首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro inhibition of electric eel acetylcholinesterase (AChE) by single and simultaneous exposure to organophosphorus insecticides diazinon and chlorpyrifos, and their transformation products, formed due to photoinduced degradation, was investigated. Increasing concentrations of diazinon, chlorpyrifos and their oxidation products, diazoxon and chlorpyrifos-oxon, inhibited AChE in a concentration-dependent manner. IC50 (20 min) values, obtained from the inhibition curves, were (in mol/l): (5.1 ± 0.3) × 10−8, (4.3 ± 0.2) × 10−6 and (3.0 ± 0.1) × 10−8 for diazoxon, chlorpyrifos and chlorpyrifos-oxon, respectively, while maximal diazinon concentration was lower than its IC50 (20 min). Calculated KI values, in mol/l, of 7.9 × 10−7, 9.6 × 10−6 and 4.3 × 10−7 were obtained for diazoxon, chlorpyrifos and chlorpyrifos-oxon, respectively. However, 2-isopropyl-4-methyl-6-pyrimidinol (IMP) and 3,5,6-trichloro-2-pyridinol, diazinon and chlorpyrifos hydrolysis products, did not noticeably affect the enzyme activity at all investigated concentrations. Additive inhibition effect was achieved for lower concentrations of the inhibitors (diazinon/diazoxon ?1 × 10−4/1 × 10−8 mol/l i.e., chlorpyrifos/chlorpyrifos-oxon ?2 × 10−6/3 × 10−8 mol/l), while an antagonistic effect was obtained for all higher concentrations of the organophosphates. Inhibitory power of 1 × 10−4 mol/l diazinon irradiated samples can be attributed mostly to the formation of diazoxon, while the presence of non-inhibiting photodegradation product IMP did not affect diazinon and diazoxon inhibitory efficiencies.  相似文献   

2.
A hydrophilic form of acetylcholinesterase (AChE) was purified from N-methyl carbamate susceptible (SA) and highly N-methyl carbamate-resistant (N3D) strains of the green rice leafhopper (GRLH), Nephotettix cincticeps Uhler. Both of purified AChE from SA and N3D strains displayed the highest activities toward acetylthiocholine (ATCh) at pH 8.5. In the SA strain, the optimum concentrations for ATCh, propionylthiocholine (PTCh), and butyrylthiocholine (BTCh) were about 1 × 10−3, 2.5 × 10−3, and 1 × 10−3 M, respectively. However, in the N3D strain, substrate inhibition was not identified for ATCh, PTCh, and BTCh to 1 × 10−2 M. The Km value in the SA strain was 51.1, 39.1, and 41.6 μM and that in the N3D strain was 91.8, 88.1, and 85.2 μM for ATCh, PTCh, and BTCh, respectively. The Km value in the N3D strain indicated about 1.80-, 2.25-, and 2.05-fold lower affinity than that of the SA strain for ATCh, PTCh, and BTCh, respectively. The Vmax value in the SA strain was 70.2, 30.5, and 4.6 U/mg protein and that in the N3D strain was 123.0, 27.0, and 14.5 U/mg protein for ATCh, PTCh, and BTCh, respectively. The Vmax value in the N3D strain was 1.75- and 3.15-fold higher for ATCh and BTCh than that in the N3D strain. However, it was 1.13-fold lower for PTCh. The increased activity of AChE in the N3D strain is due to the qualitatively modified enzyme with a higher catalytic efficiency. The bimolecular rate constant (ki) for propoxur was 27.1 × 104 and 0.51 × 104 M−1 min−1 in the SA and N3D strain and that for monocrotophos was 0.031 × 104 and 2.0 × 104 M−1 min−1 in the SA and N3D strain. AChE from the N3D strain was 53-fold less sensitive than SA strain to inhibition by propoxur. In contrast, AChE from the N3D strain was 65-fold more sensitive to inhibition by monocrotophos than AChE from the SA strain. This indicated negatively correlated cross-insensitivity of AChE to propoxur and monocrotophos.  相似文献   

3.
A sixty-day experiment was carried out to study the effect of dietary pyridoxine (PN) on growth performance, RNA/DNA ratio and some biochemical parameters of Labeo rohita fingerlings exposed to sub-lethal dose of endosulfan (1/10th of 96 h static non-renewal LC50 = 0.2 ppb) to assess the role of pyridoxine in ameliorating the negative effects of endosulfan. Two hundred seventy fingerlings (6.5 ± 0.26 g) were randomly distributed into six treatments in triplicates (15 fish/tank). Five iso-nitrogenous (35.45-35.75% crude protein) purified diets were prepared with graded levels of pyridoxine. Six treatment groups were T0 (10 mg PN + without endosulfan), T1 (0 mg PN + endosulfan), T2 (10 mg PN + endosulfan), T3 (50 mg PN + endosulfan), T4 (100 mg PN + endosulfan) and T5 (200 mg PN + endosulfan). Weight gain (%), specific growth rate (SGR), tissue glycogen, and protease activity were significantly (P < 0.05) higher in pyridoxine fed groups compared to their non-pyridoxine fed counterpart. Protease activity was positively correlated (R2 = 0.931) with (%) weight gain. Glucose-6-phosphate dehydrogenase (G6PDH) activity was significantly (P < 0.05) higher in non-pyridoxine fed group and decreased in pyridoxine fed counterparts. There were no significant (P > 0.05) effect of dietary pyridoxine on feed conversion ratio (FCR), protein efficiency ratio (PER), survival, gastro-somatic index (GSI), hepato-somatic index (HSI) and liver and muscle DNA levels of L. rohita fingerlings. RNA levels, both in liver and muscle, increased significantly (P < 0.05) in pyridoxine fed groups. A positive correlation was observed between growth and RNA levels, both in liver (R2 = 0.91) and muscle (R2 = 0.88). RNA/DNA ratio showed a third order polynomial relationship with dietary pyridoxine, both in liver (Y = −0.014x3 + 0.1613x2 − 0.5333x + 0.7933, R2 = 0.987) and muscle (Y = −0.0407x3 + 0.4763x2 − 1.6358x + 2.4667, R2 = 0.9345). The overall results obtained in present study indicated that dietary pyridoxine supplementation at 100 or 200 mg PN/kg diet ameliorates the negative effects of endosulfan and restores optimal growth of L. rohita fingerlings.  相似文献   

4.
The in vitro inhibition potency of some organophosphates (OPs) and carbamates (CAs) which are widely used to control plant-parasitic nematodes on acetylcholinesterase (AChE) of Meloidogyne javanica, Heterodera avenae and Tylenchulus semipenetrans, the major pathogens responsible for the damage of a wide range of crops in Al-Qassim region, Saudi Arabia was examined. AChE of H. avenae activity was 1.58- and 1.51-fold greater than that of T. semipenetrans or M. javanica, respectively. The order of inhibition potency of the tested compounds against T. semipenetrans AChE was: carbofuran > paraoxon > oxamyl > fenamiphos > phorate-sulfoxide > aldicarb, where the corresponding concentrations that inhibited 50% of the nematode AChE activity (I50) were 5 × 10−8, 7 × 10−7, 7.5 × 10−7, 2 × 10−6, 2 × 10−4 and 2 × 10−3 M, respectively. Paraoxon, fenamiphos and carbofuran exhibited high inhibition potency against M. javanica AChE where the I50 values were below 1 nM. Phorate-sulfoxide and aldicarb were potent inhibitors of M. javanica AChE with I50 values of 3.8 and 8 nM, respectively, while oxamyl exhibited low inhibition potency with I50 of 15 nM. Fenamiphos and paraoxon showed the highest I50 values of <100 μM against H. avenae followed by oxamyl (I50 < 1 mM), whereas paraoxon, carbofuran and aldicarb showed low potency with I50 values >1 mM. All the tested compounds exhibited high inhibition potency to AChE of M. javanica than T. semipenetrans or H. avenae. Except phorate-sulfoxide in M. javanica the inhibition pattern and implied mechanism for all the tested compounds for the three nematodes is suggested to be a linear mixed type (a combination of competitive and non-completive type).  相似文献   

5.
Trehalase, with the target to control insects, nematodes and fungi, is of increasing interest and has been investigated extensively in recent years. Validamycin compounds, as competitive trehalase inhibitors and lead compounds with broad applications have attracted substantial attention as well. In this study, the characterizations of termites trehalase were investigated and the inhibitory effects of validamycin compounds on the termites trehalase were studied as well. Results showed that the termites trehalase is presumably belonging to the acid trehalase with optimal pH of 3.3 and optimal temperature of 37 °C. It was investigated that the concentrations of validoxylamine A (VAA), validoxylamine B (VBB), validamycin A (VA) and validamycin B (VB) required for 50% inhibition IC50 of termites trehalase were calculated to be 14.73 mg l−1, 20.80 mg l−1, 3.17 × 103 mg l−1and 2.24 × 103 mg l−1, respectively. The inhibition kinetic constant Ki values for the above validamycin compounds were 3.2 × 10−6 mol l−1, 1.03 × 10−5 mol l−1, 4.02 × 10−4 mol l−1and 2.69 × 10−4 mol l−1, respectively. Validoxylamine A appeared to be the most potential termites trehalase inhibitor among the four compounds.  相似文献   

6.
The activity of the mutant CYPBM3 “21B3”, which is able to use hydrogen peroxide as the final electron acceptor, was evaluated against two major environmental pollutants; organochlorine and organophosphorus pesticides. This evolved CYP from Bacillus megaterium is able to transform a variety of structurally different pesticides. The catalytic parameters for two organochlorine; dichlorophen (kcat = 9.2 min−1, KM = 64.1 μM) and linuron (kcat = 226.5 min−1, KM = 468.2 μM), and two organophosphorus compounds; parathion (kcat = 10.9 min−1, KM = 59.3 μM) and chlorpyrifos (kcat = 9.2 min−1, KM = 226.5 μM) were determined giving catalytic efficiencies between 0.143 and 1.107 min−1 μM−1. CYPBM3 “21B3” has the ability to both activate and detoxify organophosphorus pesticides, as demonstrated by the chemical nature of the reaction products. The capacity to transform structurally diverse compounds together with the great stability, easy production and relatively inexpensive cofactors needed, makes CYPBM3 “21B3” an enzyme with a potential use on the environmental field.  相似文献   

7.
The features of two insecticides (chlorpyrifos and cypermethrin) binding to two blood proteins, bovine serum albumin (BSA), and bovine hemoglobin (BHb), were investigated via the fluorescence method. The results revealed that both insecticides caused the fluorescence quenching of BSA and the fluorescence enhancement of BHb. A new parameter (FE), i.e., the fluorescence intensity when adequate insecticide was added, was introduced to obtain the association constant (KA) and the number of binding sites (n). KA and n of chlorpyrifos and cypermethrin binding to BSA were 2.99 × 105 and 5.22 × 105 L mol−1, 1.25 and 0.78, respectively. KA and n of chlorpyrifos and cypermethrin binding to BHb were 2.94 × 104 and 2.48 × 104 L mol−1, 1.75 and 2.19, respectively. In conclusion, chlorpyrifos and cypermethrin could bind to BSA and BHb, and the binding of both insecticides to BSA was significantly stronger than that of insecticides to BHb. These could affect the distribution, metabolism, and excretion of insecticides.  相似文献   

8.
Effects of deltamethrin on voltage-sensitive calcium channels (VSCC) from rat brain (Cav2.2) expressed in Xenopus oocytes were assessed electrophysiologically. Deltamethrin reduced peak current of wild-type Cav2.2 in a stereospecific and concentration-dependent manner with an EC50 of 1 × 10−9 M. Phosphorylation of threonine 422 enhances voltage-sensitive calcium current, increases the probability that Cav2.2 will open under depolarizing conditions and antagonizes the inhibition of the channel by the betagamma subunit of heterotrimeric G-protein (Gβγ). Site-directed mutagenesis of threonine 422 to glutamic acid (T422E) results in a channel that acts as if it were permanently phosphorylated. Deltamethrin (10−7 M) significantly enhanced peak current via the T422E channel (1.5-fold) compared to the nontreated control and the increase was significantly greater than for either the wild-type (T422) or T422A (permanently unphosphorylated mutant) channels. The effect of deltamethrin on T422E Cav2.2 was stereospecific and concentration-dependent with an EC50 of 9.8 × 10−11 M. Thus, Cav2.2 is modified by deltamethrin but the resulting perturbation is dependent upon the phosphorylation state of threonine 422.  相似文献   

9.
10.
Organophosphorus pesticides (OPs) are of environmental significance due to their high toxicity to animals. Binding to plasma proteins may effective influence the toxicological properties of xenobiotics. In an attempt to evaluate the affinity of phenthoate (PTA) to bovine serum albumin (BSA) and inhibitory ability of bound PTA to acetylcholinesterase (AChE), we investigated the interactions between phenthoate (PTA) and bovine serum albumin (BSA) using tryptophan fluorescence quenching and subsequent inhibition on AChE activity by PTA. The results showed that PTA caused the fluorescence quenching of BSA because of the formation of a PTA-BSA complex. Quenching constants (Ksv), determined using the Sterns-Volmer equation to provide a measure of the binding affinity between PTA and BSA at 303, 306, 310 and 313 K were (3.4295 ± 0.0763) × 10−4, (3.2446 ± 0.0635) × 10−4, (3.0434 ± 0.0856) × 10−4 and (2.8262 ± 0.0569) × 10−4 M−1, respectively. The thermodynamic parameters, ΔH and ΔS were −25.04 kJ mol−1 and 168.94 J mol−1 K−1, respectively, which indicated that the electrostatic interactions played a major role in PTA-BSA association. The presence of BSA consistently reduced the inhibitory ability of PTA on AChE, with the relative activity being increased from 46.98 to 61.71% for the concentration range of BSA between 0 and 4.0 g L−1.  相似文献   

11.
Valienamine, an aminocyclitol with similar configuration to α-glucose, has a strong inhibitory effect on α-glucosidase. α-Glucosidase plays an important role in insect carbohydrate metabolism. The inhibitory effect of valienamine on the enzymatic activity of honeybee (Apis cerana Fabr.) α-glucosidase was investigated. Our results show that valienamine inhibition of honeybee α-glucosidase was pH- and dose-dependent, but temperature-independent. Valienamine is shown to be a potent and competitive reversible inhibitor of honeybee α-glucosidase in vitro with an IC50 value of 5.22 × 10−5 M and Ki value of 3.54 × 10−4 M at pH 6.5, 45 °C. Valienamine has the potential to be developed into novel insecticides.  相似文献   

12.
A series of nicotinamide derivatives based on Boscalid were prepared and tested for their activities against seven plant pathogenic fungi and two insects. The preliminary bioassays indicated that almost all of the synthesized target compounds displayed the antifungal activities and some of them also had certain insecticidal activities. And, compound 12 showed the strongest activity of all against Rhizoctonia solani (EC50 = 0.010 mg L−1) and Sphaceloma ampelimum (EC50 = 0.040 mg L−1), even stronger than Boscalid, a new nicotinamide fungicide. Additionally, both compounds 1 and 2 showed strong activities against Plutella xylostella (90% and 80%, respectively, at 1000 mg L−1).  相似文献   

13.
Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10−4 nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm2 for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm2 against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm2 compared to DEET (MED of 0.091 μmol/cm2). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm2 which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent activity of para- trifluoromethylphenyl amides.  相似文献   

14.
Glutathione transferase (GST) was purified from the hindgut of grasshopper (Zonocerus variegatus) a polyphagous insect. The purified enzyme had a native molecular weight of 40 kDa and a subunit molecular weight of 19 kDa. The purified enzyme could conjugate glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB), paranitrobenzylchloride, paranitrophenylacetate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBDCl), and 1,2-dichloro-4-nitrobenzene (DCNB) with specific activities of 3.3 ± 0.3, 0.49 ± 0.10, 0.10 ± 0.002, 1.2 ± 0.2, and 1.7 ± 0.4 μmol/min/mg protein, respectively. CDNB appears to be the best substrate with a specificity constant, kcat/Km, of 1.8 ± 0.1 × 10−4 M−1 S−1. The kinetic mechanism of Z. variegatus GST (zvGST) in the conjugation of GSH with some electrophilic substrates appears complex. Conjugation of GSH with DCNB was inhibited by high DCNB concentration, while with NBDCl, as the electrophilic substrates, different values of Km were obtained at high and low concentrations of the substrates. Cibacron blue, hematin, S-hexylglutathione, and oxidized glutathione inhibited the enzyme with I50 values of 0.057 ± 0.004, 0.80 ± 0.2, 33 ± 2 μM, and 5.2 ± 0.3 mM, respectively. The nature of inhibition by each of these inhibitors is either competitive or non-competitive at varying GSH or CDNB as substrates. NADH and NAD+ inhibited the enzyme with an I50 value of 0.4 ± 0.01 and 11 ± 1 mM, respectively. NADH at a concentration of 0.54 mM completely abolished the activity. As part of its adaptation, the flexible kinetic pathway of detoxication by zvGST may assist the organism in coping with various xenobiotics encountered in its preferred food plants.  相似文献   

15.
Amitraz is a pesticide targeting the octopaminergic receptors. In a previous study, octopamine, a biogenic amine, was found to induce a biphasic effect on the honeybee heart, inhibition at low concentrations and excitation at high concentrations. Furthermore, the honeybee heart was found to be far more sensitive to octopamine compared to other insect hearts. The objective of the present study was to investigate the effects of amitraz on the electrical and mechanical properties of the honeybee heart ex vivo and on the heart rate in vivo. In ex vivo conditions, amitraz at 10−12 M caused a significant inhibition in the mechanical (p < 0.05, n = 4) and electrical properties (p < 0.05, n = 4). Higher concentrations such as 10−9 and 10−6 M induced a biphasic effect, with total inhibition for 7.86 ± 1.26 min (n = 7), followed by strong excitation of spontaneously-generated contractions (n = 7). The initial elimination of heart activity was caused by strong hyperpolarization, while the subsequent excitation was caused by a depolarization in the membrane potential of pacemaker cells at 10−9 M (n = 8). In the in vivo experiments, abdominal injection or oral application of 0.20 ng of amitraz per bee induced a persistent increase of 134.28 ± 4.07% (p < 0.05, n = 4) in the frequency of the cardiac action potentials. The above responses clearly show that the heart of the honeybee is extremely vulnerable to amitraz, which is nevertheless still used inside beehives, ostensibly to “protect” the honeybees against their main parasite, Varroa destructor.  相似文献   

16.
The relationship between the physicochemical properties (molar volume, partition coefficient, and dissociation constant) of slow-acting systemic postemergence xenobiotics and their uptake and translocation to the sites of action was investigated using the nonlinear, dynamic simulation model ERMESSE. When the pKa was held constant at 4.0, the model enables the prediction of the uptake of a systemic xenobiotic as a function of its partition coefficient and molar volume. The model also considered the effects of the physicochemical properties of a systemic xenobiotic on its long-distance translocation within the vascular tissues. For instance, when the log Kow and pKa were held constant at 1.5 and 6.0, respectively, the model predicted a higher translocation rate (55%) for molecules with a small (e.g., MV = 100 cm3 mol−1) as opposed to a large (e.g., MV = 300 cm3 mol−1, 33%) molar volume. In addition, the theoretical predictions from the ERMESSE model showed that any xenobiotic with a molar volume not exceeding 300 cm3 mol−1 could provide an uptake ?50% and a translocation rate ?25% when its log Kow is between −0.5 and 2.5 and its pKa is between 0.0 and 8.0.  相似文献   

17.
Commercial plant essential oils obtained from 40 plant species were tested for their antifungal activity against Phytophthora cactorum, Cryphonectria parasitica, and Fusarium circinatum. Strong antifungal activity against Phytophthora cactorum was achieved with the essential oil derived from Oriental sweetgum, Liquidambar orientalis at 28 × 10−3 mg/mL air concentration. In a test with C. parasitica, inhibition rate of patchouli was 51.0%, whereas the other essential oils showed weak activity. Essential oils of manuka (Leptospermum scoparium) and patchouli (Pagostemon patchouli) showed moderate activity against F. circinatum. Analysis by gas chromatography-mass spectrometry led to identification of 11 compounds in the oil of L. orientalis. The antifungal activity of identified compounds was tested singularly by using standard or synthesized compounds. Inhibition rates of cinnamyl aldehyde and benzaldehyde were 100% against P. cactorum at 28 × 10−3 mg/mL air concentration. There was a significant morphological alternation in three phytopathogenic fungi after oil or compound treatment.  相似文献   

18.
The insecticidal activity of four forms of Hong Jing (HJ) allylisothiocyanate (AITC), AITC + cypermethrin (HJA, HJB, and HJC) with ratio of (1:1, 4:1, and 2:1), pure AITC (HJD), and two forms of Hong Du (HD) AITC, AITC + chlorpyrifos (HDA and HDB) with ratio of (2:1 and 2:1), respectively, were studied on the major cruciferous insect larvae Plutella xylostella (L.) and Pieris rapae (L.) by combining both spraying and dipping methods. The P. rapae was more susceptible than P. xylostella larvae. The LC50 values 72 h after treatment of AITC forms (HJB, HJA, HJC, HJD, HDB, and HDA) on the P. rapae were; 0.07, 0.08, 0.16, 0.83, 0.26, 1.08 gL−1, and 0.69, 0.26, 5.45, 0.93, 3.01, 5.98 gL−1 on the P. xylostella, respectively. The toxicity of some of the AITC forms was very close to or better than that of the commercial contact insecticides such as chlorpyrifos (LC50 = 0.03 and 0.04 gL−1 on P. rapae and P. xylostella, respectively), and cypermethrin (0.65 and 0.78 gL−1, respectively, against P. rapae and P. xylostella). The ultrastructural studies on the integument of the third larval instar of P. xylostella treated by sub-lethal concentration (LC20) of HJB, HJD, and HDB were carried out by using transmission electron microscope. The more pronounced alterations in the hypodermis and mitochondria cells. They exhibited changes in all treated samples. The hypodermis was almost completely destroyed, and the mitochondria exhibited morphological alterations, represented by enlargement, matrix rarefaction and vacuolization of the mitochondria matrix, quantity of cristae reduced, and density electron matrix lessened. These AITC forms have potential as contact insecticides, and the ultra structural observations confirm the insecticidal efficiency of different AITC forms on P. rapae and P. xylostella.  相似文献   

19.
Nile Tilapia (Oreochromis niloticus) juveniles were exposed to different concentrations of Folidol 600® in static toxicity tests. The 24, 48, 72 and 96 h LC50 values of Folidol 600® to O. niloticus were 17.82, 8.91, 4.00 and 2.70 mg L−1, respectively. The values of hematological parameters increased, and inhibition of cholinesterases activity (AChE, BChE and PChE) in plasma of fish exposed to the higher concentrations of pesticide reached 94%. Furthermore, the exposure of Tilapia to Folidol 600® caused an increase of 4%, 20% and 38.4% in oxygen consumption at 0.1, 0.5 and 1.0 mg L−1, respectively. However, exposure to 2.5, 5.0 and 10 mg L−1 caused a decrease of 33.6%, 35.2% and 42.4% in oxygen consumption relative to the control. The ammonium excretion of fish exposed to 0.0, 0.1, 0.5, 1.0, 2.5, 5.0 and 10.0 mg Folidol 600®/L was 0.12, 0.18, 0.30, 0.33, 0.37, 0.36 and 0.33 μg/g/min, i.e., 50%, 150%, 175%, 208%, 200% and 175% increase, respectively, relative to the control.  相似文献   

20.
In order to gain insight into the development of insecticides with novel modes of action, the effects of salicylidene aniline (a), salicylidene-4-chloroaniline (b), salicylidene-4-bromoaniline (c), and salicylidene-4-nitroaniline (d) on partially purified phenoloxidase (PO) from Pieris rapae L. were investigated. The results showed that the 4 compounds could inhibit PO activity, and the inhibitor concentrations leading to a loss of 50% activity (IC50) were estimated to be 0.025 mmol L−1, 0.732 mmol L−1, 0.471 mmol L−1, and 0.675 mmol L−1, respectively. Meanwhile, all the inhibitors showed reversible competitive inhibition, except (d), which showed reversible mixed inhibition. The KI values were determined as 0.106 mmol L−1, 10.059 mmol L−1, 8.390 mmol L−1, and 20.198 mmol L−1 for the four compounds, respectively. The UV-vis spectra of (a) and (d) in the presence of copper ions and the enzyme showed that (a) could directly chelate the copper ions of PO; however, (d) could neither chelate the additional copper ions nor the copper ions of PO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号