首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rare gas analysis of the lunar surface has lead to important conclusions concerning the moon. The large amounts of rare gases found in the lunar soil and breccia indicate that the solar atmosphere is trapped in the lunar soil as no other source of such large amounts of gas is known. The cosmogenic products indicate that the exposure ages of the 17 lunar rocks measured vary from 20 to 400 million years with some grouping of the ages. The most striking feature is the old potassium-argon age which for the 14 rocks analyzed varies from 2.5 to 3.8 billion years. It is concluded that Mare Tranquillitatis crystallized about 4 billion years ago from a molten state produced by a large meteorite impact or volcanic flow.  相似文献   

2.
The (87)Rb-(87)Sr internal isochrons for five rocks yield an age of 3.65 +/-0.05 x 10(9) years which presumably dates the formation of the Sea of Tranquillity. Potassium-argon ages are consistent with this result. The soil has a model age of 4.5 x10(9) years, which is best regarded as the time of initial differentiation of the lunar crust. A peculiar rock fragment from the soil gave a model age of 4.44 x 10(9) years. Relative abundances of alkalis do not suggest differential volatilization. The irradiation history of lunar rocks is inferred from isotopic measurements of gadolinium, vanadium, and cosmogenic rare gases. Spallation xenon spectra exhibit a high and variable (131)Xe/(126)Xe ratio. No evidence for (129)I was found. The isotopic composition of solar-wind xenon is distinct from that of the atmosphere and of the average for carbonaceous chondrites, but the krypton composition appears similar to average carbonaceous chondrite krypton.  相似文献   

3.
The (7)Be, (22)Na, (26)Al, (44)Ti, (46)SC, (48)V (51)Cr, (54)Mn, (56)Co, (57)Co, (57)CO, (40)K, (238)U, and (232)Th were measured in lunar fines and portions of three rocks. Major production of cosmogenic radionuclides is due to solar protons, thus their concentrations are far different than those in meteorites. Surface exposures of the rocks and fines are long compared with the 0.74 million year half-life of (26)Al. Lunar fines show substantially higher concentrations of low energy reaction products. The ratios of thorium to uranium are extremely constant at 3.8, which indicates very little geochemical differentiation and are in good agreement with a common nucleosynthesis for lunar and earth materials.  相似文献   

4.
Late accretion, early mantle differentiation, and core-mantle interaction are processes that could have created subtle (182)W isotopic heterogeneities within Earth's mantle. Tungsten isotopic data for Kostomuksha komatiites dated at 2.8 billion years ago show a well-resolved (182)W excess relative to modern terrestrial samples, whereas data for Komati komatiites dated at 3.5 billion years ago show no such excess. Combined (182)W, (186,187)Os, and (142,143)Nd isotopic data indicate that the mantle source of the Kostomuksha komatiites included material from a primordial reservoir that represents either a deep mantle region that underwent metal-silicate equilibration or a product of large-scale magmatic differentiation of the mantle. The preservation, until at least 2.8 billion years ago, of this reservoir-which likely formed within the first 30 million years of solar system history-indicates that the mantle may have never been well mixed.  相似文献   

5.
The time scales over which inner solar system objects accreted and differentiated are unclear because the isotopic systems of many meteorites are disturbed. 182Hf decays to 182W with a half-life of 9 million years and is a particularly useful chronometer because both elements are highly refractory and immobile. Tungsten isotopic data for IIA, IIIA, IVA, and anomalous iron meteorites and H, L, and LL chondrites indicate that their parent bodies accreted rapidly and segregated metal within just a few million years.  相似文献   

6.
Abundance and distribution of iron on the moon   总被引:3,自引:0,他引:3  
The abundance and distribution of iron on the moon is derived from a near-global data set from Clementine. The determined iron content of the lunar highlands crust ( approximately 3 percent iron by weight) supports the hypothesis that much of the lunar crust was derived from a magma ocean. The iron content of lower crustal material exposed by the South Pole-Aitken impact basin on the lunar farside is higher ( approximately 7 to 8 percent by weight) and consistent with a basaltic composition. This composition supports earlier evidence that the lunar crust becomes more mafic with depth. The data also suggest that the bulk composition of the moon differs from that of the Earth's mantle. This difference excludes models for lunar origin that require the Earth and moon to have the same compositions, such as fission and coaccretion, and favors giant impact and capture.  相似文献   

7.
Highlights of a first effort in sorting out rare gases in lunar material are solar wind rare gases in abundance; variable (20)Ne/(22)Ne but constant (21)Ne/ (22)Ne ratios in fractions of the trapped neon; cosmogenic rare gases similar to those found in meteorites, except for copious (131)Xe in one rock but not in another; at Tranquillity Base a rock 4.1 x 10(9) years old which reached the surface 35 to 65 million years ago, amid soil whose particles have typically been within a meter of the surface for 10(9) years or more.  相似文献   

8.
Applegate PJ  Lowell TV  Alley RB 《Science (New York, N.Y.)》2008,320(5877):746; author reply 746
Barrows et al. (Reports, 5 October 2007, p. 86) presented cosmogenic exposure dates and data from an ocean sediment core that challenge evidence for glacier advance in New Zealand during the Younger Dryas event. We use modeling of geomorphic processes to argue that their cosmogenic exposure dates are inconclusive.  相似文献   

9.
The landing dynamics of and soil penetration by Surveyor I indicated that the lunar soil has a porosity in the range 0.35 to 0.45. Experiments with Surveyor III's surface sampler for soil mechanics show that the lunar soil is approximately incompressible (as the word is used in soil mechanics) and that it has an angle of internal friction of 35 to 37 degrees; these results likewise point to a porosity of 0.35 to 0.45 for the lunar soil. Combination of these porosity measurements with the already-determined radar reflectivity fixes limits to the dielectric constant of the grains of the lunar soil. The highest possible value is about 5.9, relative to vacuum; a more plausible value is near 4.3. Either figure is inconsistent with the idea that the lunar surface is covered by chondritic meteorites or other ultrabasic rocks. The data point to acid rocks, or possibly vesicular basalts; carbonaceous chondrites are not excluded.  相似文献   

10.
Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.  相似文献   

11.
A new combined rhenium-osmium- and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in Earth's mantle. The results are consistent with silicate-metal equilibrium during a giant impact and core formation in both bodies, followed by post-core-formation late accretion that replenished their mantles with highly siderophile elements. The lunar mantle experienced late accretion that was similar in composition to that of Earth but volumetrically less than (approximately 0.02% lunar mass) and terminated earlier than for Earth.  相似文献   

12.
利用2005年(1—12月)伯利兹船队在帕劳群岛共和国生产作业的渔捞日志数据,采用方差分析的方法(ANOVA)比较了月光天(农历初八至二十二)与月黑天(初一至初七、初二十三至三十)、不同投绳时间之间大眼金枪鱼Thunnus obesus和黄鳍金枪鱼Thunnus albacares渔获率的差异。结果表明:大眼金枪鱼、黄鳍金枪鱼渔获率在月光天和月黑天均无显著性差异;大眼金枪鱼渔获率在不同投绳时间存在显著性差异,而黄鳍金枪鱼的渔获率则无显著性差异。研究认为,月相对大眼金枪鱼、黄鳍金枪鱼渔获率无显著影响。为了获得较高的大眼金枪鱼渔获率,实际作业中应选择02:00—08:00(当地时间)作为投绳时间。  相似文献   

13.
Petrographic and electron-microprobe studies combined with high pressure-temperature investigations of phase relationships in average Apollo 11 basalt and possible source material show that the lower parts of maria may be composed of eclogite (density 3.74 grams per cubic centimeter), thus explaining the existence of mascons. The Apollo 11 basalt was probably formed at depths of 200 to 400 kilometers by a small degree of partial melting from pyroxenitic source material [FeO/(FeO + MgO) = 0.25, A1(2)O(3) 4 percent, CaO 3 percent]. This composition may be representative of the lunar interior and yields the observed mean lunar density and moment of inertia. Present data are in conflict with fission, binary planet, and capture hypotheses of lunar origin but are consistent with Ringwood's (1966) precipitation hypothesis.  相似文献   

14.
The lunar ranging measurements now being made at the McDonald Observatory have an accuracy of 1 nsec in round-trip travel time. This corresponds to 15 cm in the one-way distance. The use of lasers with pulse-lengths of less than 1 nsec is expected to give an accuracy of 2 to 3 cm in the next few years. A new station is under construction in Hawaii, and additional stations in other countries are either in operation or under development. It is hoped that these stations will form the basis for a worldwide network to determine polar motion and earth rotation on a regular basis, and will assist in providing information about movement of the tectonic plates making up the earth's surface. Several mobile lunar ranging stations with telescopes having diameters of 1.0 m or less could, in the future, greatly extend the information obtainable about motions within and between the tectonic plates. The data obtained so far by the McDonald Observatory have been used to generate a new lunar ephemeris based on direct numerical integration of the equations of motion for the moon and planets. With this ephemeris, the range to the three Apollo retro-reflectors can be fit to an accuracy of 5 m by adjusting the differences in moments of inertia of the moon about its principal axes, the selenocentric coordinates of the reflectors, and the McDonald longitude. The accuracy of fitting the results is limited currently by errors of the order of an arc second in the angular orientation of the moon, as derived from the best available theory of how the moon rotates in response to the torques acting on it. Both a new calculation of the moon's orientation as a function of time based on direct numerical integration of the torque equations and a new analytic theory of the moon's orientation are expected to be available soon, and to improve considerably the accuracy of fitting the data. The accuracy already achieved routinely in lunar laser ranging represents a hundredfold improvement over any previously available knowledge of the distance to points on the lunar surface. Already, extremely complex structure has been observed in the lunar rotation and significant improvement has been achieved in our knowledge of lunar orbit. The selenocentric coordinates of the retroreflectors give improved reference points for use in lunar mapping, and new information on the lunar mass distribution has been obtained. Beyond the applications discussed in this article, however, the history of science shows many cases of previously unknown, phenomena discovered as a consequence of major improvements in the accuracy of measurements. It will be interesting to see whether this once again proves the case as we acquire an extended series of lunar distance observations with decimetric and then centimetric accuracy.  相似文献   

15.
The Apollo 12 magnetometer has measured a steady magnetic field of 36 +/- 5 gammas on the lunar surface. Surface gradient measurements and data from a lunar orbiting satellite indicate that this steady field is localized rather than global in its extent. These data suggest that the source is a large, magnetized body which acquired a field during an epoch in which the inducing field was much stronger than any that presently exists at the moon.  相似文献   

16.
Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.  相似文献   

17.
Gravity: first measurement on the lunar surface   总被引:1,自引:0,他引:1  
The gravity at the landing site of the first lunar-landing mission has been determined to be 162,821.680 milligals from data telemetered to earth by the lunar module on the lunar surface. The gravity was measured with a pulsed integrating pendulous accelerometer. These measurements were used to compute the gravity anomaly and radius at the landing site.  相似文献   

18.
Earth-based observations of the lunar microwave brightness temperature spectrum at wavelengths between 5 and 500 centimeters, when reexamined in the light of physical property data derived from the Apollo program, tentatively support the high heat flows measured in situ and indicate that a regolith thickness between 10 and 30 meters may characterize a large portion of the lunar near side.  相似文献   

19.
One-atmosphere melting data show that Apollo 11 samples are near cotectic. Melting relations at pressures up to 35 kilobars show that clinopyroxenite or amphibole peridotite are possible lunar interiors. Mascons cannot be eclogite; they may be ilmenite accumulate. Hot lunar surface material will boil off alkalis.  相似文献   

20.
The clementine mission to the moon: scientific overview   总被引:4,自引:0,他引:4  
In the course of 71 days in lunar orbit, from 19 February to 3 May 1994, the Clementine spacecraft acquired just under two million digital images of the moon at visible and infrared wavelengths. These data are enabling the global mapping of the rock types of the lunar crust and the first detailed investigation of the geology of the lunar polar regions and the lunar far side. In addition, laser-ranging measurements provided the first view of the global topographic figure of the moon. The topography of many ancient impact basins has been measured, and a global map of the thickness of the lunar crust has been derived from the topography and gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号