首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted to investigate the influence of long-term application of organic manures on aggregate stability, associated carbon concentrations and carbon pools as an important soil-quality parameter under a scented rice-potato-onion cropping system in silt-loam textured soil in Eastern Bihar, India (subtropical climatic condition). Five treatments were used: 1) nitrogen, phosphorus and potassium (NPK) – 100% recommended dose of NPK; 2) NPK+FYM (farmyard manure) – 50%NPK+50% N as FYM; 3) FYM+VC (vermicompost)+ NC (neem cake) – different organic sources each equivalent to 1/3 of the recommended N (FYM +VC +NC); 4) FYM+VC+NC+PSB (phosphate-solubilizing bacteria – different organic sources each equivalent to 1/3 of the recommended N (FYM +VC+NC)+biofertilizers containing N and P carriers (PSB) and 5) FYM+BFN+BM+PSB – 50% N as FYM + biofertilizer for N +Bone meal to substitute P requirement of crops + PSB. The aggregate size distribution (>250 μm) at different soil depths is higher in treatment FYM+VC+NC+PSB and is at par with FYM+VC+NC, followed by FYM+BFN+BM+PSB and NPK+FYM, and the lowest in treatment receiving 100% NPK. The mean carbon concentration in each soil fraction was higher in soil depth 0–10 cm, followed by 10–20 cm and 20–30 cm. The trend of mean weight diameter (MWD) in different treatments was FYM+VC+NC+PSB ≥ FYM+VC+NC > NPK+FYM > FYM+BFN+BM+PSB > NPK. The trend of carbon concentrations in different treatments was FYM+VC+NC+PSB ≥ FYM+VC+NC > FYM+BFN+BM+PSB ≥ NPK+FYM > NPK. Non-labile pool of carbon forms the major portion (60.14%) of the total soil organic carbon (SOC) irrespective of all depths. Bulk density (BD) has a significant role in stabilizing soil aggregates as well as increasing the SOC content in soil. SOC was negatively correlated with BD (r = ?0.870, p = 0.05), MWD (r = ?0.911, p = 0.01) and geometric mean diameter (GMD) (r = ?0.958, p = 0.05) irrespective of depth. This study took further steps toward understanding the enhancing of aggregate stability on organic manures addition for soil quality improvement.  相似文献   

2.
张英  武淑霞  雷秋良  翟丽梅  王洪媛  李浩  杨波  刘宏斌 《土壤》2022,54(6):1175-1184
畜禽粪便作为有机肥还田有利于农业可持续发展、减少环境污染。为探究种植青贮玉米条件下,不同粪肥还田后对土壤酶活性及微生物群落的影响,在内蒙古乌兰察布市设置田间试验,包括化肥(F)、羊粪(GM)、猪粪(PM)、牛粪(CM)四个处理。结果表明,施用粪肥较化肥增加土壤有机质、全氮、有效磷、铵态氮等养分含量,但差异性不显著。不同粪肥较化肥处理的土壤脲酶、蔗糖酶、碱性磷酸酶和过氧化氢酶活性最高增幅分别为32.4%、150.4%、26.8%和30.1%。牛粪处理的土壤微生物量碳氮显著提高,分别较化肥增加33.2%和33.4%。不同处理在细菌门水平上的优势种群较一致,放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)是优势种群。本实验条件下,施用不同类型粪肥对土壤养分和酶活性的影响不同,牛粪处理更能提高土壤微生物量碳氮,短期内施用不同粪肥对于提高土壤微生物群落多样性差异不显著,土壤pH、有效磷、无机氮是影响土壤微生物群落结构的主要环境因子。  相似文献   

3.
Long-term experimental sites are expected to provide important information regarding soil properties as affected by management practices. This study was designed to examine the effects of continuous fertilization, and manuring on the activities of enzymes involved in mineralization of C, N, and P on a long term (33 years) field trial under sub-temperate conditions in India. Treatments at the site included application of recommended doses of nitrogen and phosphorus (NP), nitrogen and potassium (NK), nitrogen, phosphorus and potassium (NPK), farmyard manure (FYM) with N (N + FYM), FYM with NPK (NPK + FYM) and un-amended control (C). The study was done under rainfed soybean–wheat rotation. Manure application increased soil carbohydrate, dehydrogenase, acid and alkaline phosphatases, cellulase, and protease activity significantly. Urease activity was not influenced by the manure treatment and the activity was highest in controls. Both acid and alkaline phosphatase activities were negatively influenced by chemical fertilizer treatment. Almost all the enzymes studied were significantly correlated with soil C content. The results suggest that application of FYM directly or indirectly influences the enzyme activity and it in turn regulates nutrient transformation.  相似文献   

4.
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India.  相似文献   

5.
A field experiment was conducted during 2008 and 2009 at the Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India, to study the effect of organic sources of nutrient on yield, nutrient uptake, fertility status of soil, and quality of stevia crop in the western Himalayan region. The experiment comprised eight different combinations of organic manure [farmyard manure (FYM), vermicompost (VC), and apple pomace manure (AP)]. Total leaf dry biomass increased by 149% over the control with application of VC 1.5 t ha?1 + AP 5 t ha?1. Application of organic manures enhanced organic carbon and available nutrient status of soil more than the control. Nitrogen (N) and phosphorus (P) content in stem were significantly affected by the application of organic manures over the control. Stevia plants supplied with FYM 10 t ha?1 + AP 2.5 t ha?1 recorded more total glycoside than other treatments. Stevioside yield (kg ha?1) was greater with application of FYM 10 t ha?1 + AP 2.5 t ha?1.  相似文献   

6.
Effect of integrated use of mycorrhiza, lime, inorganic fertilizers, and organic manures on microbial activities and yield performance of yam bean (Pachyrhizus erosus L.) was studied for two consecutive kharif (rainy) seasons during 2013–14 and 2014–15 in an acid Alfisol. The experiment was laid out with 16 treatments consisting of graded doses of soil test–based nitrogen, phosphors, and potassium (NPK); lime; mycorrhiza; organic sources, that is, farmyard manure (FYM), vermicompost, and green manure; secondary magnesium sulfate (MgSO4) and micronutrients zinc sulfate (ZnSO4 and borax). Significantly highest mean tuber yield (29.61 t ha?1) was recorded due to integrated application of lime + FYM + NPK + ZnSO4. Graded doses of NPK showed a mean yield response of 65%, 134%, and 191% due to addition of 50%, 100%, and 150% of NPK over control, respectively. Inoculation of vesicular–arbuscular mycorrhiza (VAM) combined with NPK and FYM recorded a mean tuber yield of 25.14 t ha?1. Highest mean dry matter (18.85%) was recorded due to application of 150% NPK, whereas highest starch content on fresh weight basis was recorded due to integrated use of lime + FYM + NPK + MgSO4 (11.11%). Application of 150% NPK has recorded highest dehydrogenase activity (2.018 µg TPF h?1 g?1) and fluorescein diacetate hydrolysis assay (2.012 µg g?1 h?1). Fungal inoculation of VAM in combination with lime + FYM + NPK recorded highest acid and alkaline phosphatase activities (82.20 and 67.02 µg PNP g?1 soil h?1, respectively). Soil biological activities and phosphatase activities had highly significant relationship with tuber yield and biochemical constituents of yam bean. The study emphasized the conjunctive use of soil test–based inorganic fertilizers, lime, and organic manures to enhance the enzymatic activities and to realize higher crop yields of yam bean in acid Alfisols.  相似文献   

7.
The study was conducted to investigate the aggregate stability and distribution of organic carbon (C) in different-sized aggregates and mineral fractions in a loamy soil under rice-wheat system with continuous application of fertilizer nitrogen, phosphorus and potassium (NPK), farmyard manure (FYM), N+FYM and NPK+FYM, compared with unfertilized control. Macro-aggregates comprised 37.1–49.3% of the total water-stable aggregates (WSAs), compared with 23.3–30.3% as micro-aggregates. Application of inorganic fertilizers and FYM significantly increased the proportion of macro-aggregates, which were linearly related to total organic C (TOC). Organic C concentration in coarse macro-aggregates (CMacA) was higher than the micro-aggregates (CMicA). Application of FYM significantly increased the concentration of organic C in different-sized aggregates and mineral fraction, compared with the unfertilized control. Averaged across treatments, mineral-associated C comprised 26% of TOC. Macro-aggregates, on an average, constituted 66–68% of C preservation capacity of WSA. The amount of TOC sequestered was higher when NPK+FYM was applied together.  相似文献   

8.
A field experiment was conducted for five kharif seasons (2006–2011) in an Alfisol to study the effect of integrated use of lime, mycorrhiza, and inorganic and organics on soil fertility, yield, and proximate composition of sweet potato. Application of graded doses of nitrogen, phosphorus, and potassium (NPK) significantly increased the mean tuber yield of sweet potato by 44, 106, and 130 percent over control. Green manuring along with ½ NPK showed greater yield response over that of ½ NPK. The greatest mean tuber yield was recorded due to integrated application of lime, farmyard manure (FYM), NPK, and MgSO4 (13.69 t ha?1) over the other treatments. Inoculation of mycorrhiza combined with lime, FYM, and NPK showed a significant yield response of 10 percent over FYM + NPK. Conjunctive use of lime, inorganics, and organics not only produces sustainable crop yields but also improve soil fertility, nutrient-use efficiency, and apparent nutrient recovery in comparison to NPK and organic manures.  相似文献   

9.
长期施肥对红壤旱地土壤活性有机碳和酶活性的影响   总被引:18,自引:3,他引:15  
张继光  秦江涛  要文倩  周睿  张斌 《土壤》2010,42(3):364-371
以江西进贤长期肥料定位试验为平台,研究了红壤旱地不同施肥措施对土壤微生物生物量、活性有机C、C库管理指数以及土壤酶活性的影响。研究结果表明:与不施肥和单施化肥土壤相比,施有机肥处理土壤的pH、CEC、有机C、全N、全P、无机N、速效P、速效K及土壤微生物生物量均显著增加,土壤活性有机C和C库管理指数也较试前土壤和其他处理土壤明显提高,此外,土壤的转化酶、脱氢酶、脲酶和酸性磷酸酶活性也较其他处理显著增加。土壤微生物生物量、活性有机C以及4种土壤酶活性之间的相关关系显著,且它们均与土壤有机C、全N、全P、无机N、速效P等土壤养分呈显著正相关。因此,红壤旱地通过长期施用有机肥或与无机肥配施,不仅能显著提高土壤有机质的数量和质量,而且能增加土壤微生物生物量和酶活性,从而显著提高土壤肥力和土壤持续生产力。  相似文献   

10.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

11.
A comparison was made between a long-term rice–wheat cultivation with fertilizer nitrogen–phosphorus–potassium (NPK) or added organics [farmyard manure (FYM), paddy straw (PS), green manure (GM)] and a permanent fallow on bulk density (BD), saturated hydraulic conductivity (Ksat), available water capacity (AWC), maximum water-holding capacity (MWHC), aggregation, and soil organic carbon (SOC) dynamics on an Inceptisol of humid subtropics of eastern India. Continuous cropping caused a net decrease in SOC content. Undisturbed fallow was comparable to soils with FYM, PS, and GM amendments in structural and hydrophysical properties. Maximum WHC and AWC values were in the order of FYM followed by PS, GM, fallow, NPK, and control. The relative efficacy of the organics for physical buildup was FYM > PS > GM, which increased structural indices. This study represents further steps toward understanding the ecological importance of fallow management and integrated use of balanced fertilizer and organics.  相似文献   

12.
Vermicompost (VC) produced from distillation waste of geranium (Pelargonium graveolens), farmyard manure (FYM) produced from animal excreta mixed with pine needle (Pinus sp.), and biofertilzer (Azotobacter) were utilized for this experiment. The plant growth attributes, biomass, and oil yield of geranium were significantly increased with integrated nutrient supply, and maximum increase was found in T8 treatments (N100P60 K60 + 5t VC). Soil organic carbon (Corg) significantly increased by 4.2% to 81.8% in T4 and T8 treatments, respectively, over the control. Data obtained on total nitrogen (Nt) and available N, phosphorus (P), and potassium (K) clearly showed that the integrated nutrient supply considerably improved the soil health and sustainability. The soil respiration and microbial biomass C (Cmic) and N (Nmic) were increased by the manures according to the application rate. The Cmic accounted for 1.8 to 2.7% of the soil Corg content and microbial N accounted for 3.9 to 5.8 % of Nt under different treatment combinations.  相似文献   

13.
长期施用不同有机肥对甘薯产量和土壤生物性状的影响   总被引:3,自引:1,他引:2  
以花生—甘薯轮作的长期定位试验为研究对象,研究不同(类)有机肥对甘薯产量、土壤微生物丰度和酶活性的影响,为选取合适的有机肥在提高作物产量和改善土壤生物性状方面提供依据。共选取5个施肥处理:(1)CK,空白对照;(2)NPK,单施化肥;(3)NPK+SR,化肥+稻草;(4)NPK+M,化肥+商品有机肥;(5)NPK+P,化肥+猪粪。结果表明:与CK相比,NPK、NPK+SR、NPK+M和NPK+P处理均显著增加鲜薯产量和地上部生物量(P<0.05),其中NPK+P处理效果最好。与CK比较,NPK处理显著降低土壤细菌、真菌、固氮菌和活化有机磷微生物的丰度(P<0.05),而NPK+SR、NPK+M和NPK+P处理在不同程度上缓解了NPK处理对土壤微生物丰度的抑制作用。土壤酶的加权平均值(GMea)在一定程度上可用来评价土壤酶的总体活性。与CK相比,NPK、NPK+SR和NPK+M处理的土壤酶活性显著降低(P<0.05),而NPK+P处理的土壤酶活性有所提高;对于土壤单一酶活性,NPK+P处理与CK比较显著降低土壤脲酶活性(P<0.05),但显著提高酸性磷酸酶、碱性磷酸酶和过氧化氢酶活性。此外,主成分和相关性分析表明,土壤养分和土壤有机碳与鲜薯产量和地上部生物量显著正相关,土壤pH是驱动土壤微生物丰度和土壤酶活性变化的主要因素。因此,长期有机无机肥配施通过提高土壤养分、有机碳含量以及调节土壤pH变化在提高甘薯产量和改善土壤生物性状方面取得良好效果。总体来说,化肥配施猪粪在培肥地力和增产增收方面效果最佳。  相似文献   

14.
ABSTRACT

A 6-year field experiment was conducted at Maharashtra, India, from 2011 to 2017 on a silty clay soil, to study the impact of organic manure prepared from common weed Trianthema portulacastrurm Linn. on soybean-fodder maize crop system and soil organic carbon (SOC) sequestration. Organic manures were prepared from Trianthema as compost, vermicompost, dry leaf powder and were compared with application of Farm Yard Manure (FYM), chemical fertilizer treatment (NPK), and control. All treatments were repeated to same earlier treated plots every year for subsequent 6 years. Soil samples were analyzed before experiment and after harvesting of crops at the end of 6 years. All organic manures prepared from Trianthema and FYM increased SOC, nitrogen, phosphorus, and potassium content in the soil as compared to chemical fertilizer treatment and control. The overall increase in SOC content in the 0–60-cm soil depth in vermicompost treatment was 3.51 Mg C ha?1 as compared to control at the end of this 6 years experiment at the carbon sequestration rate of 585 kg ha?1 year?1. Preparation and use of different manures from Trianthema will increase the carbon sequestration in soil, a measure to mitigate global warming.  相似文献   

15.
合成条件对氧气氧化合成水钠锰矿的影响   总被引:3,自引:0,他引:3  
A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot^-1), 3) farmyard manure (FYM, 110 g pot^-1), 4)poultry manure (PM, 110 g pot^-1), 5) FYM (110 g pot^-1) NPK (0.44-0.26-0.18 g pot^-1), 6) poultry manure (PM, 110 g pot^-1) NPK (0.44-0.26-0.18 g pot^-1), 7) FYM (110 g pot^-1) NPK(S) (0.44-0.26-0.18 g pot^-1 one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot^-1) NPK(S) (0.44-0.26-0.18 g pot^-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures NPK(S) treatments. In the FYM NPK(S) and PM NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.  相似文献   

16.
以吉林省农业科学院黑土有机培肥定位试验基地为平台,研究了不同种类有机肥(堆腐肥、鸡粪、牛粪和猪粪)施用对土壤及不同粒级团聚体中有机碳和腐殖质组成的影响。结果表明:与不施肥(CK)和单施化肥(NPK)相比,有机肥配施化肥显著(P0.05)增加了土壤有机碳、胡敏酸碳(HAC)和胡敏素碳(HUC)含量;同时,有机肥配施化肥也增加了不同粒级团聚体中有机碳和腐殖质碳含量,其中施用堆腐肥显著增加了各粒级团聚体中有机碳、HAC和HUC含量。不同种类有机肥相比,施用堆腐肥处理的土壤有机碳、HAC和HUC含量均高于其他有机肥处理,并与牛粪处理之间差异显著;施用堆腐肥和牛粪后,0.25mm粒级团聚体有机碳含量高于其他有机肥处理,且2~0.25mm粒级团聚体有机碳含量显著高于鸡粪处理;从不同粒级团聚体中腐殖质组分的分布来看,施用堆腐肥后,2~0.25mm粒级团聚体中HAC和HUC含量显著高于猪粪处理,而0.25~0.053,0.053mm粒级团聚体中HAC含量显著低于鸡粪处理。上述结果说明,有机肥配施化肥提高了土壤团聚体中有机碳和腐殖质碳含量,但不同有机肥的效应不同。  相似文献   

17.
There is a growing recognition for the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land users in promoting sustainability of agro-ecosystems. Three soil enzymes (dehydrogenase, phosphatase and invertase) microbial biomass as biological variables and soil organic matter content (SOM) were investigated relative to fertilization and soil fertility (estimated by crop yield) at a long-term fertilization trial (Keszthely, Hungary). 0-34.7-69.4-104.1t farmyard manure (FYM) ha m 1 5 yr m 1 and the corresponding amount of mineral fertilizers (NPK) were applied in two different crop rotation systems. There were four straw and/or stalk incorporating treatments in the second crop rotation 'B'. Enzyme activities, microbial biomass and the amount of SOM were generally higher in the fertilized soils than in the unfertilized soils. The type of amendments (mineral, FYM or mixed) had significant effects only on the amount of SOM. The correlations among the biological variables and the crop yield were generally low (r < 0.250. The differences in field management resulted only in the invertase activity.  相似文献   

18.
A pot experiment was conducted in heat-sterilized soil to evaluate the effect of effective microorganism (EM) application on growth, yield, and nutrient uptake in Vigna radiata (L.) Wilczek var. NIAB Mung 98 in different soil amendment systems. Pot soil was amended with farmyard manure (FYM), Trifolium alexanrinum L. crop residues (TCR), and half (½NPK) and recommended dose (NPK) of chemical fertilizers. The EM application significantly enhanced shoot and root biomass in TCR-amended soil. However, grain yield was significantly enhanced in FYM, TCR, and NPK amendments by 24%, 15%, and 84%, respectively, as a result of EM application. Effect of EM application on nutrient uptake was variable with respect to soil amendment and plant growth stage. In general, EM application enhanced plant nitrogen (N), phosphorus (P), and potassium (K) nutrition in organic amendments while its effect was either negative or insignificant in chemical fertilizer amendments. Effects of EM application on plant nutrient uptake were more pronounced at maturity than at flowering stage.  相似文献   

19.
红壤水稻土累积酶活性及养分对长期不同施肥处理的响应   总被引:1,自引:1,他引:1  
李委涛  李忠佩  刘明  江春玉  吴萌 《土壤》2016,48(4):686-691
本研究基于鹰潭农田生态系统国家野外科学观测研究站24年的长期定位试验,揭示对照(不施肥,CK)、有机肥(C)、化学氮磷钾肥(NPK)、化学氮磷钾肥+有机肥(NPKC)等不同施肥处理对红壤水稻土酶活性及土壤养分的影响。于晚稻收获后采集各小区耕层土壤,测定红壤水稻土中转化酶、脲酶活性(测定时并设加0.5 ml甲苯与不加甲苯处理)及转化酶动力学特征,同时测定土壤养分含量及微生物生物量碳,分析酶活性与养分含量及微生物生物量碳间的关系,明确土壤中累积酶活性及土壤养分对长期不同施肥处理的响应。结果发现,与对照相比,施肥处理下土壤转化酶活性显著提高了31.3%~131.7%,微生物生物量碳显著提高了84.9%~125.1%;在没有甲苯抑制微生物活性下,施肥处理的转化酶底物蔗糖转化速率增加量提高了89.5%~153.7%,脲酶底物尿素转化增加量提高了59.2%~98.9%,表明微生物显著影响两种累积酶表观酶活性;转化酶活性、脲酶活性与微生物生物量碳呈显著正相关。与对照处理相比,施肥处理显著增加了土壤有机碳(30.1%~36.3%)、全磷(28.6%~102.9%)、速效磷(62.2%~445.0%)、碱解氮(35.9%~56.4%)含量;统计分析显示,转化酶活性、脲酶活性均与碱解氮、有机碳含量显著正相关。与对照相比,各施肥处理土壤的转化酶米氏常数(Km)差异并不显著,而转化酶表观活性(Vmax)及转化系数(Vmax/Km)均显著增加。长期施肥处理增加了土壤养分含量和微生物生物量碳,提高了土壤中累积酶的活性。  相似文献   

20.
Productivity and sustainability of rice-rice cropping system depend upon the soil quality which is primarily governed by application of fertilizers and manures. However, such information is limited and hence, the present investigation was carried out in a 9-year-old long-term fertilizer experiment at Bhubaneswar, India. There were seven treatments (control, application of 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + FYM, 100% NPK + Zn + B, and 100% NPK + Zn + S) laid out in randomized block design with four replications. Indicators of soil quality (physical, chemical, and biological) were diagnosed from 30 numbers of soil properties measured on the post-wet season soil and soil quality was assessed taking productivity and sustainability of dry season rice as goal functions. Results revealed that the highest productivity and sustainability of dry season rice was found with application of 100% NPK + FYM. This treatment, in general, showed better physical, chemical, and biological properties than rest of the treatments. The highest soil quality index (SQI) was recorded in 100% NPK + FYM (0.941) treatment followed by 150% NPK (0.826) with CEC diagnosed as the only key indicator for rice productivity. For yield sustainability in dry season, reserve K and total N were important contributing 89% and 11%, respectively to the SQI. Therefore, these soil properties could be used to monitor soil quality in wet season. Application of FYM along with 100% NPK could sustain the productivity of dry season rice by improving soil properties under subtropical rice-rice system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号