg?1 soil) directly supplied to the soil and three levels of Fe-ethylenediaminetetraacetic acid (0–2% of Fe) through foliar application were used for greenhouse and field experiments, respectively. The results of the greenhouse experiment indicated a non-significant effect of Fe application on nodulation and shoot biomass in soybean. Fe application did not improve the grain yield and total biomass yield in soybean inoculated with UK isolate and local isolate but showed remarkable improvement with TAL-379. High soil native N might be the cause for insignificant effect of Fe applied at 2% in highly effective inoculated plants. Therefore, it can be concluded that the symbiotic effectiveness of Bradyrhizobium sp. and the native soil N would affect the soybean Fe requirement supplied through foliar application.  相似文献   

13.
The influence of soil treatment over a period of 8 y on the species composition and spore density of indigenous V A mycorrhizal fungi was investigated in relation to phosphorus (P) accumulation. Soils were collected from an experimental field which was subjected to four different treatments: application of farmyard manure (FYM), application of chemical fertilizer (CF), no fertilizer application (NF) (mainly melon-cabbage had been cultivated), and grassland (alfalfa meadow, chemical fertilizer had been applied) (GL). P (Truog-P) shows large accumulation in the FYM- and GL-soils, 7,782 and 2,631 mg P2O5 kg-1 soil, respectively, compared to the accumulation in the CF- and NF-soils, 790 and 101 mg P2O5 kg-1 soil, respectively. Indigenous fungi were first multiplied by soybean trap culture prior to the observation of the fungal communities. Glomus sp. B1 was common to all of the four soils, and the number of spores was significantly higher in the NF-soil. Glomus sp. Y1 was commonly found in the FYM-, CF-, and NF-soils but not in the GL-soil. Glomus sp. R1 was dominant in the FYM-soil and not found in the other soils. Acaulospora sp. N1 was specifically dominant in the GL-soil. These results suggest that very high-P conditions may influence the species composition of the fungi.  相似文献   

14.
The efficiency of 13 phosphate-solubilizing bacteria (PSB; four Burkholderia sp., five Enterobacter sp., and four Bradyrhizobium sp.) was assessed in a soil plate assay by evaluating soil phosphorus (P) availability. A commercial argentine strain, Pseudomonas fluorescens, was used for comparing solubilizing activity. Burkholderia sp. PER2F, Enterobacter sp. PER3G, and Bradyrhizobium sp. PER2H strains solubilized the largest quantities of P in the soil plate assay after 60 days as compared with the other strains, including the commercial one. The effect of PSB inoculation on growth and nutrient uptake of soybean plants was also studied under greenhouse conditions. Plants inoculated with Burkholderia sp. PER2F had the highest aerial height and showed an appropriate N/P ratio. However, none of the PSB increased P uptake by plants. This suggests that PSB inoculation does not necessarily improve P nutrition in soybean, nor was there any relationship between P availability in the soil plate assay and P content in the soybean shoot in the greenhouse. We concluded that the selection of efficient PSB strains as possible inoculation tools for P-deficient soils should focus on the integral interpretation of soil assays, greenhouse experiments, and field trials.  相似文献   

15.
Abstract

The objective of this study was to provide agronomic, nematode, and economic analysis of alternative production rotation systems for soybeans (Glycine max L. Merr.) on a silt loam soil association in Arkansas. Monocropped soybeans and soybeans double‐cropped with wheat (Triocum aestivam L.) was included as well as grain sorghum (Sorghum bicolor L. Moench) under dryland conditions in order to reduce soybean cyst nematode (SCN, Heteroderaglycine Ichinohe) populations. A total of seven crop rotations and eleven treatments that included alternative tillage conditions and wheat stubble management practices were analyzed using data from 1980–1984 experiments conducted at the Arkansas Cotton Branch Experiment Station on a silt loam Loring‐Calloway‐Henry Association (Alfisols). Although crop rotation was effective for nematode suppression, yields for double‐cropped soybeans were comparable to soybean yields under monocropped’ continuous management practices. Economic results indicated that average net returns of $338.50 per hectare (about $ 137 per acre) were highest for the continuous double‐cropped wheat‐soybean production management systems which combine the conventional tillage method with burning of wheat stubble. For the conditions analyzed and level of SCN present, this research provides evidence that control of the soybean cyst nematode through rotation practices that utilize grain sorghum is not economically efficient where continuous double‐cropped wheat‐soybeans systems can be incorporated.  相似文献   

16.
Abstract

Greenhouse and laboratory research studied K and CI nutrition of four soybean [Glycine max (L) Merril] cultivars with differential resistance to Soybean Cyst Nematode (SCN, Heterodora glycines Ichinohe). The cultivars: Forrest (Group V, resistant to races 1 and 3), Bradley (Group VI, resistant to races 1, 3 and 4), Essex (Group V, susceptible), and Davis (Group VI, susceptible*) were used. Potassium treatments were zero K, K2SO4 and KCI, and SCN treatment was zero and 500 eggs/100 g of previously sterilized soil. Single plants were grown for 30‐days in 400 g of soil in 3.5 cm pots maintained at 23°C. Plants were separated into roots and shoots for analysis. Post harvest SCN cyst counts were completed to evaluate cultivar‐K treatment effect on SCN population dynamics and treatment effects on root and shoot K, Ca, Mg and CI.

Cyst counts were a function of cultivar resistance and inoculation, and were not affected by K treatment. Root and shoot weights of all cultivars were lower In the SCN inoculated pots. Potassium treatments did not alter the SCN negative effect on root weight, but KCI appeared to reverse the negative effect that SCN inoculation had on shoot weight of Bradley. SCN Inoculation appeared to reduce CI concentration in the roots of all cultivars, increase root K of Bradley and no effect on root K of Davis, Essex and Forrest. Transiocation of K from roots to shoots was not adversely affected by SCN inoculation. The KCI treatment increased shoot CI concentration of cultivars in order Essex > Davis > Forrest > Bradley. The order of correlation of root CI concentration with shoot CI concentration was: Essex (r = 0.80**) > Bradley (r = 0.70**) > Davis (r = 0.54**) > Forrest (r = 0.40**) suggesting difference in root CI adsorption characteristcs and CI translocation characteristis to the shoots. Additional research is needed to determine to what extent root and shoot CI accumulation characteristics are related to SCN resistance and if the shoot CI accumulation characteristics is independent of root CI adsorption characteristics.  相似文献   

17.
A field experiment was conducted in a phosphorus (P)–deficient acidic Alfisol in northwestern Himalayas to study the effect of three vesicular arbuscular mycorrhizae (VAM) cultures [VAML, local VAM culture (Glomus mosseae) developed by CSK Himachal Pradesh Agricultural University, Palampur, India; VAMT, VAM culture (Glomus intraradices) developed by Centre for Mycorrhizal Research, The Energy and Resources Institute (TERI), New Delhi, India; and VAMI, VAM culture (Glomus mosseae) developed by Indian Agricultural Research Institute (IARI), New Delhi, India] on growth, productivity, and nutrient dynamics in rainfed soybean. Plant height, aboveground dry matter, root dry matter, total dry matter, root length, root weight density, Rhizobium root nodule count, root colonization, yield attributes, yield, and nutrient uptake of soybean increased consistently and significantly with increase in inorganic P levels from 25 to 75% of recommended P2O5 dose based on targeted yield precision model coupled with various VAM cultures. VAMT (Glomus intraradices) at each P level showed its superiority over VAMI and VAML. Sole application of any of the three VAM cultures produced similar growth and development parameters as well as grain yield (18.68 to 19.08 q ha?1) as produced through farmers’ practice (nitrogen at 20 kg ha?1), indicating that VAM has a vital role in root morphology and nutrient dynamics in a soil–plant system, though significantly greater productivity was obtained with 100% of the recommended P2O5 dose based on soil-test crop response (STCR) precision model without VAM inoculation. Targeted grain yield of soybean (25 q ha?1) was achievable with 75% of the recommended P2O5 dose applied with any of the three VAM fungi cultures without impairing soil fertility, thereby indicating that VAM fungi can save about 25% P fertilizer in soybean in P-deficient acidic Alfisols of northwestern Himalayas.  相似文献   

18.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

19.
以转甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase)基因(BADH)大豆、非转基因亲本‘黑农35’、野生大豆、当地栽培种‘抗线王’、耐盐碱性较差品种‘合丰50’等5种大豆品种为材料,在典型盐碱土封闭种植,于大豆苗期、花荚期、鼓粒期和成熟期取根际土,采用经典方法测定氮素转化过程相关的细菌数量、生化功能及速效氮含量等指标的动态变化,为揭示转BADH基因大豆对土壤氮素转化的影响机制提供理论支持。结果表明:与非转基因亲本相比,转BADH基因大豆对苗期和花荚期根际土壤固氮菌数量有促进作用,但抑制苗期和花荚期根际土壤氨化细菌数量,对硝化细菌数量无显著性影响;显著促进成熟期大豆根际土壤固氮作用强度,对大豆苗期、花荚期和鼓粒期根际土壤氨化作用强度有显著抑制作用,显著促进各生育时期硝化作用强度;转BADH基因大豆苗期和花荚期根际土壤铵态氮含量显著降低,对鼓粒期根际土壤铵态氮含量无显著性影响,成熟期根际土壤铵态氮含量显著增高,大豆苗期、鼓粒期和成熟期根际土壤硝态氮含量显著升高,花荚期根际硝态氮含量显著降低。研究结果说明,转BADH基因大豆通过调节苗期、花期根际土壤氮素转化功能菌数量和生化过程强度进而影响氮素转化。  相似文献   

20.
A 2-year field experiment (2013 and 2014) was conducted in calcareous soil (CaCO3 19.2%), on soybean grown under three irrigation regimes 100%, 85% and 70% of crop evapotranspiration combined with three potassium (K2O) levels (90, 120 and 150 kg ha?1). The objective was to investigate the complementary properties of potassium fertilizer in improving soybean physiological response under water deficit. Plant water status (relative water content RWC, chlorophyll fluorescence Fv/F0 and Fv/Fm), had been significantly affected by irrigation or/and potassium application. Potassium improved growth characteristics (i.e. shoot length, number, leaf area and dry weight of leaves) as well as physiochemical attributes (total soluble sugars, free proline and contents of N, P, K, Ca and Na). Yield and yield water use efficiency (Y-WUE) were significantly affected by irrigation and potassium treatments. Results indicated that potassium application of 150 and 120 kg ha?1 significantly increased seed yield by 29.6% and 13.89%, respectively, compared with 90 kg ha?1 as average for two seasons. It was concluded that application of higher levels of potassium fertilizer in arid environment improves plant water status as well as growth and yield of soybean under water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号