首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perennial forage legumes may be pivotal for improving the sustainability of Mediterranean rainfed farming systems. This study summarizes the outcomes of a study aimed at characterizing morphological and agronomic traits of new germplasm of Bituminaria bituminosa and B. morisiana in Mediterranean environments. Five B. morisiana and three B. bituminosa native populations were evaluated in a small‐plot field experiment in Sardinia (Italy) and compared with seven Spanish accessions of B. bituminosa. The two Bituminaria species differed greatly in morphological traits and the beginning of the flowering stage, and remarkable variations between species were found for forage production and its seasonal distribution, seed yield and persistence. Average cumulative dry‐matter yield was higher in B. bituminosa than in B. morisiana (+7.6%; 297 vs. 276 g per plant). Average 3‐year seed production varied greatly between accessions (from 0.3 to 141 g per plant). Differences for these traits were also found between Sardinian and Spanish germplasm of B. bituminosa. Four clusters were generated by K‐means clustering. Accessions included in cluster III exhibited a positive combination of favourable forage production, high seed yield and satisfactory persistence. Nonetheless, the cluster analysis did not highlight a sharp discrimination between Bituminaria species. The overall results revealed the potential role of Sardinian accessions of B. bituminosa and B. morisiana in extending the forage season and for increased resilience of grasslands in Sardinia and other Mediterranean regions under rainfed conditions.  相似文献   

2.
Acroceras macrum is a warm‐season grass used for pastures, and it has high nutritive value. The scarce genetic and reproductive information about this grass is limiting its breeding for forage. The objective of this research was to determine the number of genotypes and cytotypes present in a collection established in Argentina, and to estimate the diversity of this species based on molecular markers, and morphological and agronomic characteristics. The number of genotypes among forty‐seven accessions was determined using ISSR markers. The identified genotypes were further characterized for ploidy levels. In addition, the genetic distances among them were estimated with ISSR markers. They were also propagated and planted into the field following a randomized complete block design with four replications, and a group of sixteen morphological and agronomic variables were evaluated. A total of twenty‐seven genotypes were identified in this collection; twenty‐two genotypes were tetraploid (2= 4= 36) and five were hexaploid (2= 6= 54). These two cytotypes were found clearly separated by both genetic and phenotypic characteristics. Above‐ground biomass, internode length, initial growth and number of spikelets per inflorescence were the most variable traits. The high diversity present in this collection will allow for the initiation of a breeding programme for A. macrum.  相似文献   

3.
Limited knowledge about the agronomic potential of Paspalum species from the Americas hinders their use in pastures. The response mechanisms to water deficit and waterlogging were studied in five accessions of Paspalum sp. (P. regnellii cv. BRS Guará and BGP 397, P. conspersum BGP 402 and P. malacophyllum BGP 289 and BGP 293) and Urochloa brizantha cv. Marandu. Morphological and physiological traits at the end of the stress and after the recovery period were measured. All Paspalum accessions, especially BGP 289, BGP 402 and BGP 397, and also cv. Marandu, showed survival mechanisms to water deficit. BRS Guará showed adaptive features to waterlogging, although had with a low survival rate to water deficit. Under waterlogging, BGP 289 and cv. Marandu showed reduced growth, and after the recovery period, they presented low plant survival and root recovery. Although growth of BGP 293 was reduced during waterlogging, it presented high tiller survival rate. BGP 293, BGP 402 and BGP 397 showed adaptive potential strategies for waterlogging and water deficit. There is genetic variability among the evaluated accessions for water deficit and waterlogging stresses, suggesting that they may be used per se or as progenitors in crosses with other genotypes in breeding programmes.  相似文献   

4.
The common forage grass Lolium perenne has evolved with the systemic fungal endophyte Epichloë festucae var. lolii. The endophyte provides herbivore resistance to the grass due to defensive alkaloids, some of which are toxic to grazing livestock. In this field study, we determine whether distribution of the endophyte‐grass association changes along a land‐use intensity gradient on 87 managed grasslands in three German regions. Endophyte infections were detected in 66% of the studied sites and infection rates within infected sites ranged from 1% to 95%. Alkaloid concentrations of lolitrem B (vertebrate toxin) exceeded the toxicity thresholds in 50 (14%) of 351 infected plants and of peramine (invertebrate deterrent/toxin) in 12 (3%) of 351 plants. Infection rates and alkaloid concentrations were not significantly affected by land‐use intensity and region, but alkaloid concentrations were higher in summer compared to spring. We conclude that risks for livestock intoxication are currently low, as (i) average alkaloid concentrations per grassland were always below toxicity thresholds and as (ii) none of the grasslands was dominated by L. perenne. We suggest avoidance of grass monocultures in Europe to keep intoxication risks for livestock low; we also recommend regular examination of seeds and grasslands, as seed producers might accidentally distribute infected seeds, and as climate warming might further enhance the distribution of Epichloë endophytes in European grasslands.  相似文献   

5.
Legumes in the Fynbos vegetation of the Western Cape of South Africa have emerged as candidates for domestication, particularly for their adaptation to acidic and infertile soils. However, South African rhizobia have been shown to be very diverse and unique, and a detailed understanding of them is essential to success in forage breeding programs that seek to exploit these “new” legumes. Symbionts of legumes in South Africa that belong to traditional rhizobial genera have been shown to have a unique origin for their symbiotic loci in comparison to members sampled from other regions of the world. Some of the legume tribes in the Fynbos have also been shown to associate predominantly with unique species in the Betaproteobacterial genus Paraburkholderia. The rhizobial members of this genus have two main centres of diversity, of which South Africa is one. In this centre, the legume hosts are principally from the Papilionoideae subfamily while hosts from the mimosoid clade (now in the Caesalpinioideae) are abundant in the South American centre. Not only do these rhizobia differ in terms of host, but their symbiotic loci also show separate origins. The dominance and uniqueness of the Paraburkholderia symbionts, in the context of indigenous South African legumes, makes understanding the history and factors that affect the distribution of this genus essential if successful adaptation and effective nodulation of these legumes in Agriculture are to be achieved globally.  相似文献   

6.
Screening of natural biodiversity for the better quality traits are of prime importance for quality breeding programs. The objective of this investigation was to select candidate accession of bean having high concentrations of protein as well as macro and micro minerals with good cooking quality for use as parents in breeding programme for these compounds. Thirty-five accessions of bean (Phaseolus vulgaris L) were field grown and their seeds were analyzed for their cooking quality and nutritional composition. Wide variations were observed in most of the measurements e.g. protein (18.7–26.2%), iron (79.4–137.6 ppm) and hardness after cooking (4.65–9.88 Kg) suggesting that there are considerable levels of genetic diversity. Across all accessions the concentration of potassium was negatively correlated with protein (r = −0.43, P < 0.05). Concentrations of protein was significantly greater in accessions VIII, XIII and XIX compared to other accessions analyzed. Iron concentrations were greatest (137 ppm) in XIX and lowest (79 ppm) in XXVII. Lines with less cooking time were line III, X, XXVI, XXX and XXXI. Bean line XIX contains high protein (24.9%) with high zinc (33.3 ppm) and highest iron (137.6 ppm), but it has high hardness after cooking (7.32 kg). Four clusters were computed by cluster analysis that explained quite a good variation in the traits. The great variability for these attributes suggests that these selected accessions may be useful as parents in hybridization programs to produce bean with value-added traits. This information was also potentially useful for pulse breeders working on the development of new varieties.  相似文献   

7.
Bromus auleticus is known for its qualities as forage but its domestication has limitations relating to seed production technology and farm‐scale seed propagation. The effect of different combinations of population on the reproductive success and seed germination of a relict population of Argentina was studied. The tests used a population of Santa Fe (SF) as the recipient of pollen and three populations as donors (LP: La Pampa, ER: Entre Ríos and BA: Buenos Aires). Reproductive success was determined in plants from five pollination treatments: (i) (SFxSF), (ii) LP, (iii) ER, (iv) BA and (v) mixture of donor. Three temperature conditions were evaluated for germination: (i) 15°C, (ii) 28°C and (iii) alternating 15–28°C (12 h each). There were significant differences in reproductive success depending on the source of pollen. Seeds obtained from new genotypic combinations did not increase their weight in relation to the pollen donor. Germination behaviour was more affected by extrinsic factors (temperature) than by their genetic origin. However, under non‐optimal germination conditions, seeds originating from new genotypic combinations showed a significant increase in germination percentage and germination rate. This work contributes additional knowledge to previous studies regarding the effect of pollen quality limitation on seed production and quality of B. auleticus. The results confirm the hypothesis that a mixture of genotypes from a diverse origin increases the quantity of flowers that become fruits and seed quality, which is of great importance to improved seed production and field establishment of B. auleticus.  相似文献   

8.
Dry grasslands are endangered habitats across Europe, and their restoration requires increasing attention, including their re‐creation on arable land. We studied spontaneous colonization by eleven target species on thirty‐five dry grassland sites restored with regional seed mixtures 1–13 years ago in the eastern part of the Czech Republic, a region where species‐rich dry grasslands often occur in the vicinity of the restored grasslands. Occurrence of the target species (not sown in the restored grasslands) was quantified inside and outside each restored grassland up to distances of 100 and 500 m, and the distance to the nearest population outside was assessed. Data were processed using univariate (Spearman rank‐correlation coefficient, generalized linear models) and multivariate (redundancy analysis) statistics. The establishment of all target species was closely related to their occurrence in the surroundings. Occurrence of species at a distance of up to 500 m, minimum distance to the nearest population and time since start of restoration significantly influenced the occurrence of all the species in the restored grasslands, while distance up to 100 m influenced all except two species. The most successful were wind‐dispersed Cirsium canum and Inula salicina and, the least successful was the myrmecochorous Euphorbia virgata. Seeding regional seed mixtures may be considered an appropriate first step in the restoration of species‐rich grasslands on arable land. Following diversification of the vegetation in restored grassland, spontaneous establishment of additional species may occur if the species occur in the vicinity. Results are discussed in the context of grassland restoration and agri‐environmental objectives.  相似文献   

9.
In arid, semi‐arid and dry subhumid regions, which represent ~ 41% of the Earth's land surface, desertification and soil degradation are very frequent, leading to low soil fertility and productivity. In these regions, revegetation with locally adapted native species may aid in ameliorating desertification processes. Trichloris crinita is a C4 perennial grass native to arid and semi‐arid regions of the American continent. Its good forage quality, drought tolerance, resistance to trampling and grazing, and rapid growth and competing aggressiveness among other native species warrant its use as forage and for revegetation purposes. In the last decades, many studies have revealed broad intraspecific genetic variation for ecophysiological, morphological, biomass production, nutritional quality (as forage) and adaptive stress response‐related traits. Also, results from field trials evaluating T. crinita genotypes as forage and for restoration of degraded areas suggest great potential for—and have encouraged—its utilization under different habitats and environmental conditions. In this integrative review, we compiled and discussed the most relevant research data regarding T. crinita, focusing on aspects and traits that influence its utilization both as forage and in rehabilitation of degraded lands. Challenges and prospects towards the improvement of this species in breeding programmes with specific goals are discussed.  相似文献   

10.
Sainfoin is a non‐bloating temperate forage legume with a moderate‐to‐high condensed tannin (CT) content. This study investigated whether the diversity of sainfoin accessions in terms of CT structures and contents could be related to rumen in vitro gas and methane (CH4) production and fermentation characteristics. The aim was to identify promising accessions for future investigations. Accessions differed (P < 0·0001) in terms of total gas and CH4 productions. Fermentation kinetics (i.e. parameters describing the shape of the gas production curve and half‐time gas production) for CH4 production were influenced by accession (P ≤ 0·038), but not by PEG. Accession, PEG and time affected (P < 0·001) CH4 production, but accession and PEG interaction showed only a tendency (P = 0·08). Increase in CH4 due to PEG addition was not related to CT content. Further analysis of the relationships among multiple traits (nutritional composition, CT structure and CH4 production) using principal component analysis (PCA) based on optimally weighted variables revealed differences among accessions. The first two principal component axes, PC1 (57·6%) and PC2 (18·4%), explained 76·0% of the total variation among accessions. Loading of biplots derived from both PCAs made it possible to establish a relationship between the ratio of prodelphinidin:procyanidin (PD:PC) tannins and CH4 production in some accessions. The PD:PC ratio seems to be an important source of variation that is negatively related to CH4 production. These results suggested that sainfoin accessions collected from across the world exhibited substantial variation in terms of their effects on rumen in vitro CH4 production, revealing some promising accessions for future investigations.  相似文献   

11.
White lupin requires grain yield improvement to realize its potential as a high-protein grain crop. Some 121 entries representing 13 germplasm pools (11 landrace pools from European countries and from regions of North and East Africa, West Asia and Atlantic islands, and one winter-type and one spring-type variety pools) were evaluated in three major agroclimatic conditions, i.e., Mediterranean and subcontinental climate in Italy under autumn sowing and suboceanic climate in France under spring sowing, with the aim to assess: (i) the variation among and within germplasm pools for grain yield and 13 major morphophysiological traits; (ii) the impact of evaluation environments on entry characteristics; and (iii) the relation of wide- and specific-adaptation responses with morphophysiological traits. Indications on top-yielding genetic resources, entry morphophysiological traits and association of these traits with grain yield were largely environment-specific. Germplasm pools summarized a fairly high portion of genotypic and genotype × environment (GE) interaction variation, indicating their usefulness as a criterion for locating genetic resources with specific characteristics. Adaptive responses of germplasm pools and individual entries, modeled through Additive Main effects and Multiplicative Interaction analysis, highlighted the outstanding agronomic value for specific agroclimatic conditions of a few landrace germplasm pools in comparison with variety pools. Overall within-pool diversity for morphophysiological traits and adaptive response was largest in the landrace pools from Italy, Turkey, East Africa and West Asia. Only flowering time and individual seed weight exhibited high genetic correlations between environments for entry response, suggesting caution in inferring accession characteristics from evaluation data obtained in environments very different from those targeted by possible germplasm users. Optimal flowering time was early in the spring-sown environment, intermediate in the Mediterranean environment, and late (associated with winter survival) in the subcontinental-climate environment. Owing to the association of phenology with several other traits, germplasm ordination for adaptation pattern and for overall morphophysiological variation were very similar. Pod fertility emerged among the seed yield components because of its correlation with grain yield in each environment combined with fairly low GE interaction. Beside contributing to the ecogeographic classification of landrace germplasm, our results can support breeding programs of Europe and Mediterranean-climate regions in defining useful genetic resources, adaptation strategies and adaptive traits. Genetic resources from Madeira & Canaries (high-yielding across environments), Italy (featuring high adaptive and morphophysiological diversity) and a few other regions are of special interest for breeding in targeted definite agroclimatic conditions.  相似文献   

12.
In the UK, upland hay meadows (Anthoxanthum odoratum–Geranium sylvaticum grassland) with high plant biodiversity are rare and confined to submontane areas of northern England. We report results from a 5‐year experiment to test suggestions that recent biodiversity declines were attributable to increased sheep‐stocking density and a longer spring stocking period, thus delaying the shut up date for the growth of the hay crop. Longer stocking periods and higher stocking densities decreased the forage mass at 8 July, but they increased herbage N content and digestibility, reduced plant species diversity and reduced populations and seed production of Rhinanthus minor. Compared with unstocked swards, the similarity of the vegetation to Anthoxanthum odoratum–Geranium sylvaticum grassland was reduced by 16·9% when stocking with sheep continued until 27 May each year, and by 8·3% when sward heights were maintained at 3 cm compared with 5 cm. Increased mean sward height and height of R. minor were positively correlated with accumulated temperatures. Results support suggestions that recent reductions in the nature value of these grasslands might be a consequence of high stocking densities persisting until later in the spring, carried out during a 1‐year period with warmer temperatures.  相似文献   

13.
Plains rough fescue ( F estuca hallii) is an important forage grass species in western Canada. Seed for use in pastures and ecological restoration is in high demand but supply is limited because F. hallii is an erratic seed producer. Seed producers require an understanding of the factors that influence flowering and seed set in this species. The aim of this study was to assess the effect of irrigation and nitrogen fertilization on the flowering and growth of F. hallii in a native rough fescue prairie in Alberta, Canada. Irrigation had a strong positive effect on seedhead density, whereas fertilization had limited effects on growth and reproduction of F. hallii. These results demonstrate that under field conditions, available moisture is likely to be a key factor driving flowering and seed production in F. hallii.  相似文献   

14.
Dandelion (Taraxacum officinale agg.) is a common forb species in grasslands in Europe. Although sometimes regarded as a valuable forage herb, it may become a weed, especially in arable land. There is limited information on the response of Taraxacum to long‐term grassland management practices. Therefore, we analysed cover and dry‐matter standing biomass of Taraxacum in a long‐term (1998–2012) grazing experiment on an Agrostis capillaris grassland. The following treatments were laid out on formerly abandoned grassland: (i) intensive grazing (IG); (ii) extensive grazing (EG); (iii) first cut followed by intensive grazing (ICG); (iv) first cut followed by extensive grazing (ECG); and (v) unmanaged grassland (U). During the first 10 years, all defoliation treatments (i–iv) supported the presence of Taraxacum, and the lowest proportion was recorded in the unmanaged treatment (U). During the final 7 years of the study, combined cutting and grazing promoted Taraxacum cover more than that of grazing only (ICG > IG > ECG > EG). Cover of Taraxacum was negatively affected by increasing sward height where Taraxacum plants had lower fitness. Due to the relatively strong relationship between percentage cover of Taraxacum and its dry‐matter biomass, percentage cover could be used as a simple method for the assessment of biomass of Taraxacum in a sward. Results are discussed in the context of adapting the management of A. capillaris grassland as a simple method for control of Taraxacum abundance, particularly in situations of extensification or abandonment.  相似文献   

15.
This is the first report on the effect of light intensity and plant growth‐promoting rhizobacteria (PGPR) on the growth of a tropical forage grass, being a relevant study to improve pasture management in conventional farming and integrated crop‐livestock‐forestry systems. In this study, our aim was to evaluate the effects of light intensity and Burkholderia pyrrocinia and Pseudomonas fluorescens inoculation on Brachiaria brizantha cv. BRS Piatã growth, and phenotypic plasticity to shade. The experiment was conducted in a semi‐controlled environment. Seedlings of B. brizantha were allocated to full sun and shade. P. fluorescens and B. pyrrocinia were inoculated individually or co‐inoculated by soil drench, 14 days after seedling emergence. We evaluated morphogenesis, structural and growth parameters. Irrespective of the light regime, co‐inoculated plants had greater leaf area and SPAD index (chlorophyll content). Increase in total biomass production in co‐inoculated plants was over 100% and 300%, under full sun and shade respectively. Co‐inoculated P. fluorescens and B. pyrrocinia increased shade tolerance in B. brizantha, improving plant performance. Co‐inoculation promoted growth in B. brizantha under both sun and shade, indicating its potential as a bio‐fertilizer in conventional and integrated systems, especially in silvopastoral systems, where light availability to pasture growth may be limited.  相似文献   

16.
Jacobaea aquatica (=Senecio aquaticus, Asteraceae), marsh ragwort, grows regionally in low management intensity wet grasslands in various European countries. The plant can be regarded as a noxious weed as it contains pyrrolizidine alkaloids (PAs), which cause health problems in livestock. In the Waldviertel region of Northern Austria, marsh ragwort has established dense populations as the fertilizing and production intensity of the meadows changed during the last decades. Ragwort biomass production and alkaloid concentration in J. aquatica were recorded during three consecutive years at three sites to study the effects of two treatments: cutting twice a year either early in June plus September, or in July plus August, respectively. Six PAs (Z‐erucifoline > senecionine > integerrimine > seneciphylline > acetyl‐erucifoline and acetyl‐seneciphylline) were evaluated. The alkaloid contents were highest in July and August when 600–1,400 mg/kg dry matter (DM) total PAs occurred in most ragwort samples. Consequently, the forage can easily be contaminated with 40–80 mg/kg DM of PAs and may present a health risk for domestic animals and also affect human health as these alkaloids are transferred into milk.  相似文献   

17.
Alpine bluegrass (Poa alpina L.) is common in mountain areas, where it represents a valuable forage resource and is widely used for ecological restoration of disturbed landscapes. This study assessed the variation of germplasm from the Rhaetian Alps, Italy. Both seed production and morphology were examined for potential use in restoration projects and for conservation and selection purposes of local genetic resources. The effects of the ex situ growing site were also assessed in two altitude‐contrasting sites. Individual populations harboured great phenotypic diversity for all traits, including seed yield, while variation among valleys of origin was less manifest. Noticeable site‐specific population yield responses were observed, suggesting that the environment adopted for seed production may steer the choice of materials to be multiplied. The longer vegetative period in the lowland site, combined with environment‐tailored agronomic practices, contributed to better plant growth, seed yield and survival compared to the mountain site, suggesting that seed production of this Alpine species could be feasible in a lowland environment when adequate inputs were provided. One valley (Valchiavenna) displayed high average levels of seed yield and plant vigour across growing sites, indicating its possible value as a source of germplasm suitable for resowing at high altitude.  相似文献   

18.
《Field Crops Research》1998,59(1):43-52
Several Brachiaria species are the most widely grown forages in tropical America. A field study was conducted during two seasons (1994, wet and 1995, dry) in a medium-textured Oxisol at Carimagua, Colombia. The main objective of the study was to evaluate genotypic variation in plant attributes for tolerance to low fertility, acid soil stress conditions (pH 4.9) among germplasm accessions and genetic recombinants of Brachiaria. The entries included 43 genetic recombinants selected from a breeding population, four parental accessions and an additional eight germplasm accessions. Small amounts of fertilizer were applied at establishment (kg ha−1: 40 N, 20 P, 20 K, 14 Ca, 12 Mg and 12 S). A number of plant attributes including forage yield, leaf area, shoot nutrient composition and shoot nutrient uptake were measured during both seasons. Significant genetic variation was observed in several plant attributes such as leaf area, shoot nutrient content, nutrient partitioning to leaves, shoot nutrient uptake, and forage yield in both seasons. Forage yield ranged from 59 to 343 g plant−1 in the wet season and 5 to 174 g plant−1 in the dry season. Correlation between forage yield and shoot nutrient uptake indicated the importance of nutrient acquisition, particularly of phosphorus (r=0.90; P<0.0001), for adaptation to infertile acid soil stress. Two genetic recombinants (BRN093/3009, FM9201/1873) were productive when grown under infertile acid soil stress in both wet and dry seasons. But, neither of these two recombinants is highly resistant to xylem-feeding insects known as spittlebugs (Homoptera: Cercopidae). One spittlebug-resistant genetic recombinant (BRN093/1371) exhibited several desirable attributes such as superior leaf area and leaf biomass, greater N content in leaves, and greater partitioning of N and P to leaves that could contribute to adaptation and persistence in these soils. This recombinant is being utilized in a breeding program to develop superior Brachiaria lines.  相似文献   

19.
In forage grasses, vegetative and reproductive investments are major determinants of yield and persistence. A survey of the diversity of vegetative and reproductive investment traits was carried out on 213 perennial ryegrass genotypes, representing 51 natural European accessions. Plants were phenotyped for traits related to leaf elongation, tillering, reproductive investment and heading date, at two locations with markedly different climates. Strong genetic effects for all traits were found. Interactions between genotype and location were moderate. Plants showed stronger spring leaf growth, lower numbers of tillers and higher reproductive investments at Lusignan (France) than at Melle (Belgium). Plant growth rate and tillering capacity were genetically nearly independent suggesting breeding for both traits simultaneously and independently should be possible. A high genetic diversity was observed for all traits. This diversity was structured in three main clusters. One cluster comprised early‐flowering genotypes with high reproductive investments and high spring growth rates. The remaining genotypes fell into two clusters based on differences in tillering capacity. Clear links were found between traits and the climatic conditions of the region of origin of the accessions. Autumn growth rate was positively correlated with solar radiation at the region of origin in October and February.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号