首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2-year study of host association, molecular characterisation and vector transmission of a phytoplasma related to the 16SrII group in a vineyard of south-eastern Serbia was conducted. Grapevine, eight common weeds and 31 Auchenorrhyncha species were collected and analysed for phytoplasma presence. PCR-RFLP analyses of the 16S rRNA gene identified the presence of a new strain of phytoplasma related to the 16SrII group in P. hieracioides with symptoms of stunting or bushy stunting. Grapevine samples, all without symptoms, were negative for phytoplasma presence. Plants of Erigeron annuus, Cynodon dactylon, Daucus carota and P. hieracioides, either exhibiting symptoms of yellowing or without symptoms, were positive for the presence of stolbur phytoplasma. Among the tested cicada species, seven were infected with phytoplasmas from the aster yellows group, two with stolbur phytoplasma, two with 16SrII phytoplasma, and one with the 16SrV-C phytoplasma subgroup. The phytoplasma strain of the 16SrII group was recorded in approximately 50?% of the collected leafhopper species Neoaliturus fenestratus and in a few specimens of the planthopper Dictyophara europaea. The vector status of N. fenestratus was tested using the second generation of the planthopper in two separate transmission trials with P. hieracioides and periwinkle seedlings. In both tests, the leafhopper successfully transmitted 16SrII phytoplasma to exposed plants, proving its role as a natural vector of this phytoplasma in Europe. A finer molecular characterisation and phylogenetic relatedness of the 16SrII phytoplasma strain by sequence analyses of the 16S rRNA and ribosomal protein genes rpl22-rps3 indicated that it was most closely related to the 16SrII-E subgroup.  相似文献   

2.
Phytoplasmas infecting sour cherry and lilac in Lithuania were found to represent two lineages related to clover phyllody phytoplasma (CPh), a subgroup 16SrI-(R/S)C (formerly 16SrI-C) strain exhibiting rRNA interoperon sequence heterogeneity. 16S rDNAs amplified from the cherry bunchy leaf (ChBL) and lilac little leaf (LcLL) phytoplasmas were identical or nearly identical to those of operon rrnA and operon rrnB, respectively, of CPh. There was no evidence of 16S rRNA interoperon sequence heterogeneity in either LcLL or ChBL phytoplasma. Based on collective RFLP patterns of 16S rDNA, ChBL was classified in subgroup 16SrI-R, and LcLL was classified in new subgroup 16SrI-S. The ribosomal protein (rp) gene sequences from LcLL phytoplasma were identical to those of CPh, and strain LcLL was classified in rp subgroup rpI-C. By contrast, rp gene sequences from ChBL phytoplasma differed from those of subgroup rpI-C; based on RFLP patterns of rp gene sequences, ChBL was classified in new rp subgroup rpI-O. Single nucleotide polymorphisms (SNPs), designated here by a new SNP convention, marked members of rp subgroup rpI-C, and distinguished LcLL and CPh from ChBL and other non-rpI-C phytoplasmas in group 16SrI. The results raise questions concerning phytoplasma biodiversity assessment based on rRNA genes alone and encourage the supplemental use of a single copy gene in phytoplasma identification and classification, while drawing attention to a possible role of horizontal gene transfer in the evolutionary history of these lineages.  相似文献   

3.
Flax plants (Linum usitatissimum) of the white (album) flower variety exhibiting typical phytoplasma-like symptoms were found for the first time in Pakistan during 2011. The symptoms included floral virescence, phyllody, little leaf, stunting and stem fasciation. Light microscopy of hand-cut stem sections treated with Dienes’ stain showed blue areas in the phloem region of symptomatic plants. To confirm phytoplasma infection, total DNA was extracted separately from five plants showing virescence/phyllody and from five others showing fasciation, and was amplified by nested PCR using universal 16S rDNA phytoplasma primers P1/P7 followed by R16F2n/R16R2. All samples from plants with virescence/phyllody and fasciation yielded a 1,250 bp PCR product, and identical RFLP profiles using the enzymes AluI and HpaII. Direct sequencing of the 16S rDNA of one representative PCR amplicon (GenBank Accession No. JX567504 for phyllody and Accession No. JX567505 for fasciation) showed highest sequence identity (99%) with 16SrII ‘Candidatus Phytoplasma aurantifolia’ phytoplasmas, and phylogenetic analysis placed the phytoplasma in subgroup 16SrII-D. Disease was successfully transmitted by grafting and by the leafhopper Orosius albicinctus. To our knowledge, flax is a new natural host for 16SrII-D phytoplasmas in Pakistan.  相似文献   

4.
Previously undescribed phytoplasmas were detected in diseased plants of dandelion (Taraxacum officinale) exhibiting virescence of flowers, thistle (Cirsium arvense) exhibiting symptoms of white leaf, and a Gaillardia sp. exhibiting symptoms of stunting and phyllody in Lithuania. On the basis of restriction fragment length polymorphism (RFLP) analysis of 16S rDNA amplified in PCR, the dandelion virescence (DanVir), cirsium whiteleaf (CirWL), and gaillardia phyllody (GaiPh) phytoplasmas were classified in phylogenetic group 16SrIII (X-disease phytoplasma group), new subgroups III-P and III-R and subgroup III-B, respectively. RFLP and nucleotide sequence analyses revealed 16S rRNA interoperon sequence heterogeneity in the two rRNA operons, rrnA and rrnB, of both DanVir and CirWL. Results from phylogenetic analysis based on nucleotide sequences of 16S rDNA were consistent with recognition of the two new subgroups as representatives of distinct new lineages within the group 16SrIII phytoplasma subclade. The branching order of rrnA and rrnB sequences in the phylogenetic tree supported this interpretation and indicated recent common ancestry of the two rRNA operons in each of the phytoplasmas exhibiting interoperon heterogeneity.  相似文献   

5.
A phytoplasma-associated disease was identified in Brassica campestris (sarson) plants during a survey conducted in Punjab province of Pakistan in 2014–2016. The symptomatic plants showed characteristic symptoms of phyllody and witches’ broom. Phytoplasma presence was detected by polymerase chain reaction on 16S ribosomal and tuf DNAs, followed by RFLP analysis and sequence comparison of the 16S rRNA and tuf genes. The phytoplasma detected was classified in a new ribosomal subgroup designed 16SrIX-H. The phytoplasma presence in phloem tissues of symptomatic sarson samples was also confirmed through light microscopy and transmission studies to healthy plants through dodder and the leafhopper Orosius albicinctus. This is the first report of identification of 16SrIX-H subgroup phytoplasma associated with sarson and its natural vector in Pakistan.  相似文献   

6.
榆树黄化病植原体的分子检测与鉴定   总被引:5,自引:0,他引:5  
 利用植原体16SrRNA基因的通用引物R16rrLF2/R16mR1和R16F2n/R16R2对山东泰山上发生的榆树(Ulmus parvifolia)黄化病感病植株总DNA进行巢式PCR扩增,得到了约1.2kb的特异性片段,从分子水平证实了榆树黄化病的病原(EY-China)为植原体。将扩增到的片段测序,并进行一致性和系统进化树分析。结果表明,该分离物属于植原体榆树黄化组(Candidatus Phytoplasma ulmi),与该组成员16SrRNA序列的一致性均在98.2%以上,其中与16SrV-B亚组中的纸桑丛枝(Paper mulberry wiches'-broom)和枣疯病(Jujube witches'-broom)植原体一致性最高,达到99.4%,在系统进化树中与该亚组成员聚类到同一个分支,说明该分离物属于植原体16SrV-B亚组。本研究首次对在中国引致榆树黄化病的植原体进行了分子检测,并通过核酸序列分析将其鉴定到亚组水平。  相似文献   

7.
The identity of phytoplasmas detected in strawberry plants with green petal (SGP) and lethal yellows (SLY) diseases was determined by RFLP analysis of the 16S rRNA gene and adjacent spacer region (SR). RFLP and sequence comparisons indicated that the phytoplasmas associated with SGP and SLY were indistinguishable and were most closely related to ' Candidatus Phytoplasma australiense', the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. This taxon lies within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify only members of the AY strain cluster, amplified a DNA product from the SGP and SLY phytoplasmas. Primers deduced from the 16S rRNA/SR of P. australiense that amplify only members of this taxon amplified rDNA sequences from the SGP and SLY phytoplasmas. Primers that selectively amplify members of the faba bean phyllody (FBP) phytoplasma group, the most commonly occurring phytoplasma group in Australia, did not amplify rDNA from the SGP and SLY phytoplasmas.  相似文献   

8.
棣棠丛枝病相关植原体的分子鉴定   总被引:1,自引:0,他引:1  
 植原体(Candidatus Phytoplasma)是一种没有细胞壁的原核微生物,主要由取食韧皮部的昆虫(叶蝉、飞虱等)传播, 也可由菟丝子寄生和嫁接等途径传播,常常引起植株黄化、丛枝、花器变态、萎缩等症状。迄今为止,世界上报道的植物植原体病害有1 000余种,仅我国就有100多种,造成巨大损失。  相似文献   

9.
The genetic relatedness of phytoplasmas associated with dieback (PDB), yellow crinkle (PYC) and mosaic (PM) diseases in papaya was studied by restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and 16S rRNA/23S rRNA spacer region (SR). RFLP and SR sequence comparisons indicated that PYC and PM phytoplasmas were identical and most closely related to members of the faba bean phyllody strain cluster. By comparison the PDB phytoplasma was most closely related to Phormium yellow leaf (PYL) phytoplasma from New Zealand and the Australian grapevine yellows (AGY) phytoplasma from Australia. These three phytoplasmas cluster with the stolbur and German grapevine yellows (VK) phytoplasmas within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify gene products from members of the AY strain cluster, also amplified a DNA product from the PDB phytoplasma but not from either the PYC or PM phytoplasmas. Primers deduced from the 16S rRNA/SR selectively amplified rDNA sequences from the PDB and AGY phytoplasmas but not from other members of the stolbur strain cluster. Similarly, primers designed from 16S rRNA/SR amplified rDNA from the PYC and PM phytoplasmas but not from the PDB phytoplasma. These primers may provide for more specific detection of these pathogens in epidemiological studies.  相似文献   

10.
Sunflower (Helianthus annuus L.) plants showing capitulum with virescence, phyllody and flower malformation, shortened internodes and abnormal branches were found in a field in Pedro Luro (Buenos Aires province, Argentina). Pleomorphic bodies resembling phytoplasmas were observed in sieve tube elements of symptomatic plants but not in healthy ones. DNA from all symptomatic sunflower plants analysed yielded, in direct PCR with phytoplasma universal primers P1/P7 and R16F2n/R2, fragments of expected size 1.8 kb and 1.2 kb, respectively. The phytoplasma associated with the disease, was named Sunflower Phyllody (SunPhy). Real and putative RFLP of the 16S rDNA showed the affiliation of SunPhy to 16SrIII (X-disease group), subgroup J. The 16S rDNA sequence from SunPhy showed the highest identity (99 %) with 16SrIII members and the phylogenetic tree confirmed a closer relationship to subgroup J of the 16SIII ribosomal group. This is the first report of a phytoplasma related to the 16SrIII group affecting sunflower.  相似文献   

11.
Pepper witches’ broom (PWB) disease was observed in a field in Yangling, Shaanxi Province, China. The result of mechanical inoculation test for this disease was negative. Phytoplasma-like bodies were observed in ultrathin sections of petiole tissues of symptomatic samples. 16S rRNA gene and tuf gene of phytoplasma were amplified from the total DNA of symptomatic samples. Phylogeny analysis of the 16S rRNA gene and tuf gene suggested that the pepper witches’ broom associated phytoplasma belongs to the subgroup 16SrI-B, which was confirmed by the RFLP analysis of the 16S rRNA gene. The phytoplasma subgroup 16SrI-B was also detected in the vector Cicadella viridis trapped from the infected field. To our knowledge, this is the first report of 16SrI-B phytoplasma causing pepper witches’ broom in China.  相似文献   

12.
ABSTRACT Alfalfa (Medicago sativa) plants showing witches'-broom symptoms typical of phytoplasmas were observed from Al-Batinah, Al-Sharqiya, Al-Bureimi, and interior regions of the Sultanate of Oman. Phytoplasmas were detected from all symptomatic samples by the specific amplification of their 16S-23S rRNA gene. Polymerase chain reaction (PCR), utilizing phytoplasma-specific universal primer pairs, consistently amplified a product of expected lengths when DNA extract from symptomatic samples was used as template. Asymptomatic plant samples and the negative control yielded no amplification. Restriction fragment length polymorphism profiles of PCR-amplified 16S-23S rDNA of alfalfa using the P1/P7 primer pair identified phytoplasmas belonging to peanut witches'-broom group (16SrII or faba bean phyllody). Restriction enzyme profiles showed that the phytoplasmas detected in all 300 samples belonged to the same ribosomal group. Extensive comparative analyses on P1/P7 amplimers of 20 phytoplasmas with Tru9I, Tsp509I, HpaII, TaqI, and RsaI clearly indicated that this phytoplasma is different from all the other phytoplasmas employed belonging to subgroup 16SrII, except tomato big bud phytoplasma from Australia, and could be therefore classified in subgroup 16SrII-D. The alfalfa witches'-broom (AlfWB) phytoplasma P1/P7 PCR product was sequenced directly after cloning and yielded a 1,690-bp product. The homology search showed 99% similarity (1,667 of 1,690 base identity) with papaya yellow crinkle (PapayaYC) phytoplasma from New Zealand. A phylogenetic tree based on 16S plus spacer regions sequences of 35 phytoplasmas, mainly from the Southern Hemisphere, showed that AlfWB is a new phytoplasma species, with closest relationships to PapayaYC phytoplasmas from New Zealand and Chinese pigeon pea witches'-broom phytoplasmas from Taiwan but distinguishable from them considering the different associated plant hosts and the extreme geographical isolation.  相似文献   

13.
The presence of phytoplasma inFragaria ananassa x Duch cv Senga Sengana showing strawberry green petals symptoms was observed by electron microscopy of phloem tissue. No phytoplasmas were found in asymptomatic strawberry plants used as controls. Nucleic acids extracted from these plants were used in nested-PCR assays with primers amplifying 16S rRNA sequences specifie for phytoplasmas. Bands of 1.2 kb were obtained and the subsequent nested-PCR with specific primers and RFLP analyses allowed to classify the detected phytoplasmas in the aster yellows group (16SrI). They belonged to the subgroup I-C of which type strain is clover phyllody phytoplasma.  相似文献   

14.
Okra plants with bunchy top disease were found to be prevalent during the period of August–October 2009 in New Delhi, India. The common symptoms observed were shortening of internodes, aggregation of leaves at the apical region, reduced leaf lamina, stem reddening, fruit bending, phyllody and stunting of plants. The disease incidence ranged from 2–60% accompanied by significant reductions in production of both flowers and seeds. Nested polymerase chain reaction targeting phytoplasma specific 16S rDNA and rp genes revealed all symptomatic plants to be positive for phytoplasma. Homology searches depicted its closest identity to phytoplasmas of 16SrI ‘Candidatus Phytoplasma asteris’, like the Sugarcane yellows and Periwinkle phyllody phytoplasmas. Profiles for 16S rDNA obtained with 10 restriction endonucleases, differed in TaqI sites for two phytoplasma isolates (BHND5 & 10) from the standard pattern of 16SrI-B subgroup, the latter was seen in the case of isolate BHND1. Restriction fragment analysis of rp genes with AluI, Tsp509I matched with patterns of the rpI-B phytoplasmas. Phylogenetic reconstruction of rp genes revealed okra bunchy top phytoplasma (BHND1) as a divergent isolate, the subsequent sequence analysis of which showed the presence of a novel BslI site. These significant differences suggest that multiple phytoplasma strains are affecting okra, one of which is a diverging lineage within the 16SrI-B group while others represent a new 16SrI subgroup not reported so far. Additionally, this is the first report of a phytoplasma associated disease in okra plants worldwide.  相似文献   

15.
Since 2000, a disease has occurred with high levels of incidence in crops of cauliflower grown in the green belt area of the city of S?o Paulo, Brazil. The symptoms are characterized by stunting, malformation of the inflorescence, reddening leaves, and vascular necrosis, suggesting infection by phytoplasma. These symptoms are similar to those described in Brassicas species affected by the aster yellows (16SrI) group of phytoplasma. In the present study, a phytoplasma from the 16SrIII-J subgroup was identified in cauliflower plants based on actual and virtual RFLP patterns and phylogenetic analysis, and was distinct from the phytoplasmas frequently associated with aster yellows disease in Brassicas. Pathogenicity assays using dodder confirmed that the identified phytoplasma is the agent of the observed disease, which is here designated as cauliflower stunt. Consequently, this species of Brassica may be recognized as a new host for subgroup 16SrIII-J, which has frequently been found in diverse species cultivated in Brazil. The spatial pattern of diseased plants was determined in ten cauliflower plots of 300 to 728 plants each. All plants in these plots were evaluated by visual assessments, assigned as diseased or healthy and mapped. The dispersion index and Taylor’s power law were determined for various quadrat sizes and the results showed that the diseased plants were distributed in a random pattern in fields with a low disease incidence and in an aggregated pattern in fields with a disease incidence greater than 25?%. According to an isopath area analysis, diseased plants were predominantly present in the field borders, suggesting that the pathogen is possibly introduced by vector(s) from the external area.  相似文献   

16.
In several European countries apple trees are affected by apple proliferation disease, which is usually associated with the presence of ‘Candidatus Phytoplasma mali’. During 2010, samples from several apple trees displaying proliferation symptoms were collected throughout the Czech Republic to verify identity of phytoplasmas detected in association with the disease. The majority of the 74 apple trees examined using molecular tools were positive for ‘Ca. P. mali’ presence. The 16S–23S ribosomal genes, the ribosomal protein genes and the nitroreductase and rhodonase like genes were then studied to verify phytoplasma strain variability on multigenic bases. Two RFLP profiles and correspondingly two genetic lineages were found in the PCR-amplified fragments covering the 16S–23S rDNA spacer region. ‘Ca. P. mali’ strains belonging to rpX-A subgroup were identified in the majority of the apple tree sampled, whereas phytoplasmas belonging to the rpX-B subgroup were distributed sporadically. The apple proliferation subtypes AP-15 and AT-2 exhibited nearly equal occurrence; the AT-1 subtype and a mixture of the two or all three of the AP subtypes were infrequently found. The PCR/RFLP results were confirmed by nucleotide sequence analyses of selected ‘Ca. P. mali’ strains.  相似文献   

17.
Phytoplasmas causing a severe decline of three tree species, i.e., Rhus javanica, Hovenia tomentella and Zizyphus jujuba, in Japan were examined for their transmissibility by a leafhopper species Hishimonus sellatus, and for their phylogenetic relatedness. By H. sellatus, Rhus yellows (RhY) phytoplasma was transmissible to white clover and periwinkle seedlings, causing typical symptoms in these plants. Jujube witches' broom (JWB) phytoplasma was also transferred to the host plant, Z. jujuba, by the leafhopper. Because JWB phytoplasma was transmitted to Hovenia tomentella and caused the same symptoms as Hovenia witches' broom (HWB), JWB phytoplasma may be very closely related to HWB phytoplasma. RFLP analysis of the PCR products of 16S rDNA revealed that RhY phytoplasma belongs to the Aster yellows (AY) group, and JWB and HWB phytoplasmas belong to a different group (possibly Elm yellows group). Thus, we found that one species of leafhopper can carry phylogenetically distant phytoplasmas. Received 23 April 2001/ Accepted in revised form 29 October 2001  相似文献   

18.
Papaya apical curl necrosis (PACN) has frequently been observed in several Brazilian states. Affected plants exhibit foliar chlorosis, curvature of the apex, shortening of the internodes leading to bunching of the crown leaves, necrosis of the young apical parts, leaf drop, and dieback. Naturally infected plants were sampled and subjected to PCR assays, which confirmed that a phytoplasma was associated with the disease. Sequencing of the 16S rRNA gene, conventional and computer-simulated RFLP analyses, and phylogenetic analysis allowed the determination of the PACN phytoplasma as a representative of a new subgroup, designated 16SrXIII-E. The phytoplasmas of various 16Sr groups, including 16SrI, 16SrII, 16SrX, 16SrXII, and 16SrXVII, are known to be involved in anomalies in papaya plants in several countries. However, the present study reports, for the first time, the occurrence of a 16SrXIII phytoplasma in association with a papaya disease.  相似文献   

19.
2022年首次在广州市发现园林植物雪花木小叶病病株, 采用分子生物学技术对其进行植原体的种类鉴定。以雪花木叶片总DNA为模板, 利用植原体16S rRNA通用引物P1/P7进行PCR扩增, 获得广东雪花木小叶病植原体(BLL-GD2022)16S rRNA基因片段(1 811 bp, GenBank登录号为OQ625536)。16S rRNA序列相似性显示, BLL-GD2022与16SrVI组植原体株系的相似性最高, 为97.05%~99.83%, 其中与隶属于16SrVI-D亚组的10个植原体株系相似性为99.21%~99.83%。系统进化分析显示, BLL-GD2022与16SrVI组各植原体株系聚类在一个大分支, 其中与16SrVI-D亚组成员聚类在一个小分支, 亲缘关系最近。基于16S rRNA序列的iPhyClassifier限制性内切酶虚拟RFLP分析表明, BLL-GD2022与16SrVI-D亚组的参考株系Brinjal little leaf phytoplasma (GenBank登录号为X83431)的酶切图谱一致, 相似系数为1.00。基于上述研究结果, 明确广州市雪花木小叶病植原体隶属16SrVI-D亚组成员。本研究首次在园林植物雪花木上检测到植原体, 通过16S rRNA序列分析明确为16SrVI-D亚组成员, 为开展16SrVI-D亚组植原体在蔬菜、花卉和园林植物的发生监测及病害防控提供科学依据。  相似文献   

20.
Twelve Argentinean 16SrIII (X-disease)-group phytoplasma strains were analyzed. Ten of them, detected in daisy (Bellis perennis), garlic (Allium sativum), ‘lagaña de perro’ (Caesalpinia gilliesii), periwinkle (Catharanthus roseus), ‘rama negra’ (Conyza bonariensis), ‘romerillo’ (Heterothalamus alienus), summer squash (Cucurbita maxima var. zapallito) and tomato (Solanum lycopersicum), are new phytoplasma strains while two strains, detected in garlic and China tree (Melia azedarach), have been previously described. The plants showed typical symptoms of phytoplasma diseases, such as leaf size reduction, proliferation, stunting and virescence. The identification and genetic diversity analysis of the phytoplasmas were performed based on 16S rDNA and ribosomal protein gene sequences. The classification into 16Sr groups and subgroups was established by actual and virtual RFLP analysis of the PCR products (R16F2/R16R2) compared with reference strains. According to the classification scheme, strains HetLL and ConWB-A and B represent two new subgroups 16SrIII-W and X, respectively. On the other hand, strains CatLL, TomLL and CaesLL are related to subgroup 16SrIII-B, and strains BellVir, TomRed, CucVir and GDIII-207 are related to subgroup 16SrIII-J. Ribosomal protein genes were amplified using primers rpF1/rpR1 and rpIIIF1/rpIIIR1. RFLP analysis performed with AluI, DraI and Tru1I (MseI isoschizomer) distinguished three new rp profiles within subgroup 16SrIII-B, one for subgroup 16SrIII-J, and one shared with strains of the new subgroups 16SrIII-W and X. The phylogenetic analysis based on 16S rDNA and ribosomal protein gene sequences confirmed the separation of HetLL and ConWB strains in two new subgroups and the close relatedness among subgroup J phytoplasmas, which have been detected only in South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号