首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract  Discarding practices from 110 fishing operations in a Mediterranean small-scale fishing fleet (Patraikos Gulf, western Greece) from August 2004 to July 2005 were analysed. On average, 1 kg of fish was discarded per fishing operation (10% of the catch). The reasons for discarding were: low commercial value (78% of discards), damage at sea before retrieval of the gear (5%), and bad handling on-board (17%). More than half of discards belonged to Spicara flexuosa (L.), Lepidopus caudatus (Euphrasen), Sardinella aurita Valenciennes and Merluccius merluccius (L.). The bulk of discards of each species were associated with a single fishing method (metier). A Generalized Linear Model (Delta-X – error-model) indicated that, when discards were present, significant differences existed in the discard ratio among different métier groups (groups comprising métiers with similar characteristics). Longlines and trammel nets with small mesh-sizes had the highest discard ratios. Discarding practices for the species Diplodus annularis (L.), S. aurita , Squilla mantis (L.), S. flexuosa and Scorpaena scrofa (L.) did not follow a consistent pattern (these species were either fully discarded or fully retained during a fishing operation). The decision seemed to be dependent on market demands rather than fish size. Significant correlation was found between discarded and catch weight, but the presence of many outliers indicated deviance from a case where discards are high when there is an abundant catch. The findings of the study imply that monitoring and management should be carried out preferably on the métier level. Discards could be reduced by technical measures, controlling effort regulations and by improving working conditions on-board fishing vessels.  相似文献   

2.
Discards are the portion of animal and plant material in the catch that is dumped back at sea. The Common Fisheries Policy plan proposed by the European Commission for 2014–2020 presents a controversial goal: to enforce the landing of fishing discards as a measure to encourage their reduction. This historical and political decision will shape the future of the fishing exploitation in European Seas. Discards generated by European fleets are not negligible, and its reduction is an ecological, socioeconomical and moral imperative. However, it must be achieved through the reduction in discards at source and the promotion of selective and non‐destructive gears. We argue it is doubtful that this discard ban will result in an effective reduction of discards. The proposed measure may, in fact, negatively affect ecosystems at all levels of biological hierarchy by disregarding the Ecosystem‐Based Approach to Fisheries and the Precautionary Principle. It could negatively impact several species by increasing fishing mortality, also commercial species if discards are not accounted in the total allowable catch. Communities preying on discards will likely be affected. The role discards currently play in the energy turnover of current ecosystems will be modified and should be fully evaluated. The landing of discards will likely generate new markets of fishmeal due to the growing demands for marine living resources. The ban will require substantial public investment to deal with technical problems on board and to control and enforce. Therefore, this measure should be only implemented after rigorous scientific and technical studies have been developed.  相似文献   

3.
Increasingly, fisheries are being managed under catch quotas that are often further allocated to specific permit holders or sectors. At the same time, serious consideration is being given to the effects of discards on the health of target and non‐target species. Some quota systems have incorporated discard reduction as an objective by counting discards (including unmarketable fish) against the overall quota. The potential effect of the introduction of a quota system that includes accountability for discards on the fishing strategies employed by fishermen is enormous. This is particularly true for multispecies fisheries where healthy and depleted stocks co‐exist; resulting in a trip's catch being applied to very large and very small stock quotas simultaneously. Under such a scenario, fishermen have a strong incentive to minimize (i) catch of low‐quota or ‘choke’ stocks, (ii) regulatory discards due to minimum size limits and (iii) catch partially consumed by predators. ‘Move‐on’ rules (i.e. event‐triggered, targeted, temporary closure of part of a fishery when a catch or bycatch threshold is reached) have been employed in a variety of fisheries. However, their efficacy has been limited by a lack of empirical analyses underpinning the rules. Here, we examine the utility of spatiotemporal autocorrelation analyses to inform ‘move‐on’ rules to assist a sector of the New England Multispecies Fishery to reduce discards and maximize profits. We find the use of empirical move‐on rules could reduce catch of juvenile and choke stocks between 27 and 33%, and depredation events between 41 and 54%.  相似文献   

4.
Spatial and temporal patterns in catch rates and in allocation of fishing effort were analysed for the coastal fishery in Spermonde Archipelago, Indonesia, to assess whether fishermen can optimise their strategy from catch information, or whether they fish under great uncertainty and merely minimise risks. On average 517 fishing units operated in the 2800 km2 area, catching 21 t fish day−1. Major gear categories were hook and line (59% of total effort and 5% of total catch), and lift nets (16% of total effort and 70% of total catch). The size of individual resource spaces varied with gear type and was smaller in unfavourable weather conditions. Although spatial patterns in catch rates at the scale of the whole archipelago were evident, fishermen could not differentiate between locations, as catch variance within their individual resource spaces was high relative to the contrasts in spatial patterns. The aggregated distribution of fishing effort in Spermonde must be explained by factors such as the small scale of operations, rather than fish abundance.  相似文献   

5.
With constant innovation to find more efficient ways to find, catch and process fish, catchability in wild fisheries can increase. Catchability is a combination of resource abundance, fishing effort and fishing efficiency: any increase in fleet efficiency can lead to undesirable effects not only on stocks, but also on the ability to assess them. When using effort controls as part of management, it is necessary to adjust for the increase in catchability due to the increases in efficiency over time to avoid stock depletion. Accounting for changes in catchability can be problematic for pelagic stocks, due to the changes in fishing behaviour and the continual change in fishing efficiency. This study investigates the success in finding patches of fish for fleets operating within the western and central Pacific purse seine fishery between 1993 and 2012. Three indices, widely used in ecological research, were used to study how spatial variation in fisher behaviour for sets on fish aggregating devices (FADs) and free‐school sets was related to catchability. For free‐school set types, the diversity index was negatively correlated with Katsuwonus pelamis catchability. When this index was low, catch rates were at their highest and there was a reduction in the area fished. In contrast, for FAD sets, catches increase when the patchiness index was low, implying a degree of random behaviour, potentially due to advances in FAD technology. An improved understanding of the spatial allocation of effort can improve catchability estimates widely used for fisheries stock assessments and in indices of global biodiversity.  相似文献   

6.
Yongshun Xiao   《Fisheries Research》2004,70(2-3):311-318
Fishing effort is a function of many (continuous) variables which fishers can manipulate. However, when catch and fishing effort data are analysed using a generalized linear model, individual types of fishing effort usually enter as a composite quantity. But not all quantities can be combined into a composite quantity. Use of such data this way generally leads to a loss of information and incurs a model bias. In this paper, I analyse catch and effort data for the blue swimmer crab off South Australia by a direct use of individual types of fishing effort to extract a relative index of biomass, and use the concept of homogeneous functions to present some of the results. I also give formulae for choosing a combination of different types of fishing effort to effect a specified level of catch in both absolute and relative terms. Assuming that catch follows an independent gamma, normal, negative binomial, or Poisson distribution, fitting of a generalized linear model with a log-link function to the commercial catch and effort data suggests that: (1) the exploitable biomass remained relatively constant from 1 July 1983 to 30 June 1996; (2) the relative instantaneous rate of fishing mortality of a particular sex and age (if gear selectivity was constant over time) slightly increased over time; (3) a 1% increase in the number of days fished gave about 0.85% increase in catch whereas a 1% increase in the number of people on a boat led to only about a 0.45% increase in catch. This implies that use of a composite measure of fishing effort such as boat days and man days when analysing catch and effort data is inappropriate for this fishery. Although a generalized linear model may be a reasonable first-order approximation, catch and effort data are best interpreted through a process model.  相似文献   

7.
A large portion of the catch in many stocks may comprise discards which need to be accounted for in assessments in order to avoid bias in estimates of fishing mortality, stock biomass and reference points. In age‐structured assessment models, discards are sometimes treated as a separate fleet or are added to the landings before fitting so that information about discard behaviour and sampling error is lost. In this paper, an assessment model is developed to describe the discard process with size as a covariate while retaining age‐structured population dynamics. Discard size selection, high grading and bulk dumping of fish at sea are modelled so that the temporal dynamics of the process can be quantified within the assessment. The model is used to show that discarding practices have changed over time in a range of Northeast Atlantic demersal fish. In some stocks, there is a substantial increase in high grading and evidence for bulk discarding which can be related to regulatory measures. The model offers a means of identifying transient effects in the discard process that should be removed from both short‐term forecasts and equilibrium reference point calculations.  相似文献   

8.
Wasted fishery resources: discarded by-catch in the USA   总被引:1,自引:0,他引:1  
Fishery by‐catch, especially discarded by‐catch, is a serious problem in the world's oceans. Not only are the stocks of discarded species affected, but entire trophic webs and habitats may be disrupted at the ecosystem level. This paper reviews discarding in the marine fisheries of the USA; however, the type, diversity and regulatory mechanisms of the fisheries are similar to developed fisheries and management programmes throughout the world. We have compiled current estimates of discarded by‐catch for each major marine fishery in the USA using estimates from existing literature, both published and unpublished. We did not re‐estimate discards or discard rates from raw data, nor did we include data on protected species (turtles, mammals and birds) and so this study covers discarded by‐catch of finfish and fishable invertebrates. For some fisheries, additional calculations were required to transform number data into weight data, and typically length and weight composition data were used. Specific data for each fishery are referenced in Harrington et al. (Wasted Resources: Bycatch and discards in US Fisheries, Oceana, Washington, DC, 2005). Overall, our compiled estimates are that 1.06 million tonnes of fish were discarded and 3.7 million tonnes of fish were landed in USA marine fisheries in 2002. This amounts to a nationwide discard to landings ratio of 0.28, amongst the highest in the world. Regionally, the southeast had the largest discard to landings ratio (0.59), followed closely by the highly migratory species fisheries (0.52) and the northeast fisheries (0.49). The Alaskan and west coast fisheries had the lowest ratios (0.12 and 0.15 respectively). Shrimp fisheries in the southeast were the major contributors to the high discard rate in that region, with discard ratios of 4.56 (Gulf of Mexico) and 2.95 (South Atlantic). By‐catch and discarding is a major component of the impact of fisheries on marine ecosystems. There have been substantial efforts to reduce by‐catch in some fisheries, but broadly based programmes covering all fisheries are needed within the USA and around the world. In response to international agreements to improve fishery management, by‐catch and discard reduction must become a regular part of fishery management planning.  相似文献   

9.
Strategic long‐term sampling programmes that deliver recreational catch, effort and species demographic data are required for the effective assessment and management of recreational fisheries and harvested organisms. This study used a spatially and temporally stratified observer programme to examine variation in the rates, quantities and lengths of retained and discarded catches of key species in a recreational charter fishery. Geographic region, but not season, significantly influenced catch rates of key demersal species, being driven by temporally persistent latitudinal clines in environmental conditions influencing species distributions. There was considerable trip‐to‐trip variation in catch rates that were attributed to localised differences in fishing operations, locations, environmental conditions and client preferences. Broad trends in retained and discarded catch rates were nevertheless, similar across different fishing effort standardisations (per‐trip, per‐hour, per‐client, per‐client/fished hour), demonstrating that the coarsest unit of effort could be used in fishery assessments. Discard rates of organisms were variable and driven by a combination of mandated legal lengths, individual client and operator preferences for particular species and sizes of organisms, and not due to attainment of catch quotas or high‐grading. This study has identified important fishery attributes that require consideration in assessing charter fisheries and stocks of recreational fish species.  相似文献   

10.
For fisheries management purposes, it is essential to take into account spatial and seasonal characteristics of fishing activities to allow a reliable assessment of fishing impact on resource. This paper presents a novel technique for describing spatial and temporal patterns in fishing effort. The spatial and seasonal fishing activity patterns of the French trawler fleet in the Celtic Sea during the period 1991–1998 were analysed by modelling fishing effort (fishing time) with generalised linear models. The linear model for fishing effort included fixed effects for both spatial (statistical rectangles) and temporal units (months). In addition, spatial correlations in any given month were modelled by an exponentially decreasing function. Temporal correlations were included using the previous month's fishing effort for a given spatial unit as predictor. A method based on cluster analysis of estimated model coefficients of spatial or temporal fixed effects is proposed for identifying groups of similar spatial and temporal units. A contiguity constraint is imposed in the clustering algorithm, ensuring that only neighbouring spatial units or consecutive temporal units are grouped. The cluster analysis identified 22 spatial and 9 temporal groups. Winter and spring months stood out as being more variable than the remaining months. Spatial groups were of varying size, and generally larger offshore. The proposed method is generic and could for example be used to analyse temporal and spatial patterns in catch or catch rate data.  相似文献   

11.
This study investigates the potential for using data from a vessel monitoring system (VMS) to create indices of commercial fishery performance that may be used in monitoring snow crab resource status. Fishing hours were screened from hourly positional signals to create an index of fishing effort (hours fished) for comparison with that derived from logbooks (number of trap hauls). Similarly, a VMS-based fishing catch per unit of effort (CPUE) index was developed for comparison with CPUE derived from logbooks. Analysis of these indices showed that VMS-based fishing effort and CPUE indices can be interpreted to provide reliable complementary or alternative indices to logbooks for assessment of fishery performance in the Newfoundland and Labrador (NL) snow crab (Chionoecetes opilio) fishery. We also developed a VMS-based index of fishing efficiency and illustrate how it can be applied toward understanding various behaviors and anomalies in the fishery. VMS data may offer other potential applications for snow crab assessment and management. Our approach and methods are applicable to other commercial fishery resources worldwide that are monitored using vessel monitoring systems.  相似文献   

12.
Relative abundance indices based on catch and effort data can become biased unless consideration is given to the spatial dynamics of the fishery such as changes in either the spatial distribution of fishing effort or the range of the stock over time. The construction of such indices therefore needs to take into account features of the fishery itself. In this paper, a general framework is presented for developing more appropriate abundance indices based on fishery catch and effort data. In developing this framework, it adopts the approach of (i) developing a range of hypotheses which encompass the uncertainties in the spatial–temporal dynamics of the stock and the fishing effort, (ii) identifying the hypotheses underlying the different CPUE series, and (iii) evaluating the available information relative to these hypotheses as the basis for evaluating CPUE indices. Observations from the fishery for southern bluefin tuna (Thunnus maccoyii) are used to illustrate various hypotheses about the nature of the fishery which can be used to construct indices of stock abundance while a simple simulation framework is used to explore the implications of some of these hypotheses on the accuracy of such indices.  相似文献   

13.
《Fisheries Research》2007,86(1):15-30
Observers aboard commercial trawlers collected data on the total catch composition of 614 and 479 hauls made by vessels operating off the south and west coasts of South Africa, respectively. On the south coast, four fishing areas were identified on the basis of target species and fishing depth. On the west coast, hauls were separated into those targeting hake Merluccius spp. in four depth ranges (0–300, 301–400, 401–500, and >500 m) and those targeting monkfish Lophius vomerinus. For each area, the catch composition was calculated and the species assemblages were investigated using cluster analysis and multi-dimensional scaling. Finally, for each coast, the weight of fish discarded annually was estimated. On the south coast, although hake dominated, between 21% and 47% of the catch was not hake, depending on the fishing area. In comparison, hake dominated west coast catches, the proportion of hake increasing with depth. For each fishery investigated, approximately 90% of the catch was processed and landed. However, estimates of annual discards indicate that the south and west coast fisheries may annually discard 9000 or 10,000 t and 17,000 or 25,000 t, of undersized and unutilizable fish and offal, respectively, depending on the estimation method used. When developing strategies to limit or enhance utilization of bycatch, cognisance should be taken of the differences in catch composition between the south and west coasts and of the importance of bycatch revenue to south coast fishing companies.  相似文献   

14.
利用栖息地指数模型预测秘鲁外海茎柔鱼热点区   总被引:4,自引:0,他引:4       下载免费PDF全文
利用栖息地指数模型准确地预测了秘鲁外海茎柔鱼的热点区。根据2008-2010年1-12月期间我国鱿钓渔船在秘鲁外海的生产数据,结合实时的海表温及海表面高度数据,分别建立以作业次数、单位捕捞努力量渔获量为基础的适应性指数。利用算术平均数模型建立基于海表温和海表面高度的栖息地指数模型,并利用2011年生产及环境数据对栖息地指数模型进行验证。结果显示,以作业次数为基础的适应性指数符合正态分布,而以单位捕捞努力量渔获量为基础的适应性指数显著性检验不显著,因此,只建立以作业次数为基础的模型。结果表明,以作业次数为基础的栖息地指数模型都高估了茎柔鱼热点区的范围,但大体范围基本一致,这说明其能较好地预测茎柔鱼的热点区。  相似文献   

15.
Spatial management measures are currently being used to manage bycatch and discards, given the spatial heterogeneity of fish distributions. However, permanent fishing closures are often poorly implemented, unresponsive to stock dynamics and do not achieve their management objectives. Recently, real‐time spatial management tools for managing bycatch and discards implemented under either a comanagement or self‐governance approach have been introduced in Europe and the US. Real‐time catch and discard information is shared among fishers to incentivise and encourage vessels to leave areas of high bycatch. Here, the similarities and differences, in governance, implementation and management of ten real‐time spatial management systems from across Europe and the US are reviewed. A framework is developed to characterize the attributes associated with voluntary, private and regulatory real‐time spatial management tools. Challenges and management practices in the different case studies are reviewed providing insights for designing these spatial management tools. The results illustrate that real‐time spatial management approaches can create incentives for fishers to develop, use and share information and technology to avoid undesired catch. Compared with Europe, the US has developed spatial management tools with more truly real‐time mechanisms and with greater involvement of the fishing industry in designing and operating the tools.  相似文献   

16.
《Fisheries Research》2006,79(2-3):257-265
Discarding undesirable catch is recognized as a major problem confronting fishery managers. It is widely perceived by managers, however, that reductions in discards can only be accomplished via reductions in good or desirable outputs and technical efficiency. Yet there appear to be few studies which actually examine the relationship between discard reduction and technical efficiency. In this paper, we present an alternative concept of technical efficiency, which explicitly recognizes that measures of technical efficiency should be adjusted for discard levels. This is because traditional measures of efficiency do not consider the resources used in order to discard. We also offer a framework based on data envelopment analysis for assessing efficiency in the presence of undesirable outputs. We examine the relationship between vessel efficiency and regulatory discards in the U.S. Georges Bank multi-species otter trawl fishery on a tow-level basis. We then examine differences between efficient and inefficient tows, and extend our results to the trip level. Further examination of trip-level results then yield insights into the potential impact of trip-limit regulations. Results show that in order to reduce discards, vessels are limited in the amount they can increase their total output, and that trip-limit regulations may have unintended consequences.  相似文献   

17.
《水生生物资源》2002,15(6):327-334
Observers were placed on pelagic vessels in the Scottish fisheries for mackerel (Scomber scombrus), herring (Clupea harengus), “maatje” herring (herring caught just before their first spawning) and argentines (Argentina silus) to monitor by-catch composition and discarding practices. A total of 67 days was spent at sea, 11 on the argentine fleet, 28 on the herring fleet, 12 on the “maatje” herring fleet and 16 on the mackerel fleet. The level of by-catch generally ranged from <1% to around 2.5% of the total catch. The argentine fishery took a significant proportion of blue whiting (Micromesistius poutassou) (approx. 10% of the overall catch) but this was landed and sold in the market. The greatest range of by-catch species was found in the argentine fishery, including 11 species of fish and one species of squid. Discarding rates in the fisheries varied, with herring and argentine fisheries showing no discards, the mackerel fishery a discard rate of around 4% and the “maatje” herring fishery a discard rate of around 11%. By-catches included small numbers of gannets (Morus bassanus) but no marine mammals. If the sampled trips were representative, results indicate that marine mammal by-catch events typically occur during less than one in 20 hauls in the fisheries studied. A larger scale study is needed to confirm this. Cetaceans were sighted in the vicinity of the fishing boats during 4% of observed fishing activities.  相似文献   

18.
Largemouth bass Micropterus salmoides (Lacepède) catch rates decline with sustained fishing effort, even without harvest. It is unclear why declines in catch rate occur, and little research has been directed at how to improve catch rate. Learning has been proposed as a reason for declining catch rate, but has never been tested on largemouth bass. If catch rate declines because fish learn to avoid lures, periods of no fishing could be a management tool for increasing catch rate. In this study, six small impoundments with established fish populations were fished for two May to October fishing seasons to evaluate the effect of fishing effort on catch rate. Closed seasons were implemented to test whether a 2‐month period of no fishing improved catch rates and to determine whether conditioning from factors other than being captured reduced catch rate. Mixed‐model analysis indicated catch rate and catchability declined throughout the fishing season. Catch rate and catchability increased after a 2‐month closure but soon declined to the lowest levels of the fishing season. These changes in catch rate and catchability support the conclusion of learned angler avoidance, but sustained catchability of fish not previously caught does not support that associative or social learning affected catchability.  相似文献   

19.
秘鲁沿岸秘鲁鳀渔场及渔汛分析   总被引:1,自引:0,他引:1  
陈芃  汪金涛  陈新军 《海洋渔业》2016,38(5):449-458
秘鲁鳀(Engraulis ringens)是栖息于东南太平洋沿岸的小型中上层鱼类,了解秘鲁鳀渔场和渔汛的状况有助于渔情预报工作的开展进而实现资源的合理利用。利用2005~2014年秘鲁各港口的上岸量数据,以上岸量(landings)、总捕捞努力量(fishing effort)和单位捕捞努力量渔获量(CPUE)为指标分析秘鲁鳀渔场分布及渔汛;结合二因素方差分析(two-factor analysis of variance)探究渔场月份和纬度上的显著性差异;利用分位数的方法,找出各年的旺汛时间。研究表明,每年的4~6月和11~12月为秘鲁鳀的主汛期;主要的捕捞区域分布在7°S~13°S;渔汛的前中期,上岸量和捕捞努力量有着明显的年间差异,而CPUE在渔汛后期年间差异明显。方差分析表明,不同月份和不同纬度对捕捞努力量[ln(effort+1)]有极显著的影响(P0.01);5月为一年中最主要的捕捞阶段。旺汛期分析表明,第一渔汛阶段的旺汛一般在5月出现,而第二渔汛阶段的旺汛一般在11月出现。研究结果有助于对秘鲁沿岸秘鲁鳀渔场及渔汛的认识。  相似文献   

20.
渔场捕捞强度信息可以为渔业资源评估和管理提供帮助。本研究结合2017年10—11月船舶自动监控系统(AutomaticIdentificationSystem,AIS)信息和同期中国中西太平洋延绳钓渔船捕捞日志数据,通过挖掘延绳钓渔船作业航速和航向特征,建立渔场作业状态识别模型,提取渔场捕捞强度信息。以3~9节为航速阈值和0°~10°及300°~360°为航向阈值,渔船作业状态识别准确率为68.29%。阈值识别和日志记录的捕捞强度信息在空间上相关性很高(0.96),基于AIS信息挖掘的渔船捕捞强度空间分布特征和实际非常相似。阈值识别和日志记录的捕捞强度信息在空间上与单位捕捞努力量渔获量(catch per unite of effort, CPUE)、渔获尾数、渔获重量和投钩数的空间相关系数均大于0.62,基于AIS信息挖掘的渔船空间捕捞强度也可替代用于渔业资源分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号