首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The objective of this study was to obtain beta-lactoglobulin (beta-lg) gels at very low protein concentrations using a new multistep Ca(2+)-induced cold gelation process. In the conventional cold gelation process, salt free beta-lg solutions were heated at neutral pH, cooled, and cross-linked by adding salts. In our new process, first, long linear beta-lg fibrils were formed at pH 2. Solutions of these fibrils were cooled, and subsequently, the pH was adjusted to 7 or 8. Transmission electron microscopy studies showed that the long linear fibrils formed at pH 2 were stable when the pH was adjusted to 7 or 8. In the final step, the fibrils were cross-linked using CaCl(2). Using rheological measurements, the critical percolation concentration was determined. In the new multistep cold gelation process, the critical percolation concentration was an order of magnitude lower than in the conventional cold gelation method.  相似文献   

2.
The effect of hydrocolloids addition (0, 25, or 1.5 g/100 g of flour) on water absorption of flour and their influence on dough rheology were analyzed. The influence of guar gum (GG), xanthan gum (XG), high‐methoxyl pectin (P), locust bean gum (LBG), and a 1:1 mixture of locust bean gum and xanthan gum (LBG+XG) on water absorption was tested by different techniques including farinograph water absorption, water imbibing capacity, SDS sedimentation test, and sucrose solvent retention capacity. The rheological behavior was analyzed through the farinograph parameters and texture profile analysis (TPA). Principal component analysis (PCA) was applied to evaluate the behavior of the different mixtures. Absorption values obtained by different methods were increased by XG and LBG+XG addition, particularly at the highest levels (1–1.5%). Flour‐P mixtures showed the lowest absorption. GG‐added mixtures led to the more stable doughs and P to the less stable ones. Addition of NaCl increased stability in all cases. According to TPA, softer and less cohesive doughs than control were obtained when hydrocolloids were added, both in conditions of water availability and water restriction (except for XG and GG at the highest levels). However, when enough water was added, more variation in textural attributes among doughs could be observed by PCA. No remarkable differences compared with the control were observed in the gluten network, as evaluated by scanning electron microscopy. Hydrocolloid incorporation led to rheological changes in dough; the trend and degree of this effect was affected by the amount of water added and the structure and concentration of the hydrocolloid.  相似文献   

3.
Waxy hull-less barley (HB) starches containing 0 or 5% amylose were cross-linked with phosphorus oxychloride and the cross-linked starches were hydroxypropylated with propylene oxide. For comparison, waxy corn and potato starches were similarly modified. For all starches, cross-linking inhibited granule swelling and prevented swollen granules from disintegration, resulting in dramatic improvement in pasting properties and tolerance to cooking shear and autoclaving. Cross-linked waxy HB starches were more tolerant to cold storage and cooking shear than cross-linked waxy corn starch. Hydroxypropylation of the cross-linked starches reduced granule crystallinity and gelatinization temperature, and improved granule swelling, paste clarity, and freeze-thaw stability. The double-modified waxy HB starches showed higher cold tolerance than similarly modified waxy corn and potato starches, as judged by freeze-thaw stability and clarity after cold storage. These results indicated that the cross-linked and double-modified waxy HB starches together may have a wide range of food applications. This study indicated that the behavior of granule swelling and disintegration of swollen granules played an important role in governing paste viscosity, clarity, and freeze-thaw stability of waxy HB starches.  相似文献   

4.
Cellulosic fiber gel substances were prepared from maize hulls by chemically and physically treating the pericarp cell‐wall substrate in a multistage process to disintegrate morphological cellular structure. Thermal alkaline degradation was used with impact shear in the first stage, followed by alkaline peroxidation and shear in the second stage. The degradation products were removed in the liquid supernatants at each stage. The maize fiber gels are characterized by high viscosities and hydration capacities. After drying, they can be reconstituted to the original gel form by using shear forces. The fiber gels were also dried together with hydrophilic materials to more easily reconstitute the gel form. The alkaline‐extracted hemicellulose effluents from the fiber gel preparation, including the second stage peroxidized extract, were purified and used as hydrophilic material. Oat flour hydrolyzate, an amylodextrin, also was used as a hydrophilic material. The physical properties of the gels were characterized by scanning electron microscopy and rheological evaluations.  相似文献   

5.
Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and the development of elastic modulus of Spirulina protein gels. This is also attributed to the strong temperature dependence of hydrophobic interactions. The aggregation, denaturation, and gelation properties of Spirulina algal protein isolate are likely to be controlled from protein-protein complexes rather than individual protein molecules.  相似文献   

6.
The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0-0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0-0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel-Bulkley model; the Herschel-Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion.  相似文献   

7.
Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.  相似文献   

8.
A detailed study of the rheological behavior of pectin gels, in the presence of aroma compounds in food concentration is reported. In high methoxylated pectin (HMP) gels, it has not yet been shown if aroma compounds can be responsible for modifications in rheology. Two rheological techniques were used to measure the impact of aroma substances on rheological properties of HMP-based systems. Maximum strain to fracture (sigma F) was compared between flavored and unflavored gels on stress-displacement curve, which was obtained with uniaxial compression until fracture. An oscillatory rheometer was applied to determine the gelation time (Tgel). It appeared that all the aroma compounds studied increased significantly sigma F. It is generally acknowledged that hydrophobic interactions are the main interactions leading to HMP gelation, and the more hydrophobic interactions there are, the higher the sigma F. It is assumed that esters might increase sigma F through the increase of hydrophobic interactions in HMP network. For solvents (ethanol, propylene glycol), a cosolute effect could explain the increase in firmness for HMP-based gels.  相似文献   

9.
Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery.  相似文献   

10.
We identified the contribution of covalent and noncovalent interactions to the scaling behavior of the structural and rheological properties in a cold gelling protein system. The system we studied consisted of two types of whey protein aggregates, equal in size but different in the amount of accessible thiol groups at the surface of the aggregates. Analysis of the structural characteristics of acid-induced gels of both thiol-blocked and unmodified whey protein aggregates yielded a fractal dimension (2.3 +/- 0.1), which is in line with other comparable protein networks. However, application of known fractal scaling equations to our rheological data yielded ambiguous results. It is suggested that acid-induced cold-gelation probably starts off as a fractal process, but is rapidly taken over by another mechanism at larger length scales (>100 nm). In addition, indications were found for disulfide cross-link-dependent structural rearrangements at smaller length scales (<100 nm).  相似文献   

11.
Starches of wheat, corn, smooth and wrinkled peas, and chickpeas were modified to a free‐flowing powder of granular cold‐water gelling (GCWG) starch using liquid ammonia and ethanol at 23°C and atmospheric pressure. Amylose content of starches was 26.3% in wheat, 27.1% in corn, 35.4% in chickpeas, 43.2% in smooth peas, and 79.9% in wrinkled peas. The modified starches remained in granular form with an increased number of grooves and fissures on the surface of the granules compared with native starch, while the crystallinity was mostly lost, as shown by X‐ray diffractograms and DSC endothermic enthalpies. Pasting viscosity of modified starches at 23°C was 171 BU and 305 BU in wheat and corn, respectively, and much higher in legume starches, ranging from 545 BU to 814 BU. Viscosities of modified legume starches at 23°C were at least twice as high as those of native starches determined at 92.5°C. Swelling power of modified starches at 23°C ranged from 8.7 g/g to 15.3 g/g, while swelling power of native starches heated to 92.5°C ranged from 4.8 g/g to 16.0 g/g. GCWG starches exhibited higher dextrose equivalent (DE) values of enzymatic hydrolysis, ranging from 25.2 to 27.0 compared with native starches (1.5–2.9). Modified starches from wheat, corn, smooth peas, and chickpeas formed weak gels without heat treatment and experienced no changes in gel hardness during storage, while native starch gels formed by heat treatment showed an increase in hardness by 1.1–7.5 N during 96 hr of storage at 4°C.  相似文献   

12.
Third‐generation snacks obtained by microwave expansion of glassy cereal pellets are often hard and nonuniform and need to be improved to become acceptable to the consumer. Gums such as carboxymethyl cellulose (CMC) and xanthan gum (XG) have the ability to improve the volume, structure, and texture of expanded cereal products, due to their effects on moisture retention and rheological properties. This study investigates the effect of 1% addition of CMC and XG on the structural and mechanical properties of samples obtained by microwave expansion of glassy corn pellets. Unexpanded, glassy pellets were obtained by extrusion and subsequent equilibration at aw = 0.53 at room temperature. The equilibrated pellets were expanded by microwave heating. The addition of gums significantly improved the shape, structural and textural uniformity of the microwave‐expanded samples. These effects were attributed to the contribution of gums to the rheology and moisture sorption capacity of the matrix. It is our hypothesis that the extended hydrocolloid macromolecules interpenetrated the polymeric starch matrix and created a fine network of “holes” distributed relatively uniformly in the matrix, which served as additional nucleation sites for expansion. The conclusions of this study can be used in the design of high‐quality, fat‐free, third‐generation snacks.  相似文献   

13.
Starch‐lipid composites are a new category of fat replacers. The physicochemical properties of reconstituted corn starch and soybean oil composites (CSSBOC) were evaluated and compared with the properties of reconstituted jet‐cooked corn starch (JCCS). Gel firmness, thermal properties, and hot pasting properties at two pH levels and two oil content levels were studied. Amylose content of CSSBOC was unaffected by processing. Buffer pH significantly affected the firmness of the gels made with JCCS. Gels appeared to have a more ordered structure and were firmer at pH 3.4 than at pH 6.0. The firmness of gels made with CSSBOC was not affected by pH or oil content. Retrogradation enthalpy of the gels made with JCCS was significantly affected by pH. Differences in the thermal characteristics of gels made with CSSBOC were attributed to pH and oil content. Peak viscosity, cold paste viscosity, and breakdown viscosity changed significantly when CSSBOC pastes were reconstituted in different pH buffers. Only hot paste viscosity and cold paste viscosity changed significantly when JCCS pastes were reconstituted in different pH buffers. Results establish critical parameters for processing decisions and for the understanding of the behavior of CSSBOC in food system models in which pH is an important factor.  相似文献   

14.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel.  相似文献   

15.
Barley and oat β‐glucans of low viscosity form reversible gels when prepared in sufficiently high concentrations. Solutions of three barley β‐glucan gums differing in molecular weight and thus in viscosity were prepared at 1.0, 2.5, or 5.0% (w/w) concentration levels. Medium‐ and high‐viscosity gums were prepared in a pilot plant (PP) and laboratory (LAB), respectively. Low‐viscosity (LV) gum was extracted in the laboratory at pH 7, which allowed for native enzymatic activity and decreased molecular weight. Network formation was monitored overnight through changes in storage (G′) and loss (G″) moduli. The strength of the formed network was determined from oscillatory rheological measurements by increasing the strain from 2 to 100%. Findings demonstrate that gelation of β‐glucan is molecular weight dependent and practically an instantaneous process for low‐viscosity gum solutions at concentrations of ≤5% gum (or ≤4% β‐glucan), levels lower than previously anticipated. The purity of β‐glucan also seems to affect gelation rate. Better understanding of the β‐glucan gelation behavior is important for its functionality in both food product applications and physiological mechanisms of its health benefits.  相似文献   

16.
The rheological properties of kappa-carrageenan helices dispersed in an aqueous medium, which prevents aggregation of helices, were investigated. A dispersion of 1.5% w/w nonaggregated kappa-carrageenan helices exhibited gel-like dynamic mechanical spectra at 20 degrees C; that is, the storage modulus G' predominated over the loss modulus G' ' in the entire frequency range examined (0.5-100 rad/s). However, the observed slight frequency dependence of the moduli and the relatively large value of tan delta (= G' '/G' > 0.1) were typical of so-called weak gels. The magnitude of G' of the kappa-carrageenan weak gels was less than that of conventional gels formed by 0.15% w/w kappa-carrageenan in an aggregating condition at 20 degrees C. Under large deformation, enough for the conventional gels to rupture, the weak gel systems flowed but never ruptured, suggesting that the weak gel-type rheological properties of the kappa-carrageenan dispersions were due to a sufficiently long relaxation time of topological entanglements among double-helical conformers but not due to the formation of a three-dimensionally percolated permanent network.  相似文献   

17.
In this paper the determination of the physical/rheological characteristics is described for a series of commercial galactomannans of which the structural details have been reported previously. Both solubility of the galactomannans and rheological properties of galactomannan solutions and galactomannan/xanthan mixtures were determined. Using a statistical analysis approach an attempt was undertaken to recognize correlations between structural and rheological data. The best correlation found was between the abundance of galactose substituents at a regular distance (type of galactomannan) and the storage modulus (G') of mixed galactomannan/xanthan gels, underscoring the hypothesis that branching hinders the formation of a network with xanthan gum. Also, the G' for the group of locust bean gums correlated with the degree of blockiness, that is, the size and occurrence of nonsubstituted regions on the mannose backbone. In addition, galactomannans displayed an apparent decrease in gelling ability with increasing average molecular weight. That G' also relates to the type of galactomannan can therefore partly be attributed to differences in average molecular weight for the various galactomannan types. However, within the series of locust bean gums tested, also an increase of G' with molecular weight was observed. This can be explained by the decreasing number of loose ends of the polymers and the concomitant increasing efficiency in network participation with increasing molecular weight.  相似文献   

18.
The primary objective for this study addressed the effects of supplemental calcium on the functional properties of a modified whey protein ingredient (mWPC), prepared by acidification to pH 3.35, followed by extended heat treatment, gelation, and spray drying. In the presence of added calcium (mWPC-Ca2+), protein solutions showed increased thickening capacity, especially under refrigeration temperatures, compared to dispersions made with mWPC alone. A rheological assessment included the determination of (i) power law parameters, (ii) viscoelastic properties, and (iii) the effects of heating and cooling on these protein systems. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) banding profile suggested that various disulfide-linked molecular forms of beta-lactoglobulin, bovine serum albumin, and immunoglobulin were likely formed during manufacturing of the mWPC ingredient based on the patterns obtained when electrophoresis was performed in the absence of beta-mercaptoethanol compared to those observed with commercial WPC samples. An enhanced water-holding capacity was measured in mWPC-Ca2+ dispersions. Differential scanning calorimetry established that the addition of calcium salts caused a 2-fold increase in the amount of bound or unfreezeable water compared to mWPC controls. The physical appearance of the network structure varied significantly upon visualization with scanning electron microscopy, in which case the formation of large, rounded, spherical structures was noted in mWPC-Ca2+ samples, ascribed to an increased surface tension caused by the higher salt content. Ultimately, such attributes may afford distinct advantages for whey-based ingredients intended for application within food systems, especially under cold processing conditions.  相似文献   

19.
The dielectric behavior of native and heat-denatured ovalbumins (OVAs) from three avian species in aqueous solution was examined over a frequency range of 100 kHz to 20 GHz, using the time domain reflectometry (TDR) method. For the native OVA solutions, three kinds of relaxation processes were observed at around 10 MHz, 100 MHz, and 20 GHz, respectively; these could be assigned to the overall rotation of protein molecules, the reorientations of the bound water, and the free water molecules, respectively. For the heat-denatured samples, three relaxation processes were also observed. However, the relaxation process at approximately 100 MHz originated via a different mechanism other than the reorientation of bound water, namely, the micro-Brownian motion of peptide chains of heat-denatured protein. From the observed relaxation process at approximately 100 MHz, the relaxation strength of heat-denatured OVA solution for duck was higher than that of OVA solutions for hen and guinea fowl and showed the pH dependency from pH 7.0 to 8.0 for OVAs obtained from all three species. Furthermore, the results demonstrated that the relaxation strength was closely related to surface hydrophobicity of protein molecules and gel rheological properties. It was suggested that the difference in the surface hydrophobicity of protein influenced the dielectric behavior of water around denatured protein, whereas the dielectric behavior of denatured protein could be an indication of the gel rheological properties. Such studies can aid in the understanding of the different network structures of OVA gels from three avian species.  相似文献   

20.
The denaturation, aggregation, and rheological properties of chicken breast muscle myosin, beta-lactoglobulin (beta-LG), and mixed myosin/beta-LG solutions were studied in 0.6 M NaCl, 0.05 mM sodium phosphate buffer, pH 7.0, during heating. The endotherm of a mixture of myosin and beta-LG was identical to that expected if the endotherm of each protein was overlaid on the same axis. The maximum aggregation rate (AR(max)) increased, and the temperature at the AR(max) (T(max)) and initial aggregation temperature (T(o)) decreased as the concentration of both proteins was increased. The aggregation profile of <0.5% myosin was altered by the presence of 0.25% beta-LG. Addition of 0.5-3.0% beta-LG decreased storage moduli of 1% myosin between 55 and 75 degrees C, but increased storage moduli (G') when heated to 90 degrees C and after cooling. beta-LG had no effect on the gel point of > or =1.0% myosin, but enhanced gel strength when heated to 90 degrees C and after cooling. After cooling, the G' of 1% myosin/2%beta-LG gels was about 1.7 times greater than that of gels prepared from 2% myosin/1% beta-LG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号