首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gypsum solubilities in aqueous systems containing NaCl, MgCl2, Na2SO4, and MgSO4 Solubilities of Gypsum (CaSO4·2H2O) have been determined within the systems MgSO4–MgCl2–NaCl–H2O and MgSO4–Na2SO4–NaCl–H2O at 21 different compositions of solutions per concentration range (0.01, 0.05, 0.1, 0.15, 0.5, and 1.0mol/l) of total easily soluble salt. Lines of equal solubilities of gypsum can be constructed form these data. They make possible to estimate gypsum solubility in solutions of similar composition. Small quantities of KCl or KNO3 may be taken as NaCl. Solubilities measured under percolation conditions deviate sometimes to lower, those measured at supersaturation to higher values. The tendency to supersaturation lowers with increasing content of crystal-solution interfaces within the system. At concentrations of easily soluble salts from 0,01 to 0,15mol/l the solubility of gypsum is governed by the CL?:SO= 4-ratio. Concentration of solution or Na+:Mg++ -ratio are of lower efficiency.  相似文献   

2.
ABSTRACT

Three vegetative rootstocks of plum (Prunus domestica), Marianna GF 8-1 (Prunus cerasifera × munsoniana), Myrobolan B (P. Cerasifera) and Pixy (P. Insititia) were grown in pots containing sand and irrigated with complete nutrient solution to investigate the effect of calcium sulfate supplied to the nutrient solution on plants grown under salt stress. Treatments were (1) control (C): nutrient solution alone; (2) S (salinity stress): 40 mM NaCl; (3) S+Ca1: 40 mM NaCl +2.5 mM calcium (Ca) and (4) S+Ca2: 40 mM NaCl + 5 mM Ca. Calcium was supplied as CaSO4. The plants grown under 40 mol L?1 NaCl produced less dry matter and had lower chlorophyll content than those without NaCl. Supplementary CaSO4 at both 2.5 and 5 mM concentrations ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Salt treatment impaired membrane permeability by increasing electrolyte leakage. The addition of calcium sulfate partially maintained membrane permeability. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants under the high NaCl treatment. Pixy had much lower Na. The CaSO4 treatments lowered significantly the concentrations of Na in both leaves and roots. Pixy was more tolerant to salinity than the other two rootstocks. The accumulation of Na in leaves and roots indicates a possible mechanism whereby Pixy copes with salinity in the rooting medium, and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of Ca and K were lower in the plants grown at high NaCl than in those under the control treatment, and these two element concentrations were increased by calcium sulfate treatments in both leaves and roots, but remained lower than control values in most cases.  相似文献   

3.
Abstract

Glasshouse experiments were conducted to establish the cause of poor lupin growth in the presence of gypsum in field trials which had been conducted in Western Australia. In the first experiment, Bradyrhizobium‐inoculated lupins were grown in nutrient solutions with varying concentrations (1, 3, 5, and 10 mM) of calcium (Ca) and sulfate (SO4) added as either CaSO4, K2SO4, or CaCl2 to establish whether gypsum caused Ca or SO4 toxicity to the plants. Although a general decrease in lupin plant growth was observed as the concentration of each salt increased, there was no evidence that either Ca or SO4 directly caused toxicity to the plants. Two soil experiments were therefore conducted to investigate lupin growth responses to the salts in a soil environment. The first soil experiment was conducted in a yellow earth— the same soil in which lupins had been adversely affected by gypsum in the field. The second soil experiment was conducted in the topsoil of a siliceous sand. Basal nutrients and different rates of CaSO4, K2SO4, and CaCl2 were added so that similar amounts of Ca and SO4 were present for each treatment at a given application rate. In both soils, lupin growth generally decreased as the application rate of treatments increased, although the magnitude of the decrease in growth was higher in the yellow earth than the siliceous sand. The strongest correlation between lupin growth and a soil solution chemical property was a log‐linear relationship between the shoot or root dry weight and the electrical conductivity (EC) of the soil solution. Plant nutrition was affected by different treatments, particularly with respect to nutrient balances. It is suggested that a high ionic strength in the soil, which results when gypsum is applied in the field, may contribute to the lupin yield decline. Possible reasons for the effect are discussed.  相似文献   

4.
《Journal of plant nutrition》2013,36(8):1441-1452
Abstract

Saltgrass [Distichlis spicata (L.) Greene var. stricta (Gray) Beetle], accession WA-12, collected from a salt playa in Wilcox, AZ, was studied in a greenhouse to evaluate its growth responses in terms of shoot and root lengths, shoot dry-matter yield, and nitrogen (N) (regular and 15N) absorption rates under control and salt (sodium chloride, NaCl) stress conditions. Plants were grown under a control (no salt) and three levels of salt stress (100, 200, and 400 mM NaCl, equivalent to 5850, 11700, and 23400 mg L? 1 sodium chloride, respectively), using Hoagland solution in a hydroponics system. Ammonium sulfate [(15NH4)2SO4], 53% 15N (atom percent 15N) was used to enrich the plants. Plant shoots were harvested weekly, oven-dried at 60°C, and the dry weights measured. At each harvest, both shoot and root lengths were also measured. During the last harvest, plant roots were also harvested and oven-dried, and dry weights were determined and recorded. All harvested plant materials were analyzed for total N and 15N. The results showed that shoot and root lengths decreased under increasing salinity levels. However, both shoot fresh and dry weights significantly increased at 200 mM NaCl salinity relative to the control or to the 400 mM NaCl level. Shoot succulence (fresh weight/dry weight) also increased from the control (no salt) to 200 mM NaCl, then declined. The root dry weights at both 200 mM and 400 mM NaCl salinity levels were significantly higher than under the control. Concentrations of both total-N and 15N in the shoots were higher in NaCl-treated plants relative to those under the control. Shoot total-N and 15N contents were highest in 200 mM NaCl-treated plants relative to those under the control and 400 mM salinity.  相似文献   

5.
The element contents in the compartments of root and leaf cells of soybean and cucumber plants grown for 8 d in a nutrient solution containing 50 mM NaCl, 25 mM CaCl2 or 50 mM NaCl+4.75 mM CaSO4 were examined by X-ray microanalysis of freeze-substituted dry sections. Sodium accumulated in the vacuoles rather than in the cytoplasm and apoplastic space in the root cells of the soybean plants, leading to the difficulty in the transport of Na to leaves in soybean. Salt injury of soybean is considered to be caused by the accumulation of Cl at high concentrations in all the compartments of root and leaf cells. In contrast, the accumulation of Na in the cytoplasm of the root and leaf cells might disturb the metabolism and lead to the occurrence of salt toxicity in cucumber plants, which are tolerant to Cl due to the stimulation of Cl accumulation in vacuoles when the Ca concentration was high in nutrient media.  相似文献   

6.
Soybean plants (Glycine max L. cv. Buchanan) were subjected to one of three levels of salinity preteatment (with electrical conductivities of 0.7, 4.4 and 6.5 dS m?1) and then exposed to one of three concentrations of SO2 (1, 145 and 300 bl l ?1 for 5 h d?1), or vice versa. Each stress episode lasted 3 weeks. Both salinity and SO2 deecreased leaf area, root and shoot dry weight and the fresh weight of root nodules. SO2 induced an increase in the shoot: root ratio and leaf chlorophyll concentrations. Low salinity pretreatment protected plant growth from SO2 injury, probably by decreasing SO2 uptake by increasing stomatal resistance. However, high salinity-treated plants, despite also showing stomatal closure, were severely injured by subsequent SO2 exposure. Prior exposure to SO2 caused plants to become more vulnerable to salt injury. Plants pretreated with high SO2 were killed after 12 days of high salt stress. These data suggest that the compensatory mechanisms and predisposition characteristics of salinity and SO2 largely depend upon the stress levels used.  相似文献   

7.
A greenhouse experiment was conducted to determine the effect of salinity on the efficacy of two arbuscular mycorrhizal fungi (AMF), Glomus mossea and natural mycorrhiza, of Glomus species, was investigated in terms of growth and nutrition of corn plant (Zea mays L). Plants were grown under different salinity levels imposed by 2.0, 2.5, 3.5, 5.0, 8.0, 12.0 dS m?1of Hoagland's Solution [sodium chloride (NaCl), sodium sulfate (Na2SO4), Calcium dichloride (CaCl2), and magnesium sulfate (MgSO4) 7:9:3:1 ratio, respectively]. Both types of mycorrhizal fungi did not display significant protection in the host plant against the detrimental effects of the soil salinity. The effect of inoculation on growth varied only with the level of salinity. Maximum root colonization and spore numbers were observed in plants cultivated with low salinity levels. It was found that significant interaction between AMF x Salinity level for calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) of shoot, and for Zn and Mn, of root.  相似文献   

8.
This trial was carried out to study the nutritional and productive behavior generated by modifications in the salt concentration in the nutrient solution for Cordyline fruticosa var. Red Edge plants. The anions studied were chloride (Cl), nitrogen (N), and phosphorus (P). Four treatments were tested: T1 [control, 1.5 dS m?1, 14.3 mmol L?1 sodium chloride (NaCl)], T2 (2.5 dS m?1, 22.2 mmol L?1 NaCl), T3 (3.5 dS m?1, 32.7 mmol L?1 NaCl), and T4 (4.5 dS m?1, 38.2 mmol L?1 NaCl). At the end of the cultivation, leaf, petiole, shoot and root fresh and dry weights, elemental extractions, and elemental concentrations were determined. Nutrient concentrations and total plant uptake (extraction) were calculated from the dry matter. The treatment T2 induces a blade protection mechanism, which consists on the accumulation of chloride (Cl?) in root and vessels; so, leaf storage is reduced, avoiding damages. Petiole also contributes to this protection, acting as a salt pool. As NaCl concentration in the nutritive solution arises, N plant concentration increases significantly although there are no significant differences between T1 and T2. With high salinity levels, P in vessels is reduced, whereas root extraction and concentration increases. The greatest N and P extractions are observed in T2, which is due to its higher dry matter. Chloride extractions are lower in T1 than in the other treatments.  相似文献   

9.
Although there are a variety of ions occurring in the soil throughout most of North America, the majority of halophyte literature focuses on the effects of NaCl on plants. In this study, a comparison is made of the effects of NaCl, KC1, Na2SO4, and K2SO4, on growth of the halophyte Atriplex prostrata Boucher ex DC (SYN: A. triangularis Willd.) at 0, ‐0.75, ‐1.00, and ‐1.50 MPa. Plant survival, height, number of leaves, nodes, and branches were recorded weekly. Photosynthesis was measured once before plants were harvested and dry mass was determined after one month. Content of Na+, K+,‐Mg2+, and Cl in plant tissue was also measured. A general trend observed was that all plant growth parameters decreased with a lowering of the medium osmotic potential, and that K+ salts were more inhibitory than Na+ salts. Ion content of plant tissue generally increased with a lowering of osmotic potential. Our data indicated that K+, a plant macronutrient, was more inhibitory to plant growth than Na+. It is possible that halophytes such as Atriplex prostrata could use Na+ as an osmoticum to adjust the vacuolar water potential, but were unable to use K+ for this function because of a specific ion toxicity. The inhibitory effect of salt on plant growth parameters and survival follow the pattern; K2SO4 >KCl>Na2SO4=NaCl.  相似文献   

10.
The potential for sulfate retention is an important soil feature for buffering of atmospheric acid deposition. We studied the effects of increasing additions of different neutral salts and acids on mobilization and retention of SO4 2- in acid forest soils. Soils containing up to 11 mmol SO4 2- kg-1 were equilibrated with H2O, NaCl, MgCl2, and HCl. Release of SO4 2- was highest with H2O and NaCl additions and lowest when HCl was used. Increasing the ionic strength of the added solutions caused decreasing SO4 2- concentrations in equilibrium solution. Decreasing pH in equilibrium solution was found to be the reason for the decrease in release. Even when the pH was < 4, the SO4 2- release decreased. We assume that this finding resulted from the fact that in the soils studied the SO4 2- sorption was controlled by the high contents of Fe oxides/hydroxides. Experiments with Na2SO4, MgSO4, and H2SO4 demonstrated that the B horizons already containing high amounts of SO4 2- were still able to retain SO4 2-. Sulfate retention increased in the order Na2SO4 < MgSO4 < H2SO4, which corresponds to increasing H+ availability. The higher SO4 2- retention along with MgSO4 compared to Na2SO4 may be caused by higher potential of Mg to mobilize soil acidity compared to Na.  相似文献   

11.
In this study, the effects of potassium doses (control, 150, 300 and 450?mg K2SO4 kg?1) and salt stress (control, 100?mM NaCl) on the yield and some element content of four medicinal and aromatic (Coriandrum sativum, Anethum graveolens, Ocimum basilicum and Foeniculum vulgare) plants were investigated in climate chamber. Both salinity and K fertiliser levels affected the fresh and dry weight of all evaluated plants. Anethum graveolens, Ocimum basilicum species are more sensitive to salinity, particularly at the vegetative productive stages. The highest fresh and dry weights of leaves, stems, roots and herb in Coriandrum sativum and Foeniculum vulgare species was observed in 300?mg?kg?1 fertiliser applications. In general, there was a relatively consistent and positive correlation between root element content and aerial parts element content. The result of the present study showed that NaCl treatment caused an increase in Na+ concentration, and a decrease in K+ and Ca+2 concentration in Coriandrum sativum, Anethum graveolens, Ocimum basilicum and Foeniculum vulgare. There was an interaction between K2SO4 application and salinity effects on Na+ concentration in the all evaluated plants. Given the experimental results, especially Foeniculum vulgare and Coriandrum sativum species were the most resistant to salt stress.  相似文献   

12.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

13.
In this study, we evaluated how increased cation supply can alleviate the toxic effects of NaCl on plants and how it affects essential oils (EOs) and phenolic diterpene composition in leaves of rosemary (Rosmarinus officinalis L.) plants grown in pots. Two concentrations of the chloride salts KCl, CaCl2, MgCl2, and FeCl3 were used together with 100 mM NaCl to study the effects of these nutrients on plant mineral nutrition and leaf monoterpene, phenolic diterpene, and EO composition. The addition of 100 mM NaCl, which decreased K+, Ca2+, and Mg2+ concentrations with increasing Na+ in leaves, significantly altered secondary metabolite accumulation. Addition of MgCl2 and FeCl3 altered leaf EO composition in 100 mM NaCl–treated rosemary plants while KCl and CaCl2 did not. Furthermore, addition of CaCl2 promoted the accumulation of the major phenolic diterpene, carnosic acid, in the leaves. The carnosol concentration was reduced by the addition of KCl to salt‐stressed plants. It is concluded that different salt applications in combination with NaCl treatment may have a pronounced effect on phenolic diterpene and EO composition in rosemary leaves thus indicating that ionic interactions may be carefully considered in the cultivation of these species to achieve the desired concentrations of these secondary metabolites.  相似文献   

14.
Excessive sodium (Na) accumulation in soil, which can be a problem for production agriculture in arid and semiarid regions, may be ameliorated by calcium (Ca). The mechanisms of Ca amelioration of Na stress in plants have received much more attention than has the effect of the anion of the Ca salt. Our objective was to determine the relative effects of the chloride (Cl) and sulfate (SO4 2‐) anions on Ca amelioration of Na stress. We exposed Phaseolus vulgaris L., cv. Contender seedlings growing in 1‐L styrofoam pots under greenhouse conditions to sodum chloride (NaCl) or sodium sulfate (Na2SO4) at concentrations of 0, 15, 30, 45, and 60 mmol/L combined with either 15 and 30 mmol/L of calcium sulfate (CaSO4) or calcium chloride (CaCl2). Plants in each styrofoam pot were irrigated with 300 mL of salt solution (leaching fraction = 0.25) every fourth day for four weeks. Increasing Na concentration decreased shoot dry weight, number and weight of pods, and number of nodules. The photo‐ synthesis rate was affected by all levels and types of Na salts. Calcium sulfate treatments ameliorated Na‐induced salinity in snapbeans more than did comparable CaCl2 treatments. The thermodynamic activity of Ca, Na, and Cl was linearly related to the tissue content of each ion.  相似文献   

15.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

16.
Abstract

The effect of salinity on the growth and yield of tomato plants and mineral composition of tomato leaves was studied. Five tomato (Lycopersicon esculentum Mill) cultivars, Pearson, Strain B, Montecarlo, Tropic, and Marikit, were grown in sand nutrient culture. The nutrient solutions applied consisted of a modified half‐strength Hoagland solution with 50 mM sodium chloride (NaCl), 3 mM potassium sulphate (K2SO4), 1.5 mM orthophosphoric acid (H3PO4), and 10 mM calcium sulphate (CaSO4). Stem height and number of leaves of tomato plants were not found to be significantly different but leaf and stem dry weight were reduced significantly in plants irrigated with saline nutrient solution in contrast with control plants. The total yield was reduced in plants that received saline treatments, but there was no significant difference in fruit number and fruit set percentage. The fruit electrical conductivity and total soluble solids were increased in plants irrigated with saline nutrient solution. Fruit pH was not found to be significantly different among salinity treatments. Mineral composition of tomato leaves were increased by addition of potassium (K), phosphorus (P), and calcium (Ca) to the saline nutrient solution. The addition of K to the solution resulted in an increase in sodium (Na) leaf content. The amounts of K and magnesium (Mg) were not significantly different among salinity treatments. Calcium content was increased when CaSO4 was added. Application of H3PO4 resulted in the highest amount of P in tomato leaves under saline conditions. The present study revealed that application of K, P, and Ca under saline conditions improved fruit electrical conductivity and total soluble solids. Sufficiency levels of the mineral nutrients K and P were obtained in tomato leaves when the appropriate nutrient was used in the saline solution.  相似文献   

17.
Osmotic and specific ion effects are the most frequently mentioned mechanisms by which saline substance reduces plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the salt tolerance of the plant under study. Tall wheatgrass (TW), perennial ryegrass (PR), African millet (AM) and Rhodesgrass (Rh) were grown in nutrient solution with sodium chloride (NaCl), sodium sulfate (Na2SO4), potassium chloride (KCl), and potassium sulfate (K2SO4) salinity up to electrical conductivity (EC) 27 dS m?1. Growth of all plant species decreased significantly at high level (EC 27 dS m?1) of NaCl and Na2SO4 salts. However, the growth of none of the plant species was affected significantly by KCl and K2SO4 at any level. Even leaf and shoot fresh weights were enhanced by K2SO4 in all plant species, except AM. Chlorine (Cl) was taken up in similar quantities from KCl and NaCl solutions and the content of the respective cations was similar to each other. Further sensitivity to sulfate and chloride was equal when sodium concentrations in shoots were equal, regardless of the anion composition of the media. The sodium (Na) concentration of the leaves of the plant species increased with increased NaCl and Na2SO4 levels in the nutrient solutions. The leaf Na concentration of TW was lower than that of the other plant species. However, the root Na concentration of TW was higher than that of the other plant species. Increased NaCl and Na2SO4 concentrations had a marked effect on leaf water potential of all plant species, and the TW showed higher leaf water potential at all levels of salts. Tall wheatgrass adjusted osmotically by accumulating electrolytes from the nutrient solution and by accumulation of glycinebetaine. Sodium was generally found more injurious than Chloride in all the four forage species. Salt tolerance could be ascribed as greater exclusion of Na ion.  相似文献   

18.
The study aimed at evaluating whether salt-induced mobilization of acidity may be modified by the type of anion. For this purpose, the effects of different neutral salts on the solution composition of acid soils were investigated. The results were compared with those of the addition of acids. Two topsoil (E and A) and two subsoil horizons (Bs and Bw) were treated with NaCl, Na2SO4, MgCl2, MgSO4, HCl, and H2SO4 at concentrations ranging from 0 to 10 mmol dm?3. With increasing inputs of Cl? the pH of the equilibrium soil solution dropped, the concentrations of Al and Ca increased, and the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios decreased. These effects were the least pronounced when NaCl was added and the most at the HCl treatments. According to the release of acidity, the topsoils were more sensitive for salt-induced soil solution acidification whereas on base of the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios, the salt effect seems to be more important for the subsoils. Addition of S042? salts and H2SO4 induced higher pH and lower Al concentrations than the corresponding Cl? treatments due to the SO42? sorption, especially in the subsoils. The Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios were higher than those of the corresponding Cl? treatments. In subsoils even after H2SO4 additions these ratios were not higher than those of the NaCl treatments. The results indicate (I) that speculation about the effects of episodic salt concentrations enhancement on soil solution acidification not only need to consider the ionic strength and the cation type but also the anion type, (II) that salt-induced soil solution composition may be more crucial in subsoils than in topsoils, and (III) that in acid soils ongoing input of HNO3 due to the precipitation load may induce an even more acidic soil solution than the inputs of H2SO4 of the last decade.  相似文献   

19.
We investigated the effects of silicon (Si) and the levels and sources of salinity on the growth and some physiological properties of wheat (Triticum aestivum cv. Chamran) in a sandy loam soil under greenhouse conditions. Treatments comprised four Si levels (8, 50, 100 and 150 mg kg?1 soil), four salinity levels (0.46, 4, 8 and 12 dS m?1) and two salinity sources (sodium chloride (NaCl) and four-salt combination). Salts combination included NaCl, sodium sulfate (Na2SO4), calcium chloride (CaCl2) and magnesium sulfate (MgSO4) at a molar ratio of 4:2:2:1. The experiment was arranged as a completely randomized design in a factorial manner, with three replications. Increasing salinity level resulted in a significant decrease in shoot dry weight, chlorophyll content and catalase (CAT) activity, and it caused a marked increase in proline and glycine betaine (GB) concentrations and superoxide dismutase (SOD) enzyme activity. The stimulating effect on GB accumulation and SOD activity was more intense in NaCl-treated plants. However, the source of salinity had no significant effect on shoot dry weight, chlorophyll and proline concentrations, and CAT activity. Si application enhanced all the above-mentioned parameters, except for proline. The suppressing effect of salinity on shoot dry weight, chlorophyll concentration and CAT activity was alleviated by Si supplementation. The stimulating effects of Si fertilization on shoot dry weight and chlorophyll concentration became more pronounced at higher salinity levels. It could be concluded that a decrease in soil osmotic potential, nutrient imbalance and increasing reactive oxygen species (ROS) in salt-treated plants caused growth suppression, while Si supply decreased the deleterious effects of excess salt on wheat growth. Consequently, it appears that when wheat plants are to be grown in salt-affected soils, it is highly recommended to supply them with adequate available silicon (Si).  相似文献   

20.
In order to assess the effectiveness of foliar‐applied potassium (K+, 1.25%) using different salts (KCl, KOH, K2CO3, KNO3, KH2PO4, and K2SO4) in ameliorating the inhibitory effect of salt stress on sunflower plants, a greenhouse experiment was conducted. Sodium chloride (150 mM) was applied through the rooting medium to 18 d–old plants and after 1 week of salt treatment; different K+‐containing salts were applied twice in 1‐week interval as a foliar spray. Salt stress adversely affected the growth, yield components, gas exchange, and water relations, and also caused nutrient imbalance in sunflower plants. However, foliar‐applied different sources of potassium improved shoot and root fresh and shoot dry weights, achene yield, 100‐achene weight, photosynthetic rate, transpiration rate, stomatal conductance, water‐use efficiency, relative water content, and leaf and root K+ concentrations of sunflower plants grown under saline conditions. Under nonsaline conditions, improvement in shoot fresh weight, achene yield, 100‐achene weight, photosynthetic and transpiration rates, and root Na+ concentration was observed due to foliar‐applied different K sources. Of the different salts, K2SO4, KH2PO4, KNO3, and K2CO3 were more effective than KCl and KOH in improving growth and some key physiological processes of sunflower plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号