首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Plant nutrients such as potassium (K), phosphorus (P), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) mostly remain fixed in soils and their bio-availability to plant roots is diffusion-limited. Hence, superior root traits, that can enhance their dissolution and capture from the soils, can play a central role in its productivity. Root morphological (root length and root hairs) and physiological traits (root exudation of protons and phosphatase enzymes) of ten selected varieties/breeding lines of chickpea (Bari-chhola-3, Bari-chhola-4, Bari-chhola-5, Bari-chhola-6, Bari-chhola-7, Bari-chhola-8, BGM-E7, ICCV-98926, ICCV-94924, and ICCV-98916) were studied and related them to the uptake of the nutrients in a pot experiment.

There were significant (P < 0.05) genotypic differences in root length (RL) and root hair length (RHL). The RL ranged between 70 m plant? 1 and 140 m plant? 1. The variation in RHL was significant (P < 0.05) and it ranged between 0.58 ± 0.09 mm (Bari-chhola-5) and 0.26 ± 0.09 mm. The root hair density (RHD, number mm? 1root) varied between 13 ± 2 and 21 ± 3 among the genotypes. The presence of root hairs increased the effective root surface area (e.g., Bari-chhola-5) up to twelve times. The genotypes differed in their ability to acidify the rooting media in laboratory agar studies, with Bari-chhola-5 inducing most acidification followed by Bari-chhola-3. The ability of Bari-chhola-5 to acidify the rhizosphere was also confirmed by embedding in situ roots in the field in an agar-agar solution containing pH indicator dye Bromocresol purple. The genotypes did not differ for induction of acid phosphatase activity (Aptase) in the rooting media. The genotypes inducing greater acidification and possessing prolific root hairs (Bari-chhola-3 and Bari-chhola-5) absorbed significantly higher amounts of the nutrients K, P, Fe, Mn, and Zn, whose availability in soils is usually low. The results suggest that a collective effect of superior morphological and physiological root traits confers better nutrition of chickpea genotypes in low-nutrient soils.  相似文献   

2.
Increasing manganese (Mn) deficiency in soils emphasizes strategies for breeding genotypes with increased Mn efficiency. The present investigation evaluated Mn efficiency of 11 rice genotypes w.r.t. basal, foliar, and basal+foliar Mn application in field and glasshouse conditions. The genotypes with B + F application had higher leaf area (LA), SPAD index, root length (RL), root surface area (RSA) and mean half distance between roots (MHDR), and ultimately higher Mn efficiency under both growing conditions. The results of correlation analysis depicted strong positive relation between grain yield and LA (0.60) and SPAD index (0.53). The root characteristics viz., RL, RSA, and MHDR could, respectively, explain 76%, 77%, and 83% of variation in grain yield emphasizing the importance of superior root geometry in regulating mechanism pertaining to differential Mn efficiency. The breeders could select the traits for better root geometry along with high yield in breeding programs to develop Mn efficient genotypes.  相似文献   

3.
Roots are important organs that supply water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil, and five cover crops were evaluated. Root dry weight, maximum root length, and specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P?×?cover crops interactions for all the macro- and micronutrients, except manganese (Mn), were significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen (N) > calcium (Ca) > potassium (K) > magnesium (Mg) > P and micronutrient uptake pattern was in the order of iron (Fe) > Mn > zinc (Zn) > copper (Cu). Cover crops which produced maximum root dry weight also accumulated greater amount of nutrients, including N, compared to cover crops, which produced lower root dry weight. Greater uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems could reduce loss of nitrate (NO3 ?) from soil–plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and lessen loss of macro- and micronutrients from the soil–plant systems.  相似文献   

4.
Dry bean is an important legume and nitrogen (N) deficiency is one of the most yield-limiting factors in most of the bean-growing regions. A greenhouse experiment was conducted with the objective to determine influence of N on growth, yield, and yield components and N uptake and use efficiency of 23 dry bean genotypes. Straw yield, grain yield, yield components, maximum root length, and root dry weight were significantly increased with the addition of N but varied with genotypes. The N × genotype interactions were also significant for most of these traits, indicating variation in responses of genotypes with the variation in N levels. There was significant difference in N uptake and use efficiency among genotypes. Most of growth and yield components were significantly and positively associated with grain yield. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient, or inefficient group in N-use efficiency. Nitrogen concentration was greater in grain compared to straw, indicating greater N requirement of dry bean genotypes.  相似文献   

5.
Abstract

The objective of the present work was to evaluate the response of 25 rice genotypes to propionate, a compound largely produced in low‐drainage and high‐organic matter‐content soils. The work was performed in hydroponics with four doses and a random block design with three replications. The variables measured were root (RL) and shoot (SL) length, number of roots (NR), and root (RDM) and shoot (SDM) dry matter. Analyses of variance, relative performance, and regression fitting were performed, showing significance for most variables. The variable RL was the most affected by propionate, and the use of this variable for screening genotypes indicated 6 tolerant and 19 sensitive genotypes. Most tolerant genotypes belonged to irrigated japonica.  相似文献   

6.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

7.
Many of the plant acquisition strategies for immobile nutrients, such as phosphorus (P), are related to the maximization of soil exploration at minimum metabolic cost. Previous studies have suggested that soybean (Glycine max L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) differ in their P uptake efficiency. In this investigation we employed these three species to evaluate: (1) the effect of suboptimal P conditions on root morphological traits related to root porosity and fineness and (2) how these traits are related to P‐uptake efficiency. Opaque 25‐L plastic containers were used to grow plants hydroponically. The three species were compared under two P availability levels (low P and high P). Most of the observed responses were in the direction to favor P uptake under low‐P conditions. Compared to P‐sufficient plants, P‐stressed plants of the three species showed higher root‐to‐shoot ratio, specific root length, root porosity and root aerenchyma, and a lower root density. For example, P‐stress increased root porosity by a factor of 2.0, 1.4, and 1.4 in soybean, sunflower, and maize, respectively. Soybean and sunflower were the species with the highest P‐uptake efficiency, expressed as P uptake either per unit root biomass or length. The results demonstrate the central role of aerenchyma development in modifying root length per unit root biomass and, thus, reducing the root's foraging costs. Consequently, aerenchyma is suggested to be a possible mechanism for better P‐uptake efficiency.  相似文献   

8.
Abstract

This greenhouse study examined the root characteristics (biomass, length, area, and diameter) and root uptake efficiency of Pteris vittata, an arsenic (As) hyperaccumulator and Nephrolepis exaltata, not an As hyperaccumulator, in relation to plant uptake of As and nutrients in an As‐contaminated and a control soil. After 8 weeks of growth, on a per plant basis, P. vittata accumulated 7.3–8.8 g of biomass and removed 2.51 mg of As from the As‐contaminated soil compared to 2.4–2.7 g of biomass and 0.09 mg of As for N. exaltata. This was partially because P. vittata developed a more extensive root system, 2.4–3.8 times greater (biomass, length, and area), and possessed a greater proportion of fine roots than N. exaltata. In addition, the As root‐uptake efficiency (defined as As concentrations in plant tissue per unit root) for fronds of P. vittata was 15–23 times greater than that of N. exaltata in both soils. Whereas N. exaltata removed phosphorus (P) more efficiently from the soils, P. vittata removed As more efficiently. The larger root biomass coupled with more efficient root‐uptake systems for As may have contributed to As hyperaccumulation by P. vittata.  相似文献   

9.
Growing crop plants tolerant to acid soils is an alternative for successful production on acid soils with limited inputs, especially lime. Acid soil‐ or aluminum (Al)‐tolerant plants offer considerable protection against soil acidity problems. Thirteen maize (Zea mays L.) hybrids developed for production under various environmental conditions were grown (greenhouse) on two acid soils (unlimed and limed) to determine differences among hybrids for growth traits, mineral acquisition, and relative tolerance to acid soil. Porters soil induced greater acid soil stress on maize than did Lily soil, although shoot/root dry matter (DM) ratios were affected more in plants grown on Lily than on Porters soil. Shoot and root DM and total root length (RL) over all hybrids followed sequences of Limed Lily ≥ Limed Porters > Unlimed Lily > Unlimed Porters, and the trait with the greatest variation among hybrids was total RL. Specific RL (total RL/root DM) over all hybrids followed a sequence of Limed Lily=Limed Porters=Unlimed Lily>Unlimed Porters, with relatively small variations among hybrids. Shoot DM/RL among hybrids followed a sequence of Unlimed Porters ≥ Unlimed Lily > Limed Lily = Limed Porters, and had the least variation among hybrids. Two Brazilian hybrids (HD 91102 and HD 9176) had highest DM and total RL to indicate relatively high tolerance to acid soil stresses, while other hybrids (ten from the United States and one from Brazil) had relatively small differences for growth traits to indicate moderate to low tolerance to acid soils. Although genotypes differed widely for mineral element concentrations, no significant differences in mineral elements between more and less tolerant genotypes were noted.  相似文献   

10.
A pot experiment was used to evaluate the effects of an arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae on plant growth performance, root-hair growth, and root hormone levels in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) and drought stress (DS). A 9-week mild DS treatment significantly reduced mycorrhizal colonization of 2nd- and 3rd-order lateral roots. Root mycorrhizal colonization was relatively higher in the 2nd- and 3rd-order lateral roots than in the taproot and the 1st-order lateral root under WW and DS. AMF seedlings exhibited significantly higher root-hair density, length (except for the taproot) and diameter in taproot and 1st-, 2nd-, and 3rd-order lateral roots under WW, and considerably higher root-hair density (except for 1st-order lateral root), length (except for 2nd-order lateral root) and diameter under DS. Mycorrhizal inoculation remarkably increased root abscisic acid (ABA), indole-3-acetic acid (IAA), methyl jasmonate, and brassinosteroids (BRs) concentrations under DS, in company with the decrease in root zeatin riboside and gibberellins levels and root IAA effluxes. Root-hair traits were significantly positively correlated with root colonization and root ABA and BRs levels. It is concluded that mycorrhizal plants possessed better root-hair growth to adapt mild DS, which is associated with mycorrhizal colonization and endogenous hormone changes.  相似文献   

11.
Lentil (Lens culinaris Medikus subsp. culinaris), generally grown as a rainfed crop, is often subjected to drought. Drought tolerance is closely related to the distribution of root systems in the soil. We studied seedling shoot and root characters in a set of eight randomly selected lentil genotypes collected from Ethiopia, India, Iran, Syria and ICARDA. Each group of genotypes represents a specific adaptation to the environmental conditions associated with its area of origin. The genotypes were evaluated during two seasons (1997 –1999) under field conditions. Thirty-five-day-old seedlings grown in pots in the open air were assessed for stem length, stem weight, taproot length, lateral root number, total root length and total root weight. Combined analyses over 2 years showed that these characters exhibited significant genotypic variability. Stem length, taproot length and lateral root number were highly correlated, both amongst themselves and with yield. High heritability estimates provided reliability in screening based on these traits. Regression analysis showed that stem length alone accounted for 85% of the variance that occurred in seed yield per plant. Cluster analysis showed that the landraces that originated in Iran and Syria, and the breeding lines developed at ICARDA are distinctly different from the lentil accessions that originated in countries at more southerly latitudes (India and Ethiopia). However, of the total of 40 genotypes, only one line (ILL 6002) was strikingly different from all other test genotypes. This line exhibited significantly superior root and shoot traits and yield, and, therefore, is a valuable germplasm for breeding drought tolerant cultivars.  相似文献   

12.
The goal of this work was to evaluate the response of 25 rice genotypes to the toxic effect of acetate, which is commonly produced in low‐drainage and organic‐matter‐rich soils. The work was performed in hydroponics with four acetate doses. The experimental design was random blocks with three replications on a factorial scheme. The variables root (RL) and shoot (SL) length, number of roots (NR), and root (RDM) and shoot (SDM) dry matter were measured. Analyses of variance, relative performance, and regression adjustments were used. Only the dose × genotype interaction effect for SL, NR, and SDM were not significant. Among the variables analyzed, RL was influenced the most by the acetate treatments. The regressions established for this variable revealed 6 tolerant and 19 sensitive genotypes. Most of the tolerant genotypes were irrigated japonica.  相似文献   

13.
【目的】 研究玉米根系时空分布对不同供氮水平的响应及其与植株氮素吸收的关系,对于充分挖掘氮高效基因型,探讨氮高效栽培途径具有重要意义。 【方法】 以氮高效玉米品种 (郑单 958、金山 27) 和氮低效玉米品种 (蒙农 2133 、内单 314) 为材料,以不施氮为对照 (N0),施氮 300 kg/hm2 为适量处理 (N300)、450 kg/hm2 为过量处理 (N450),进行了两年田间试验,调查了玉米根重、根长的时空分布及其与植株氮素吸收量的关系。 【结果】 对照 (N0) 和适量施氮 (N300) 条件下,氮高效品种的根系生物量显著高于氮低效品种,过量施氮 (N450) 条件下二者在吐丝前无显著差异,吐丝后氮高效品种根重降低缓慢,根系生物量高于氮低效品种。N0 和 N300 条件下,氮高效品种 0—100 cm 土层根长均显著高于氮低效品种,吐丝期到乳熟期,N0 处理 0—20 cm 耕层和 40 cm 以下土层内,氮高效品种的根系降低比率显著低于氮低效品种;施氮条件下,两类型品种 0—40 cm 土层内根系降低比率无显著差异,但 40 cm 以下土层氮高效品种根系降低比率显著低于氮低效品种。吐丝前氮素吸收量在 N0 和 N300 条件下,单位根长氮吸收速率对氮素吸收的直接作用较大,直接通径系数是 0.590 和 0.649,在 N450 条件下,根长对于氮素吸收的直接作用较大,直接通径系数是 0.536;吐丝后氮素吸收量在 N0 和 N300 条件下,根长对氮素的吸收直接作用较大,直接通径系数是 1.148 和 0.623,在 N450 条件下,单位根长氮吸收速率对氮素吸收的直接作用较大,直接通径系数是 0.858。 【结论】 不同氮效率玉米品种根系分布和氮素吸收对氮肥的响应存在明显差异。在低氮和适量施氮条件下,氮高效品种较氮低效品种表现出较高的根系生物量、根长和较低的根系衰老速率,其吐丝前氮素吸收主要与单位根长氮吸收速率有关,吐丝后则主要与根长有关;过量施氮条件下,其吐丝前氮素吸收主要受根长影响,吐丝后则主要与单位根长氮吸收速率有关。   相似文献   

14.
Next to nitrogen, phosphorus (P) is the most limiting nutrient for plant production worldwide. To secure food production, new nutrient management strategies using alternative P sources instead of mined P fertilizers need to be implemented. Struvite (MgNH4PO4 · 6 H2O) is a promising example of a recycled mineral P fertilizer. Besides positive agronomic results regarding crop yields, further investigations are required to improve the use efficiency of the product and thereby increase its value. Using an automated plant phenotyping platform, we investigated the dynamic response to struvite by two plant species (lupine and maize) with diverse P acquisition strategies in an acidic sandy substrate. Although at three weeks after germination both maize and lupine had reduced leaf area in the struvite treatments compared to the commercial triple superphosphate (TSP), from week four onwards struvite plants grew larger than the TSP‐treated plants, indicating a slow release fertilizing effect. Greater P uptake efficiency (g / root length), but reduced root length were observed in the combined treatment of struvite and ammonium, in comparison to struvite and nitrate. We propose that rhizosphere acidification in response to ammonium uptake may enhance P recovery from struvite. A possible additional acidification effect by lupine root exudation might explain the higher P uptake efficiency in this species compared to maize. We conclude that struvite combined with ammonium can be used as a sustainable slow‐release P fertilizer on acidic sandy soils.  相似文献   

15.
This study was initiated to isolate, characterize and select symbiotically effective rhizobia nodulating lentil (Lens culinaris medic) and to enumerate indigenous rhizobia nodulating lentil in some Ethiopian soils. More than 84 nodule and soil samples were collected. In sand culture, only 62 isolates were authenticated as rhizobia nodulating lentil. Analyses of variance indicated that most of the parameters measured were significantly (p < 0.05) improved by inoculation, with the exception of root length. Inoculation increased shoot length, shoot dry weight and plant total nitrogen by 82.3, 196 and 452%, respectively, over negative control (without inoculation and N fertilization). The tested isolates were found to be very effective (20.9%) and effective (77.4%), with only one ineffective isolate. Indigenous rhizobia in the investigated soils ranged from 30 to 5.8 × 103 cell g?1 dry soil. A pot experiment with selected rhizobia and nitrogen fertilizer on Chefedonsa and Debrezeit soils did not show any significant difference in shoot dry weight at p < 0.05. From the study, it was observed that most Ethiopian soils were inhabited by a moderate to high number of indigenous rhizobia and rhizobia inoculation did not improve lentil productivity in the investigated soils.  相似文献   

16.
The root is an important organ which supplies water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium) and 200 (high) mg kg?1 of soil and 5 cover crops were evaluated. Root dry weight, maximum root length, specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P X cover crops interaction for all the macro and micronutrients, except manganese (Mn) was significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen>calcium>potassium>magnesium>phosphorus (N > Ca > K > Mg > P) and micronutrient uptake pattern was in the order of iron>manganese>zinc>copper (Fe > Mn > Zn > Cu). Cover crops which produced maximum root dry weight also accumulated higher amount of nutrients, including N compared to cover crops which produced lower root dry weight. Higher uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems can reduce loss of nitrate (NO3?) from soil-plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and less loss of macro and micronutrients from the soil-plant systems.  相似文献   

17.
Copper (Cu) is an essential micronutrients and its deficiency has been reported in many crops including dry bean. A greenhouse experiment was conducted to evaluate thirty dry bean genotypes (G) for Cu-use efficiency. The Cu levels used were low (natural soil level) and adequate [10 mg Cu kg?1 soil, applied with copper sulfate (24 percent Cu)]. Straw yield, seed yield, number of pods per plant, seed per pod, seed harvest index (SHI), maximum root length (MRL), and root dry weight (RDW) were significantly affected by Cu and genotype treatments. The Cu × G interactions were also significant for these traits, indicating variation in genotype responses with the variation in Cu levels. Based on seed yield efficiency index (SYEI), genotypes were grouped in three classes: Cu efficient, moderately Cu efficient, and Cu inefficient. Fifty-three percent of the genotypes were classified as efficient, 40 percent were classified as moderately efficient, and 7 percent were classified as inefficient in Cu-use efficiency.  相似文献   

18.
Grasslands are a major form of agricultural land use worldwide. Current and future declines of phosphorus (P) inputs into production grasslands necessitate a shift towards selecting grass species based on high efficiency under suboptimal, rather than optimal P conditions. It is therefore imperative to identify key root traits that determine P acquisition of grasses in soils with a low P status. In a 9‐month greenhouse experiment, we grew eight common grass species and cultivars on a soil with a low P status and related root morphological traits to their performance under P‐limiting conditions. We applied (P1) or withheld (P0) P fertilization while providing adequate amounts of all other nutrients. Omitting P fertilization greatly reduced yield and nutrient acquisition for the various grass species. Biomass production differed significantly (P < 0.1%) among species and P fertilization treatments, varying from 17.1 to 72.1 g pot?1 in the P0 treatment and from 33.4 to 85.8 g pot?1 in the P1 treatment. Root traits were species‐specific and unresponsive to P fertilization, but overall we observed a trade‐off between root biomass and specific root length. Structural equation modeling identified total root length as key factor with respect to resistance to P deficiency, especially when roots explored the subsoil. Optimizing root length and subsoil exploration could be the key to maintaining high productivity of production grasslands with decreasing P availability. This is relevant for both plant breeding programs and for composing seed mixtures.  相似文献   

19.
Because low-phosphorus (P) availability limits citrus growth, rootstocks with a relatively high capacity for P uptake are desirable. An experiment was conducted with trees on Cleopatra mandarin (CM) and Rangpur lime (RL). Treatments consisted of P rates (20, 40, and 80 mg kg?1 of soil) applied in soil layers of 0–0.30 m and/or 0.31–0.60 m, besides an unfertilized control. The P fertilization increased root and shoot growth, and P nutrition was improved as indicated by greater leaf P concentration, P uptake, and P root uptake efficiency (PUE). The P applied in both soil layers improved shoot growth, P uptake, and PUE. Trees on RL took up 23–126% more P and had root systems with greater growth and PUE compared to those on CM. Thus, P uptake by citrus trees in low-P soils can be improved by augmenting the depth of fertilizer application and the use of more adapted rootstocks.  相似文献   

20.
 Following screening, selection, characterization and examination of their symbiotic N2 fixation, only two Rhizobium strains (ND-16 and TAL-1860) and four lentil genotypes (DLG-103, LC-50, LC-53 and Sehore 74-3) were found to be suited to sodic soils. Interactions between salt-tolerant lentil genotypes and Rhizobium strains were found to be significant, and resulted in greater nodulation, N2 fixation (nitrogenase activity), total nitrogen, plant height, root length and grain yield in sodic soils under field conditions compared to uninoculated controls. Significantly more nodulation, nitrogenase activity, glutamine synthetase (GS) and NADH-dependent glutamate synthase (NADH-GOGAT) activities were found in normal soil as compared to the soil supplemented with 4% and 8% NaCl. Salt stress inhibited nitrogenase, GS and NADH-GOGAT activities. However, nitrogenase activity in nodules was more sensitive to salt stress than GS and NADH-GOGAT activities (NH4 + assimilation). The relevance of these findings for salt-tolerant symbionts is discussed. Received: 14 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号