首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the extent of soil disturbance associated with bulldozer yarding and the regrowth of woody vegetation on bulldozer paths (skid trails) in selectively logged dipterocarp forest. In an area logged in 1993, using conventional, i.e., uncontrolled, harvesting methods, about 17% of the area was covered by roads and skid trails. In contrast, in a 450-ha experimental area where reduced-impact logging guidelines were implemented, 6% of the area was similarly disturbed. Skid trails in the reduced-impact logging areas were less severely disturbed than those in conventional logging areas; the proportion of skid trails with subsoil disturbance was less than half that in conventional logging areas. Four years after logging, woody plant recovery on skid trails was greater in areas logged by reduced-impact than by conventional methods. Skid trails where topsoil had been bladed off had less woody vegetation than skid trails with intact topsoil. In a chronosequence of logging areas (3, 6, and 18 years after logging), species richness and stem densities of woody plants (>1 m tall, <5 cm dbh) were lower on skid trail tracks than on skid trail edges or in adjacent forest. Both richness and density increased with time since logging, but even 18 years after logging, abandoned skid trails were impoverished in small woody stems compared with adjacent forest. Minimizing soil and stand disturbance during logging appears to allow a more rapid recovery of vegetation on bulldozed soils, but the long-term fate of trees growing on compacted soils remains uncertain.  相似文献   

2.
Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow plus salvage logging as to wind disturbance alone, by most vegetative measures.  相似文献   

3.
Native species of the Dipterocarpaceae are being planted throughout Southeast Asia as a source of future timber and to restore degraded lands. A detailed understanding of factors controlling seedling performance is required for the successful planting of dipterocarps. Below-ground resource availability is hypothesized to have a significant affect on seedling performance of dipterocarp species when planted in selectively logged forests or in open, degraded areas. This study tested three methods thought to increase below-ground resource availability and thereby improve the performance of two dipterocarp species (Dryobalanops aromatica and Shorea parvifolia) when grown in degraded secondary forest: nutrient addition, mulching, and increased planting-hole size. Seedlings of the two species were grown in two planting-hole sizes (12 cm×18 cm and 20 cm×30 cm), with and without nutrients (NPK), and with and without mulching. The experiment was conducted in two sites (Sampadi and Balai Ringin) in Sarawak, Malaysia, to test for spatial variation in treatment effects. Seedling growth and survival were monitored over 22 months. Seedling survival was >94% for both species and did not differ significantly among any of the treatments. High monthly rainfall throughout the first year of the experiment may have enhanced seedling survival. Nutrient addition had the strongest effect on seedling growth for both species, with nutrient addition increasing growth by >50% at Sampadi and for D. aromatica in one block at Balai Ringin. There was significant spatial variation in treatment effects. S. parvifolia did not respond to nutrient addition at Balai Ringin, suggesting that the plants may not have received the added nutrients in that site. Mulching had a positive effect on growth at Sampadi, but no effect or a negative effect at Balai Ringin. Further analysis of the specific effects of mulching on resource supply is required. Planting-hole size did not have a consistent significant effect on the growth of either species. This may have been due to the favorable soil water status during the experiment. The results of this experiment emphasize the potential importance of site effects and interactions between site and treatment effects in enrichment planting trials using dipterocarps. Further experimental studies on below-ground resource limitations of dipterocarp growth in a wide range of sites are required. Studies that monitor the availability and fluxes of soil resources will be the most informative.  相似文献   

4.
Group selection tree harvest has been proposed as an ecologically sustainable silvicultural technique in mixed conifer forests of the western Bhutan Himalayas. To evaluate this silvicultural technique, we studied the ecological consequences of a group selection tree harvest in mixed conifer forests by assessing 127 circular plots (71 in logged and 56 in unlogged stands) in two forest management units (FMUs). Tree species composition and diversity were similar between logged and unlogged stands. Seedling density and height growth vary by species and were influenced by logging and microsites, with generally taller seedlings found in the logged versus unlogged stands. Early successional shade-intolerant species colonized logged stands. Seedlings growing on bare soil scarified by harvesting had medium vigour while seedlings growing on bryophyte mats showed good vigour in both logged and unlogged stands. Moist sites with a northerly aspect supported profuse conifer seedling regeneration, compared to sites with a dry southerly aspect. Damage to conifer seedlings from herbivore browsing was minimal. Conifer seedling density and height growth was negatively affected by competition from herbaceous vegetation, most notably Salvia officinalis. Group selection tree harvest in southern dry exposures in spruce-dominated stands is silviculturally unsuitable because it alters tree succession.  相似文献   

5.
To better understand the potentials of the soil seed banks in facilitating succession towards a more natural forest of native tree species, we quantified the size and composition of the soil seed banks in established plantations in South China. The seed banks were from four typical 22-year-old plantations, i.e., legume, mixed-conifer, mixed-native, and Eucalyptus overstory species. Species diversity in the seed banks was low, and the vegetation species differed from those found in the seed bank in each plantation. A total of 1211 seedlings belonging to eight species emerged in a seedling germination assay, among which Cyrtococcum patens was most abundant. All species detected were shrubs and herbs, and no viable indigenous tree seeds were found in soil samples. Size and species composition of the seed banks might be related to the overstory species compositions of the established plantations. The seed bank density in soils was highest in the mixed-conifer plantation followed by Eucalyptus, mixed-native, and legume plantations. Species richness among the seed banks of plantations was ranked as follows: Eucalyptus > mixed-conifer > mixed-native = legume. The results indicated that the soil seed banks of the current plantations are ineffective in regenerating the former communities after human disturbances. Particularly, the absence of indigenous tree species seeds in the seed banks would limit regeneration and probably contribute to arrested succession at the pioneer community stage. It would appear from these data that the soil seed banks under the current plantations should not be considered as a useful tool leading the succession to more natural stages. Introduction of target indigenous species by artificial seeding or seedling planting should be considered to accelerate forest regeneration.  相似文献   

6.
云南蓝果树对种子萌发及幼苗生长的自毒效应   总被引:1,自引:0,他引:1       下载免费PDF全文
云南蓝果树为中国特有极度濒危一级保护植物,为探讨云南蓝果树濒危机理并进行有效保护,通过野外原位实验和室内受控实验相结合的方法,研究云南蓝果树对种子萌发及幼苗生长是否有自毒效应。结果表明:野外条件下,云南蓝果树的种子萌发受野外枯枝落叶和自身种皮的显著抑制;室内受控实验发现,云南蓝果树的根、茎、叶和种皮浸提液对种子萌发都有不同程度的显著抑制作用,其中,根的抑制作用最强(80.90%),种皮的抑制作用最弱(13.59%),而且云南蓝果树的根、茎、叶浸提液和根际土壤对幼苗生长(株高、叶片数和生物量)也表现出显著的抑制作用。  相似文献   

7.
We evaluated the survival and growth of Amburana cearensis, Cedrela fissilis, and Sterculia striata seedlings in three seasonally tropical dry forest fragments that were subjected to different logging levels (intact, intermediately and heavily logged). In each fragment, we planted 40 seedlings of each species and monitored these over a period of 1 year. The highest seedling survival rate (64%) occurred in the heavily logged fragment, which, however, also had the highest mortality risk for all species during the dry season. Only S. striata seedlings had different survival rates among the fragments. Height and diameter growth were higher at sites with higher canopy openness in the wet season. The survival and growth rates of seedlings planted in logged fragments indicate that this technique can be applied to restore and enrich logged forests of the Paran? River Basin.  相似文献   

8.
A two-year field trial was conducted to determine the growth response, and root emergence pattern of interior lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) seedlings in response to container type and forest floor removal. Seedlings were grown in StyroblocksTM, CopperblocksTM, or AirBlocksTM, and were planted directly into the undisturbed forest floor or into manually prepared planting spots where the forest floor had been scraped away to expose the mineral soil. Seedlings planted into scalped planting spots exhibited marginally but significantly (7%) greater above-ground growth rates (seedling stem volume); whereas seedlings planted into the forest floor produced significantly more (11%) new roots. There were no differences in above- or below-ground biomass. Seedlings grown in CopperblockTM containers produced a higher proportion of roots near the top of the plug when tested at lifting, however this pattern was not observed in the field. Given that scalping is more costly than forest floor planting, and that the increased shoot growth was relatively small, we recommend that forest floor planting be considered as an alternative to manual spot scalping for sites, such as the site tested here: those with cold, but well-drained soils and where competition from other plants is not a serious problem.  相似文献   

9.
The Rothwald forest in Lower Austria represents one of the few never logged old growth forests in Central Europe. Here, the influence of windthrow pits and mounds on tree regeneration in a spruce-fir-beech mountain forest was studied. Two main factors for recolonisation of sites after disturbance were investigated: (i) the trapping ability of microsites for seeds and (ii) the ability of particular tree species to establish and grow on different microsites. On two one hectare permanent sample plots, pits resulting from windthrow with existing tree trunks were recorded. At each windthrow three microsites were determined: pit, pitwall and undisturbed forest floor. If the windthrow plate already collapsed and formed a mound, this microsite was recorded as well. Furthermore, a control site was established at each windthrow. For two years the development of seedlings at four different microsites and the according control sites were monitored. To describe the variability of environmental factors possibly influencing seedling establishment and survival, litter, humus and soil attributes, herb vegetation cover as well as light availability (GSF) were assessed. In addition, soil temperature, chemical soil properties and water content were recorded at randomly selected windthrows. The distribution of the seedlings was assessed with a Redundancy Analysis, its occurrence modelled with a logistic regression and the mortality analysed with the Kaplan-Maier lifetime function. In contrast to the assumption of seed accumulation in concave microsites because of secondary dispersal, the pit microsites show comparable seed rain to the control site. However, pits have the lowest seedling numbers and by far the highest mortality rates of seedlings. The thickness of leaf litter was identified as a major driver of suitability of a microsite for recolonisation. Through its thickness, it inhibits germination and smothering of seedlings poses a particular high hazard during the winter period. Also different establishment patterns of the investigated tree species were detected. The results indicate that windthrows create microsite heterogeneity and plant species richness but limit tree population size and spatial distribution of the occurring tree species.  相似文献   

10.
Timber harvesting, with and without prescribed slash fire, and wild fire are common disturbances in pine forests of western North America. These disturbances can alter soil nitrogen (N) pools and N supply to colonizing vegetation, but their influence remains poorly understood for many forests. We investigated the effects of clear cut harvesting and fire on KCl extractable N pools, net N mineralization rates, phosphorus (P) fractions, seedling N uptake, and seedling growth in mineral soils sampled from a lodgepole pine forest in southern Wyoming. At a site where wild fire burned through a harvested stand of lodgepole pine and the adjacent intact forest, we analyzed mineral soils from the following four treatments: unburned clear cut, burnt clear cut, unburned forest, and burnt forest. Soils from unburned and burnt clear cut treatments had higher concentrations of KCl extractable N and higher net N mineralization rates, and produced larger pine seedlings in bioassays than soils from unburned and burnt intact forest treatments. Further, while seedlings grown in soils from the unburned and burnt forest treatments responded strongly to N fertilization, seedlings grown in clear-cut soils did not respond to fertilization. Taken together, these results suggest that harvesting had increased soil N supply. In comparing clear cut treatments, soils from the unburned clear cut had smaller extractable N and P pools, and lower net N mineralization rates, but produced larger pine seedlings than soils from the burnt clear cut.  相似文献   

11.
Balancing timber production and conservation in tropical forests requires an understanding of the impacts of silvicultural manipulations on specific groups of organisms. Lianas are characteristic of many tropical forests, where they contribute to species diversity, ecosystem functioning, and biomass. However, lianas can also impede timber production by increasing logging damage and slowing tree growth. Cutting lianas prior to logging can mitigate the negative effects, but may adversely affect a forest's value for conservation. To evaluate the effects of forest management activities on lianas, this study assessed the impacts of logging, both with and without pre-logging liana cutting, on the relative abundance and population structure of five species of lianas that differed in primary reproductive strategies.Inventories of the five study species were conducted 10 years following logging in 4.4 ha plots in three adjacent treatment areas: (1) an old-growth forest reserve, (2) a selectively-logged forest that used conventional practices for the region, and (3) a forest that was logged using reduced-impact logging (RIL) techniques including complete liana cutting prior to logging. Liana species responses to logging varied according to their primary modes of reproduction. Croton ascendens, a pioneer species with a persistent seed bank, had a higher abundance in the two logging treatments relative to the old-growth forest, while Serjania caracasana, an early successional species lacking a persistent seed bank, showed abundant regeneration following conventional logging but negligible regeneration following RIL. In contrast, Acacia multipinnata, also an early successional species, showed abundant regeneration following RIL owing to the sprouting of persistent prostrate stems present on the forest floor prior to logging. In both logged areas, Bauhinia guianensis recruited abundant climbing stems from self-supporting seedlings that were present prior to logging, but it showed greatly reduced seedling density following RIL. By sprouting profusely from both fallen stems and stumps, Memora schomburgkii recruited abundant small-diameter climbing stems in both of the logging treatments. The results of this study demonstrate that there are interspecific differences in liana responses to different types of logging and that knowing species’ primary modes of reproduction is a valuable first step toward predicting those responses.  相似文献   

12.
Kayama M  Sasa K  Koike T 《Tree physiology》2002,22(10):707-716
We investigated the adaptation of three spruce species (Picea glehnii Masters, P. jezoensis Carr. and P. abies Karst.) to growth in northern Japan on serpentine soils (characterized by high concentrations of heavy metals and Mg, a low Ca/Mg ratio and low fertility) and fertile brown forest soils. Among species, seedling survival on serpentine soil was highest in P. glehnii. Shoot growth of P. glehnii was similar whether grown on serpentine or brown forest soil, whereas shoot growth of the other species was significantly less on serpentine soil than on brown forest soil. On serpentine soil, needle life span of P. glehnii was at least 3 years longer than that of the other two species. Needle area per shoot of P. glehnii was significantly higher on serpentine soil than on brown forest soil up to a shoot age of 8 years. In all three species, light-saturated photosynthetic rate (Pmax) decreased with needle age independently of soil type. However, on serpentine soil, Pmax in P. glehnii was higher, particularly in older needles, than in the other species. Furthermore, on serpentine soil, needle concentrations of nitrogen and phosphorus were higher in P. glehnii than in the other species. We conclude that P. glehnii is better adapted to serpentine soil than P. jezoensis and P. abies at least in part because of its greater needle life span and higher needle nutrient concentrations.  相似文献   

13.
Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north-eastern Bolivia. Some species benefited from increased light intensities on abandoned logging roads. Others benefited from low densities of competing vegetation on roads with compacted soils. This was the case for the small-seeded species Ficus boliviana C.C. Berg and Terminalia oblonga (Ruiz & Pav.) Steud. Some species, e.g. Hura crepitans L., displayed patchy regeneration coinciding with the presence of adult trees. Our results suggest that current management practices could be improved by intensifying logging in some areas to improve regeneration of light demanding species. Sufficient seed input in logged areas should be ensured by interspersing large patches of unlogged forest with logged areas. This may also assist regeneration of species that perform poorly in disturbed areas.  相似文献   

14.
African mahoganies of the genus Entandrophragma are among the most valuable and important timber species harvested in Central Africa, representing more than 70% of total export volume from many areas. In spite of the importance of these species, relatively little is known about their regeneration ecology and little effort has gone into understanding the reasons for the consistently reported regeneration failures after logging. I assessed seed survival to germination (Entandrophragma angolense) and seedling survivorship (E. cylindricum) in three different forest types – monodominant Gilbertiodendron, mixed species, and fallow forest – under three different treatments – control, small mesh chicken wire, and large mesh chicken wire – to evaluate the relative importance of different causes of mortality. All seeds were eaten in controls and in both exclosure treatments within Gilbertiodendron forest in a matter of days. Seed survivorship to germination within exclosures in mixed species and fallow forest increased by approximately 10 and 25%, respectively, compared to Gilbertiodendron forest. Six-month seedling survivorship in controls was 37, 12, and 9% in Gilbertiodendron, mixed species and fallow forest, respectively. Seedling mortality was due to different causes in each forest type. In Gilbertiodendron forest controls, an equivalent percentage of seedlings died due to fungal and insect attack (27 and 28%, respectively), while in mixed species forest controls 28 and 55% of seedlings died of these causes, respectively. In fallow forest controls, 48% of seedlings died from predation and/or uprooting by small mammals, all in the first few weeks post-sowing; insect attack (26%) and drought (13%) were other important causes of seedling deaths. Protecting seedlings with exclosures had a dramatic effect on seedling survivorship within the fallow forest, increasing to over 50%.  相似文献   

15.
Aspen (Populus tremuloides Michx) has great potential as a reclamation species for mining sites in the boreal forest, but planting stock has shown poor field performance after outplanting. In this study we tested how different aspen seedling characteristics and planting times affect field outplanting performance on reclamation sites. We produced three different types of aspen planting stock, which varied significantly in seedling size, root-to-shoot ratio (RSR), and total non-structural carbohydrate (TNC) reserves in roots, by artificially manipulating shoot growth during seedling production. All three stock types were then field-planted either in late summer, late fall, or early spring after frozen storage. Seedlings were outplanted onto two reclaimed open-pit mining areas in the boreal forest region of central and east-central Alberta, Canada, which varied significantly in latitude, reclamation history, and soil conditions. Overall, height growth was better in aspen stock types with high RSR and TNC reserves. Differences in field performance among aspen stock types appeared to be more strongly expressed when seedlings were exposed to more stressful environmental site conditions, such as low soil nutrients and moisture. Generally, aspen seedlings planted with leaves in the summer showed the poorest performance, and summer- or fall-planted seedlings with no shoot growth manipulation had much greater stem dieback after the first winter. This indicates that the dormancy and hardening of the stem, as a result of premature bud set treatments, could improve the outplanting performance of aspen seedlings, particularly those planted during summer and fall.  相似文献   

16.
Natural fires and logging are two of the main disturbances affecting upland boreal forest in Alaska. The objectives of this study were to determine whether logged sites differ from burned sites in (1) overall plant species richness, (2) successional trajectories, and (3) species diversity at particular stand structural development stages. We compared plant species diversity on sites burned in natural fires to sites that were logged and not subsequently burned in central Alaska. We sampled 12 logged and 12 burned former upland white spruce (Picea glauca (Moench) Voss) forests in four stand development stages representing stand initiation (stage A), early stem exclusion (stage B), understory reinitiation (stage C), and mature hardwood (stage D) stages. In this study the dates of disturbance varied from 1990 to 1994 in stage A, 1978 to 1983 in stage B, 1957 to 1965 in stage C, and 1900 to 1920 in stage D plots. All sites were similar in slope, aspect, and soil type. Vascular plants were identified to the species level (except for certain willows) and bryophytes and lichens were identified to the level of presumptive (usually unknown) species within family groups. Organic layer thickness was significantly greater on logged sites compared to burned sites overall and at each stage. Burned sites (all stages combined) supported more species (146) than logged sites (111), and more species at each stand development stage. Burned plots in stages A and B supported abundant cover of a few apparent fire specialist species (Ceratodon purpureus (Hedw.) Brid., Marchantia polymorpha L. and Leptobryum pyriforme (Hedw.) Wils.) that were present in only minor amounts on logged sites. Burned plots exhibited higher species turnover from stage to stage and among all stages than logged plots. Species dominant in burned stage A plots were nearly absent in burned stage C and D plots, while logged stage A dominants, which were common mature forest species, increased in each subsequent stage. We compared floristic similarity between our disturbance plots and mature upland white spruce stands in Bonanza Creek Long-Term Ecological Research (LTER) site. Only five species found in the LTER dataset were not also present in this study, which suggests that nearly all species compositional change in our study area occurs during the first century after disturbance. Logged sites appear to begin and continue succession with a greater share of the original mature forest understory plants, while burned sites initiate succession with more distinctive and specialized plant species.  相似文献   

17.
This study assessed the effects of exploitations in natural forest ecosystems on tree species diversity and environmental conservation. This was achieved by comparing tree species diversity and yield in an unlogged forest (Strict Nature Reserve) and a forest reserve where active logging is in progress in Ondo State, Nigeria. Eight plots (20 m × 20 m) were assessed in each site using systematic sampling techniques. All living trees with dbh >10 cm were identified, categorized into families with their diameter at breast height (dbh) measured in each plot. Shannon-Weiner and species evenness indices were used to assess and compare tree species diversity and abundance. The results show that the tropical humid forest is very rich in tree species, as a total of 54 different tropical hardwood species from 23 families were encountered in both forest types. There were 46 species distributed among 21 families in the unlogged forest and 24 species in 14 families in the logged forest. Shannon-Weiner diversity index of 3.16 and 3.03 and evenness index of .83 and .81 were also obtained for the unlogged and logged forest, respectively. Every variable computed had a higher value in the unlogged forest relative to the logged forest. In the unlogged forest, the species with the highest number of occurrence was Mansonia altissima A. Chev. (80 stems/ha). Caesalpinoidae and Sterculiaceae families had the highest number of species (6). In the logged forest, Triplochiton scleroxylon K. Schum. (18 stems/ha) had the highest frequency and Caesalpinoidae family has the highest number of species (4). The study concludes that exploitation has affected species diversity in the ecosystem and subsequently, the roles of trees in environmental conservation are affected.  相似文献   

18.
Mexican montane rainforests and adjacent disturbed areas were studied for disturbance-related spatio-temporal changes to the arbuscular mycorrhizal fungal (AMF) community and soil glomalin concentration. The AMF community functions to both improve plant growth and soil conditions and is thus an important component to the restoration of this forest type to disturbed areas. The study areas included mature rainforests that were converted to pine forests, milpas, pastures and shrub/herbaceous plant communities via burning and logging. Seasonal patterns in AMF spore species richness and sporulation significantly differed across disturbance types at two of the three sites surveyed. Contrasting patterns of sporulation among AMF families across different disturbance types helped to explain how species richness and composition were maintained despite dramatic changes to the host plant community. Meaning, in most cases, disturbance induced changes in when different AMF taxa sporulated but not what taxa sporulated. Only conversion from mature pine–oak–LiquidambarPersea forests to pine-dominated stands severely reduced AMF spore richness and total sporulation. Surprisingly, in pine-dominant stands no concomitant negative impacts on soil glomalin (MAb32B11 immunoreactive soil protein) concentrations were detected. However, soils of mature forests containing no pines had the highest concentration of glomalin. Conversion to pasture and milpa (diverse cornfield) had a strong negative impact on the concentration of soil glomalin concentrations. In sharp contrast, the same disturbance types improved AMF sporulation and AMF spore richness. It appears that disturbance type, and not AMF community measures used herein, best predicts changes in soil glomalin concentration.  相似文献   

19.
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in lodgepole pine (Pinus contorta var. latifolia) forests of the Greater Yellowstone Ecosystem (WY, USA) across a 0-30 year chronosequence of time-since-beetle disturbance. Recent (1-4 years) bark beetle disturbance increased total litter depth and N concentration in needle litter relative to undisturbed stands, and soils in recently disturbed stands were cooler with greater rates of net N mineralization and nitrification than undisturbed sites. Thirty years after beetle outbreak, needle litter N concentration remained elevated; however total litter N concentration, total litter mass, and soil N pools and fluxes were not different from undisturbed stands. Canopy N pool size declined 58% in recent outbreaks, and remained 48% lower than undisturbed in 30-year old outbreaks. Foliar N concentrations in unattacked lodgepole pine trees and an understory sedge were positively correlated with net N mineralization in soils across the chronosequence. Bark beetle disturbance altered N cycling through the litter, soil, and vegetation of lodgepole pine forests, but changes in soil N cycling were less severe than those observed following stand replacing fire. Several lines of evidence suggest the potential for N leaching is low following bark beetle disturbance in lodgepole pine.  相似文献   

20.
Fast-growing trees such as hybrid poplars (Populus) have the potential to decrease rotation length (time to harvest) and thus produce wood products more quickly from smaller areas of land. Several forest companies in Quebec currently plant hybrid poplar on formerly logged forest sites, rather than on agricultural land as is more common elsewhere. The forest sites often have acidic soils, and lime addition has been proposed to improve hybrid poplar growth. In addition, forest sites present challenges with regard to control of competitive vegetation, particularly in jurisdictions such as Quebec where use of herbicides in forests is banned or restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号