首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cat that was suspected some insulin resistance was diagnosed as pituitary dependent hyperadrenocorticism from an adrenocorticotropic hormone (ACTH) stimulation test, dexamethasone suppression test and measure of endogenous plasma ACTH concentration. Histopathological examination revealed chromophobe adenoma in pituitary gland and hyperplasia in adrenal cortex.  相似文献   

2.
A presumptive diagnosis of hyperadrenocorticism in dogs can be made from clinical signs, physical examination, routine laboratory tests, and diagnostic imaging findings, but the diagnosis must be confirmed by use of pituitary-adrenal function tests. Screening tests designed to diagnose hyperadrenocorticism include the corticotropin (adrenocorticotropic hormone; ACTH) stimulation test, low-dose dexamethasone suppression test, and the urinary cortisol:creatinine ratio. None of these screening tests are perfect, and all are capable of giving false-negative and false-positive test results. Because of the limitation of these diagnostic tests, screening for hyperadrenocorticism must be reserved for dogs in which the disease is strongly suspected on the basis of historical and clinical findings. Once a diagnosis has been confirmed, the next step in the workup is to use one or more tests and procedures to distinguish pituitary-dependent from adrenal-dependent hyperadrenocorticism. Endocrine tests in this category include the high-dose dexamethasone suppression test and endogenous plasma ACTH measurements. Imaging techniques such as abdominal radiography, ultrasonography, computed tomography, and magnetic resonance imaging can also be extremely helpful in determining the cause.  相似文献   

3.
OBJECTIVE: To evaluate serum 17-hydroxyprogesterone (17-OHP) concentration measurement after administration of ACTH for use in the diagnosis of hyperadrenocorticism in dogs. DESIGN: Prospective study. ANIMALS: 110 dogs. PROCEDURE: Serum 17-OHP concentrations were measured before and after ACTH stimulation in 53 healthy dogs to establish reference values for this study. Affected dogs had pituitary-dependent (n = 40) or adrenal tumor-associated (12) hyperadrenocorticism or potentially had atypical hyperadrenocorticism (5; diagnosis confirmed in 1 dog). In affected dogs, frequency interval and borderline and abnormal serum 17-OHP concentrations after ACTH stimulation were determined. Serum cortisol concentrations were assessed via low-dose dexamethasone suppression and ACTH stimulation tests. RESULTS: In healthy dogs, serum 17-OHP concentration frequency intervals were grouped by sex and reproductive status (defined as < 95th percentile). Frequency intervals of serum 17-OHP concentrations after ACTH stimulation were < 77, < 2.0, < 3.2, and < 3.4 ng/mL (< 23.3, < 6.1, < 9.7, and < 10.3 nmol/L) for sexually intact and neutered females and sexually intact and neutered males, respectively. In 53 dogs with confirmed hyperadrenocorticism, serum cortisol concentrations after ACTH stimulation and 8 hours after administration of dexamethasone and serum 17-OHP concentrations after ACTH stimulation were considered borderline or abnormal in 79%, 93%, and 69% of dogs, respectively. Two of 5 dogs considered to have atypical hyperadrenocorticism had abnormal serum 17-OHP concentrations after ACTH stimulation. CONCLUSIONS AND CLINICAL RELEVANCE: Serum 17-OHP concentration measurement after ACTH stimulation may be useful in the diagnosis of hyperadrenocorticism in dogs when other test results are equivocal.  相似文献   

4.
In Experiment 1, voided urine samples were collected from 12 adult dogs at 0500, 1400, and 2200 hr for 4 days. Cortisol was measured in unextracted urine by radioimmunoassay, creatinine by spectrophotometry, and the cortisol/creatinine ratio (UCCR) was calculated for each sample. There was considerable variation both within and among dogs in UCCR but there was no consistent time of day fluctuation in UCCR. In Experiment 2, these dogs were randomly assigned to 1 of 4 groups. The groups received each of 4 treatments (saline, dexamethasone, ACTH gel, and aqueous ACTH) at 7 day intervals in a Latin square design. All urine was collected from 0 through 8 hr. Blood samples were collected at 20 minute intervals from 0 through 8 hr. Plasma cortisol exposure was determined by quantifying area under the curve (AUC). UCCR measurement was shown to differentiate basal from elevated, but not lowered, cortisol secretion. A positive linear relationship between UCCR and AUC was seen for all treatments except dexamethasone. These results indicate that changes in cortisol secretion are reflected in changes in UCCR, but measurement of UCCR may lack sensitivity to differentiate basal from reduced states of cortisol secretion. In Experiment 3, urine was collected daily before and during induction therapy with o,p′-DDD from dogs with pituitary-dependent hyperadrenocorticism. Successful suppression of the adrenal glands was accompanied by a progressive decrease in UCCR. There was considerable variation in the rate of adrenal suppression.  相似文献   

5.
Pituitary-dependent hyperadrenocorticism was diagnosed in a 14-year-old Arabian mare with chronic weight loss, hirsutism, polyuria, and polydipsia. The mare had a stress leukogram, glucosuria, and consistent hyperglycemia. Plasma glucose concentrations were resistant to suppression by insulin. Plasma cortisol concentrations were within normal limits, but did not respond to dexamethasone suppression and had an exaggerated response to ACTH stimulation. At necropsy, a chromophobe adenoma of the pars intermedia of the pituitary gland was found. The zona fasciculata of the adrenal cortex and the pancreatic islets of Langerhans were hypertrophied. An immunohistologic staining technique was used to demonstrate ACTH-containing neoplastic cells in the pituitary mass. These cells released ACTH and other peptides that initiated the chain of endocrinologic events leading to clinical disease.  相似文献   

6.
A study was designed to evaluate the response of blood cortisol content in dogs tentatively diagnosed as having hyperadrenocorticism by using the combined dexamethasone suppression/ACTH stimulation test procedure. Four groups of abnormal responses were identified in 54 dogs. In group I (14.8% of the dogs with abnormal responses), the only abnormality was partial suppression with dexamethasone (clinically normal dogs suppressed to less than 10 ng/ml). In group II (29.6%), 2 abnormalities were found: partial suppression with dexamethasone and hyperreactivity to the ACTH stimulation test. In group III (typical pituitary-dependent hypercortisolism, 48.1%), 3 abnormalities were found: base-line hypercortisolemia, partial suppression with dexamethasone, and hyperreactivity to the ACTH stimulation test. In group IV (7.4%), 2 abnormalities were found: base-line hypercortisolemia and partial suppression with dexamethasone. Base-line blood cortisol content was normal in 44.4% of the adrenopathic dogs. A normal response to ACTH stimulation was seen in 25.9% of the dogs, and 74.1% of the dogs hyperreacted to the ACTH stimulation test. All of the adrenopathic dogs were found to suppress partially with dexamethasone. Failure to suppress the adrenal gland completely (less than 10 ng/ml) with dexamethasone was the most consistent finding in adrenopathic dogs when using the combined dexamethasone suppression/ACTH stimulation test procedure. It was concluded that the test procedure is feasible, flexible, and convenient for clinical situations. Also, these results suggested that there may be several stages in the negative feedback failure associated with hyperadrenocorticism in dogs.  相似文献   

7.
OBJECTIVE: To evaluate adrenal sex hormone concentrations in response to ACTH stimulation in healthy dogs, dogs with adrenal tumors, and dogs with pituitary-dependent hyperadrenocorticism (PDH). DESIGN: Prospective study. ANIMALS: 11 healthy control dogs, 9 dogs with adrenal-dependent hyperadrenocorticism (adenocarcinoma [ACA] or other tumor); 11 dogs with PDH, and 6 dogs with noncortisol-secreting adrenal tumors (ATs). PROCEDURE: Hyperadrenocorticism was diagnosed on the basis of clinical signs; physical examination findings; and results of ACTH stimulation test, low-dose dexamethasone suppression test, or both. Dogs with noncortisol-secreting ATs did not have hyperadrenocorticism but had ultrasonographic evidence of an AT. Concentrations of cortisol, androstenedione, estradiol, progesterone, testosterone, and 17-hydroxyprogesterone were measured before and 1 hour after i.m. administration of 0.25 mg of synthetic ACTH. RESULTS: All dogs with ACA, 10 dogs with PDH, and 4 dogs with ATs had 1 or more sex hormone concentrations greater than the reference range after ACTH stimulation. The absolute difference for progesterone, 17-hydroxyprogesterone, and testosterone concentrations (value obtained after ACTH administration minus value obtained before ACTH administration) was significantly greater for dogs with ACA, compared with the other 3 groups. The absolute difference for androstenedione was significantly greater for dogs with ACA, compared with dogs with AT and healthy control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs with ACA secrete increased concentrations of adrenal sex hormones, compared with dogs with PDH, noncortisol-secreting ATs, and healthy dogs. Dogs with noncortisol-secreting ATs also have increased concentrations of sex hormones. There is great interdog variability in sex hormone concentrations in dogs with ACA after stimulation with ACTH.  相似文献   

8.
OBJECTIVE: To describe the clinicopathologic characteristics of dogs with hyperadrenocorticism and concurrent pituitary and adrenal tumors. DESIGN: Retrospective study. ANIMALS: 17 client-owned dogs. PROCEDURE: Signalment, response to treatment, and results of CBC, serum biochemical analysis, urinalysis, endocrine testing, and histologic examinations were obtained from medical records of dogs with hyperadrenocorticism and concurrent adrenal and chromophobe pituitary tumors. RESULTS: On the basis of results of adrenal function tests and histologic examination of tissue specimens collected during surgery and necropsy, concurrent pituitary and adrenal tumors were identified in 17 of approximately 1,500 dogs with hyperadrenocorticism. Twelve were neutered females, 5 were males (3 sexually intact, 2 neutered); and median age was 12 years (range, 7 to 16 years). Hyperadrenocorticism had been diagnosed by use of low-dose dexamethasone suppression tests and ACTH stimulation tests. During high-dose dexamethasone suppression testing of 16 dogs, serum cortisol concentrations remained high in 11 dogs but decreased in 5 dogs. Plasma concentrations of endogenous ACTH were either high or within the higher limits of the reference range (12/16 dogs), within the lower limits of the reference range (2/16), or low (2/16). Adrenal lesions identified by histologic examination included unilateral cortical adenoma with contralateral hyperplasia (10/17), bilateral cortical adenomas (4/17), and unilateral carcinoma with contralateral hyperplasia (3/17). Pituitary lesions included a chromophobe microadenoma (12/17), macroadenoma (4/17), and carcinoma (1/17). CLINICAL IMPLICATIONS: Pituitary and adrenal tumors can coexist in dogs with hyperadrenocorticism, resulting in a confusing mixture of test results that may complicate diagnosis and treatment of hyperadrenocorticism.  相似文献   

9.
Spontaneous hyperadrenocorticism in dogs is known to be the result of excessive secretion of adrenocorticotropic hormone (ACTH) by the pituitary gland or excessive autonomous glucocorticoid secretion by an adrenocortical tumor. Here, we report on an 8-year-old German shepherd dog in which ACTH-dependent hyperadrenocorticism was a result of ectopic ACTH secretion and could be related to an abdominal neuroendocrine tumor. Hyperadrenocorticism was diagnosed on the basis of the history, clinical signs, and elevated urinary corticoid/creatinine ratios (UCCRs; 236 and 350 x 10(-6); reference range < 10 x 10(-6)). The UCCR remained elevated (226 x 10(-6)) after three oral doses of dexamethasone (0.1 mg/kg body weight) at 8-h intervals. Ultrasonography revealed two equivalently enlarged adrenal glands, consistent with adrenocortical hyperplasia. Plasma ACTH concentration was clearly elevated (159 and 188 ng/l; reference range 5-85 ng/l). Computed tomography (CT) revealed that the pituitary was not enlarged. These findings were interpreted as indicating dexamethasone-resistant pituitary-dependent hyperadrenocorticism. Transsphenoidal hypophysectomy was performed but within 2 weeks after surgery, there was exacerbation of the clinical signs of hyperadrenocorticism. Plasma ACTH concentration (281 ng/l) and UCCRs (1518 and 2176 x 10(-6)) were even higher than before surgery. Histological examination of the pituitary gland revealed no neoplasia. Stimulation of the pituitary with corticotropin-releasing hormone did not affect plasma ACTH and cortisol concentrations. Treatment with trilostane was started and restored normocorticism. CT of the pituitary fossa, 10 months after hypophysectomy, revealed an empty sella. Hence, it was presumed that there was ectopic secretion of ACTH. CT of the abdomen revealed a mass in the region of the pancreas and a few nodules in the liver. Partial pancreatectomy with adjacent lymph node extirpation was performed and the liver nodules were biopsied. Histological examination revealed a metastasized neuroendocrine tumor. Abdominal surgery was not curative and medical treatment with trilostane was continued. At 18 months after the abdominal surgery, the dog is still in good condition. In conclusion, the combination of (1) severe dexamethasone-resistant hyperadrenocorticism with elevated circulating ACTH levels, (2) definitive demonstration of the absence of pituitary neoplasia, and (3) an abdominal neuroendocrine tumor allowed the diagnosis of ectopic ACTH secretion.  相似文献   

10.
This retrospective study identifies parameters that might separate dogs with hyperadrenocorticism caused by adrenocortical tumors from dogs with pituitary-dependent hyperadrenocorticism. Further, an attempt was made to identify factors that could separate dogs with adrenocortical adenomas from dogs with carcinomas. The records of 41 dogs with hyperadrenocorticism caused by adrenocortical neoplasia were reviewed. The history, physical examination, urinalysis, hemogram (CBC), chemistry profile adrenocorticotrophic hormone (ACTH) stimulation and low dose dexamethasone test results were typical of the nonspecific diagnosis of hyperadrenocorticism. The preceding information on the 41 dogs with adrenocortical tumors was compared with that from 44 previously diagnosed pituitary-dependent hyperadrenocorticoid dogs. There was no parameter which aided in separating these two groups of dogs. Thirty dogs with adrenocortical tumors were tested with a high-dose dexamethasone test and none had suppressed plasma cortisol concentrations 8 hours after IV administration of 0.1 mg/kg of dexamethasone. In 29 of the 41 adrenal tumor dogs, plasma endogenous ACTH was not detectable on at least one measurement (less than 20 pg/ml). The remaining 12 dogs from this group had nondiagnostic concentrations (20-45 pg/ml). Thirteen of 22 dogs (59%) with adrenocortical carcinomas had adrenal masses identified on abdominal radiographs and seven of 13 dogs (54%) with adrenocortical adenomas had radiographically visible adrenal masses. Thirteen of 17 adrenocortical carcinomas (76%) and five of eight adenomas (62%) were identified with ultrasonography. Radiographs of the thorax and ultrasonography of the abdomen identified most of the dogs (8 of 11) with metastatic lesions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A 5-year-old female dog with hyperadrenocorticism was determined to have pituitary-dependent hyperadrenocorticism even though plasma cortisol concentrations were not suppressed after high-dosage dexamethasone administration. The diagnosis was based on a supranormal response of plasma cortisol to ACTH administration and a lack of suppression of plasma cortisol concentration after administration of 0.1 mg of dexamethasone/kg. Although a higher dosage of dexamethasone (1 mg/kg) did not cause suppression of plasma cortisol, plasma ACTH concentrations in the dog were increased above those in clinically normal dogs, supporting a diagnosis of pituitary-dependent hyperadrenocorticism. During treatment with mitotane, the dog became unconscious and died. Necropsy revealed a pituitary tumor that had compressed and displaced the hypothalamus. Although high-dosage dexamethasone suppression tests often are useful in the differential diagnosis of hyperadrenocorticism, a lack of suppression of plasma cortisol does not necessarily exclude pituitary-dependent hyperadrenocorticism.  相似文献   

12.
Twenty-one dogs with hyperadrenocorticism were studied. Six dogs had functioning adrenocortical tumors and 15 had pituitary-dependent hyperadrenocorticism. Each dog was evaluated, using endogenous plasma ACTH, ACTH stimulation, dexamethasone screening, dexamethasone suppression, and combined dexamethasone suppression/ACTH stimulation tests. The ACTH stimulation portion of the combined test was less reliable as a screening test in diagnosing hyperadrenocorticism than was the isolated ACTH stimulation test or the dexamethasone screening test. The dexamethasone suppression portion of the combined test was less reliable in distinguishing dogs with adrenocortical tumors from those with pituitary-dependent hyperadrenocorticism than was the endogenous ACTH or isolated dexamethasone suppression test. The combined test is not recommended for use. The ACTH stimulation test is the recommended screening test because of its diagnostic reliability and its subsequent importance as a base line in determining success of mitotane therapy.  相似文献   

13.
Hyperadrenocorticism in cats: seven cases (1978-1987)   总被引:1,自引:0,他引:1  
Hyperadrenocorticism was diagnosed in 7 cats with concurrent diabetes mellitus. Four cats had pituitary adenoma with bilateral adrenocortical hyperplasia, 1 cat had pituitary carcinoma with bilateral adrenocortical hyperplasia, 1 cat had adrenocortical carcinoma, and 1 cat had adrenocortical adenoma of the left adrenal gland. One year later, adrenocortical adenoma involving the right adrenal gland also was diagnosed in this cat. Clinical signs included polyuria and polydipsia (n = 7), development of pot-bellied appearance (n = 5), dermatologic alterations (n = 5), lethargy (n = 3), weight loss (n = 3), dyspnea/panting (n = 2), and recurrent bacterial infections (n = 2). In 6 cats, the diagnosis of hyperadrenocorticism was established before death on the basis of results of the ACTH stimulation test (n = 3) and the dexamethasone screening test (n = 5). Pituitary-dependent hyperadrenocorticism was differentiated from adrenocortical neoplasia on the basis of results of the dexamethasone suppression test (n = 4), endogenous ACTH concentration (n = 3), results of abdominal radiography and ultrasonography (n = 3), and exploratory celiotomy (n = 1). Four cats died or were euthanatized without treatment attempts. Treatment with mitotane followed by 60Co teletherapy was ineffective in one cat with pituitary adenoma. One cat with pituitary carcinoma died one week after bilateral adrenalectomy. Bilateral adrenocortical adenomas were removed surgically in the affected cat.  相似文献   

14.
Pituitary-dependent hyperadrenocorticism in a cat   总被引:1,自引:0,他引:1  
Pituitary-dependent hyperadrenocorticism was diagnosed in a 9-year-old, male castrated cat that had polyuria, polyphagia, pendulous abdomen, truncal hair loss, congestive heart failure, and insulin-resistant diabetes mellitus. Results of pituitary-adrenal function testing revealed inadequate serum cortisol suppression following dexamethasone administration, exaggerated serum cortisol responses after exogenous ACTH stimulation, and high plasma ACTH concentrations. The pathologic findings of bilateral adrenocortical hyperplasia and a pituitary adenoma that immunostained well for ACTH-related peptides confirmed pituitary-dependent hyperadrenocorticism.  相似文献   

15.
Multiple endocrine neoplasia type 1 was diagnosed in a 12-year-old male crossbred dog. Relevant history included polyuria and polydipsia of four months' duration. Physical examination revealed abdominal enlargement, seborrhoea and polypnoea. Diagnostic tests indicated hypercalcaemia, elevated serum alkaline phosphatase and alanine aminotransferase, an exaggerated response to adrenocorticotropic stimulation of the adrenal gland, lack of cortisol suppression with a low dose dexamethasone suppression test and suppression of cortisol secretion with a high dose dexamethasone test. An enlarged right parathyroid gland was removed surgically and confirmed histopathologically to be a parathyroid adenoma. The pituitary-dependent hyperadrenocorticism was treated successfully with mitotane for 14 months before the patient was euthanased for an unrelated problem.  相似文献   

16.
Seventeen dogs with hyperadrenocorticism were studied. Three dogs had functioning adrenocortical tumors and 14 had pituitary-dependent hyperadrenocorticism. Each dog was evaluated by determining the endogenous plasma ACTH concentration and by performing 4 tests: ACTH stimulation, dexamethasone screening, dexamethasone suppression, and a 6-hour combined dexamethasone suppression/ACTH stimulation test. The combined test was less reliable as a screening test in diagnosing hyperadrenocorticism than was the dexamethasone screening test or the ACTH stimulation test. Compared with the endogenous plasma ACTH concentration, results of the dexamethasone suppression portion of the combined test were less reliable in distinguishing dogs with adrenocortical tumors from those with pituitary-dependent hyperadrenocorticism. It was concluded that the combined test cannot be recommended for use.  相似文献   

17.
Summary

In a 10‐year‐old ovariohysterectomized standard Schnauzer, the finding of dexamethasone‐resistant hypersecretion of cortisol, the results of computed tomography, and elevated plasma concentrations of ACTH suggested the presence of both adrenocortical tumour and pituitary‐dependent hyperadrenocorticism. The dog made an uneventful recovery after bilateral adrenalectomy and remained in good health for 31/2 years with substitution for the induced hypoadrenocorticism. Then the enlarged pituitary caused neurological signs and eventually euthanasia was performed. The surgically excised right adrenal contained a well‐circumscribed tumour of differentiated adrenocortical tissue and in the left adrenal there were two adrenocortical tumours and a pheochromocytoma. The unaffected parts of the adrenal cortices were well developed and without regressive transformation. At necropsy there were no metastatic lesions. The cells of the pituitary tumour were immunopositive for ACTH and had characteristics of malignancy.

The present combination of corticotrophic tumour, adrenocortical tumours, and pheochromocytoma may be called ‘multiple endocrine neoplasia’ (MEN), but does not correspond to the inherited combinations of diseases known in humans as the MEN‐1 and the MEN‐2 syndromes. It is suggested that the co‐existence of hyperadrenocorticism and pheochromocytoma may be related to the vascular supply of the adrenals. Some chromaffin cells of the adrenal medulla are directly exposed to cortical venous blood, and intra‐adrenal cortisol is known to stimulate catecholamine synthesis and may promote adrenal medullary hyperplasia or neoplasia.  相似文献   

18.
The results of adrenocorticotropin (ACTH) stimulation and low-dose dexamethasone suppression tests (LDDST) were evaluated retrospectively in eight dogs with clinical signs of hyperadrenocorticism arising from functional adrenocortical tumours, and compared with the results from 12 dogs with confirmed pituitary-dependent hyperadrenocorticism (PDH). The post-ACTH cortisol concentration in the dogs with adrenocortical tumours ranged from 61 to 345-6 nmol/litre (median 251.5 nmol/litre) and they were within the reference range (150 to 450 nmol/litre) in five and unexpectedly low (< 150 nmol/litre) in three dogs. Both the basal and post-ACTH cortisol concentrations were significantly lower in the dogs with adrenocortical neoplasia than in the dogs with PDH. Eight hours after the LDDST, only two of six dogs with adrenocortical tumours had a cortisol concentration above 30 nmol/litre, and the median resting, three, and eight-hour cortisol concentrations were 31.5, 23.0, and 22.7 nmol/litre respectively. There was no significant cortisol suppression during the LDDST, although interpretation was complicated by the low cortisol concentrations, but two dogs showed a pattern of apparent suppression. Two dogs with adrenal tumours showed a diagnostically significant increase in 17-OH-progesterone concentration in response to ACTH although their cortisol concentrations did not increase greatly. These results differ from previous reports of the response of functional adrenal tumours to dynamic endocrine tests.  相似文献   

19.
The aim of this study was to evaluate the efficacy and safety of aminoglutethimide in the treatment of dogs with pituitary-dependent hyperadrenocorticism (PDH). Ten dogs were diagnosed with PDH based on clinical and laboratory data, adrenal function tests (adrenocorticotropic hormone [ACTH] stimulation test and urinary cortisol/creatinine ratio [UCCR] combined with a high dose oral dexamethasone suppression test) and ultrasonographic evaluation of the adrenal glands. Aminoglutethimide was administered daily at a dose of 15 mg/kg bodyweight for one month. Median basal cortisol concentration and post-ACTH cortisol concentration one month after treatment were significantly lower than pretreatment values. Complete response was achieved in one dog, and partial response was obtained in three dogs. Severe side effects of anorexia, vomiting and weakness occurred in one dog and medication was withdrawn. Two further dogs developed decompensations of concurrent diseases and medication was stopped in these animals as well. Mild toxicity occurred in four dogs. Moderate to severe elevations in liver enzymes occurred in all dogs. The efficacy of this drug is lower than that observed using mitotane and ketoconazole, and adverse effects limit its use. Aminoglutethimide, using the protocol described, cannot be recommended for long-term management of PDH in the dog.  相似文献   

20.
Hyperadrenocorticism in a cat   总被引:2,自引:0,他引:2  
A diabetic cat with hyperadrenocorticism had polydipsia, polyuria, ventral abdominal alopecia, thin dry skin, and a pendulous abdomen. Results of laboratory testing indicated persistent resting hypercortisolemia, hyperresponsiveness of the adrenal glands (increased cortisol concentration) to ACTH gel, and no suppression of cortisol concentrations after administration of dexamethasone at 0.01 or 1.0 mg/kg of body weight. Necropsy revealed a pituitary gland tumor, bilateral adrenal hyperplasia, hepatic neoplasia, and demodicosis. Adrenal gland function was concurrently assessed in 2 cats with diabetes mellitus. One cat had resting hypercortisolemia, and both had hyperresponsiveness to ACTH gel (increased cortisol concentration) at one hour. After administration of dexamethasone (0.01 and 1.0 mg/kg), the diabetic cats appeared to have normal suppression of cortisol concentrations. The effects of mitotane were investigated in 4 clinically normal cats. Adrenocortical suppression of cortisol production occurred in 2 of 4 cats after dosages of 25, 37, and 50 mg/kg. Three cats remained clinically normal throughout the study. One cat experienced vomiting, diarrhea, and anorexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号