首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tomato plants were grown hydroponically in greenhouse under common commercial cultivation practice during two seasons: winter, with lower temperatures (LT) and summer, with higher temperatures of (HT), and results were compared. The effect of season on fruit load was drastic and the hypothesis was advanced that nitrogen (N) homeostasis at the whole plant level might be significantly affected, as measured by the extractable N of the stem. During LT, dry-mass accumulation occurred more or less at the same rate in all plant parts. The high fruit load at HT altered the picture, with dry-mass accumulation present at different rates in the various plant organs. Low temperatures positively affected root weight, which was significantly higher; influenced root morphology; and negatively affected fruit load. There were significant differences between the two seasons at the time of flowering, fruit setting, and fruit maturation in terms of the number of leaves and inflorescences on the main stem and in the rate of their appearance. In summer, water content of leaves and roots was lower, but not that of stem. Also, water content of roots increased considerably increase in the last five weeks, which coincided with the temperature and fruit-load decrease at the end of the season. Nitrogen concentration of leaves was higher than that of roots throughout HT, while extractable N concentration increased significantly at the middle part of the stem, where it bore the main fruit load. This effect was more profound when more fruits were ripening. Low temperature conditions were characterized by a significant decrease of root water content, while extractable N allocation was not significantly affected and root total N was higher.  相似文献   

2.
The concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were determined in leaves from the north and south sides of the tree canopy, and in apical and basal parts of winter and fall inflorescences of 20‐year‐old ‘Colin V‐33’ avocado (Persea americana Mill.) trees, to observe the seasonal variation of all these nutrients in leaves and in inflorescences. The concentration of all the elements evaluated did not change considerably during the months of flowering and vegetative growth, but it changed with leaf age. The concentration of Ca and Mg were 14 and 7% higher, in the leaves on the south side of the canopy than in those on the north side. Inflorescences had higher P and K, and lower Ca and Mg concentrations than leaves. The concentration of Ca and Mg was higher in the winter inflorescences than in the autumn ones. The concentration of P was significantly higher in the apical part of the inflorescence than in the basal part.  相似文献   

3.
Abstract

This study was to determine the concentration, accumulation, redistribution, and export of nutrients by Rubi grape. Ten branches with leaves and fruit were collected; the vegetable matter (stem, leaf, and fruit) was washed, dried, weighed, and analyzed so as to determine the concentration of nutrients in the plant. The nutrients most absorbed were nitrogen (N), potassium (K), and calcium (Ca), and the best absorption time started after the berry ripening. Phosphorus (P), magnesium (Mg), and sulfur (S) were less demanded by the grape although they had the same behavior in relation to the period of greater absorption. The best absorbed nutrient was manganese (Mn), and its absorption increased gradually and steadily, according to the plant growing phases. The absorption of copper (Cu), zinc (Zn), and boron (B) was minimal up to the ripening of berries, but increased from then on. The greatest absorption and accumulation of nutrients occurred during the ripening of the fruits. The leaves had greater absorption of Ca, Mg, S, Mn, and Cu, whereas the fruit absorbed more K (61%), P (56%), N (38%), and B (56%). The stem presented similarly in the proportion of all macronutrients, and it accumulated more Zn.  相似文献   

4.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

5.
Summary Decomposition and changes in nutrient content of six litter types (leaves, sheaths, roots, twigs, and wood of bamboo, and grass shoots) were studied in nylon net bags for 2 years. The annual weight loss was (% of initial) bamboo leaves 56.5, bamboo sheaths 79.5, bamboo roots 65.8, bamboo twigs 49.6, bamboo wood 31.2, and grass shoots 74.9. Elemental mobility followed the order K>Na>C>P>Ca>N in all components except wood. Generally, an initial increase was followed by a consistent decrease in the contents of N (leaves), P (leaves, roots, wood) and Ca (leaves, roots, grass), and Na (wood). Most of the nutrients were immobilized in the rainy season. C and K contents showed a constant decrease throughout the decomposition period. Materials with a greater C:N ratio (>50) tended to accumulate more nutrients and retain them for longer, except for the bamboo twigs. The critical C:N ratio (at which a net release of N occured) for the leaf material was 25. Litter components with more initial N (sheaths) showed greater weight loss than those with less N (leaves, twigs, and wood). Overall, N and P were lost at the slowest rates while C and K were lost at faster rates. Initial lignin, lignin: N, C:N and C concentrations had a better predictive value for annual weight loss and nutrient release in bivariate relationships. A combination of the initial lignin value and the C: N ratio explained 93% of the variation in annual weight loss. A significant relationship was also observed between the annual weight loss rate and the nutrient mineralization/release rate.  相似文献   

6.
木芙蓉是一种观赏和药用价值较高的多年生木本花卉.在大田条件下,研究营养生长旺期木芙蓉主要矿质元素的含量与分布特征,可为其科学施肥提供技术支撑.以营养生长旺期的两个木芙蓉品种(早花品种"牡丹红"和晚花品种"醉芙蓉")为研究对象,称量根、茎、叶等器官的生物量,测定其中氮、磷、钾、钙、镁、铁、锰、锌元素含量.结果表明:(1)...  相似文献   

7.
The objective was to evaluate the effect of omitting macronutrients in the nutrients solution on growth characteristics and nutritional status of coffee. The treatments were complete nutrients solutions and solutions with nutrient omission: N (nitrogen), P (phosphorus), K (potassium), Ca (calcium), Mg (magnesium) and S (sulfur). The experiment was carried out under greenhouse conditions with 3 replicates in a completely random design. Plant height, number of leaves per plant, stem diameter, relative chlorophyll index, photosynthesis rate, stomatal conductance, transpiration, carbon dioxide (CO2) concentration, dry matter, content levels of macronutrients in plant aerial part and root system, and nutritional disorders were evaluated. Macronutrients suppression affected nutrients concentration in many plant parts, inducing the appearance of symptoms characteristic of each nutrient. The most limiting nutrients for coffee plants development were nitrogen and calcium, reflected in the lower dry matter accumulation and nitrogen the most required.  相似文献   

8.
This study verified the concentration over time of nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur (N, P, K, Ca, Mg, and S) in the leaves, stems, fruits, and roots of tomato plants. An indeterminate growth variety with ball-type fruits suited for greenhouse cultivation was used. The results showed that the distribution of minerals in the different organs of the plant varies over time. The minerals N, P, and K showed a tendency to decrease their concentration, while the concentration of Ca and S increased and that of Mg remained constant over time. The leaves had the highest concentrations of N, P, K, Ca, and Mg. The concentrations of K, for both leaf and stem, ranged between 20 and 30 g kg?1. N and K were the most extracted minerals, while P was the least extracted mineral. The information presented in this paper allows a better fertilization plan for growing tomatoes inside greenhouses.  相似文献   

9.
A field study was made of the seasonal changes in dry‐matter production, and the uptake, distribution, and redistribution of 12 mineral nutrients in the semi‐dwarf spring wheat, Egret, grown under typical irrigation farming conditions. Most of the dry‐matter production and nutrient uptake had occurred by anthesis, with 75–100% of the final content of magnesium (Mg), copper (Cu), chloride (Cl), sulfur (S), phosphorus (P), nitrogen (N), and potassium (K) being taken up in the pre‐anthesis period. The above‐ground dry‐matter harvest index was 37%, and grain made up 76% of the head dry matter. Redistributed dry matter from stems and leaves could have provided 29% of the grain dry matter. Concentrations of phloemmobile nutrients, such as N and P, decreased in the leaves and stems throughout the season, whereas concentrations of phloem‐immobile nutrients, such as calcium (Ca) and iron (Fe), generally increased. The decline in the N concentration in stems and leaves was not prevented by N fertilizer applied just before anthesis. Leaves had the major proportion of most nutrients in young plants, but stems had the major proportion of these nutrients at anthesis. Grain had over 70% of the N and P, and 31–64% of the Mg, manganese (Mn), S, and zinc (Zn), but less than 20% of the K, Ca, sodium (Na), Cl, and Fe in the plant. Over 70% of the N and P, and from 15 to 51% of the Mg, K, Cu, S, and Zn was apparently redistributed from stems and leaves to developing grain. There was negligible redistribution of Ca, Na, Cl, Fe, and Mn from vegetative organs. Redistribution from stems and leaves could have provided 100% of the K, 68–72% of the N and P, and 33–48% of the Zn, Cu, Mg, and S accumulated by grain. It was concluded that the distribution patterns of some key nutrients such as N, P, and K have not changed much in the transition from tall to semi‐dwarf wheats, and that the capacity of wheat to redistribute dry matter and nutrients to grain is a valuable trait when nutrient uptake is severely restricted in the post‐anthesis period.  相似文献   

10.
The temporal changes of nutrient concentration in leaves and their accumulation in fruit are good indicators of plant nutrient demand for each developmental stage. Seasonality of nutrients in leaves and fruits of pomegranate and their relation with fruit quality was evaluated in commercial orchards using cv. “Bhagwa.” The concentration of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), iron (Fe), zinc (Zn) and boron (B) in leaves decreased while calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu) concentration increased during fruit growth and development. Total nutrient accumulation increased gradually in fruit and translated into growth of arils, and increase in juice content and total soluble solids, however as the biomass accumulation in fruit was much faster than nutrient accumulation, concentration of majority nutrients except Mg decreased rapidly, followed by slow and continuous decrease till maturity. During fruit enlargement, demand for N, P, K, Fe, Cu and Zn was high while requirement for Ca, Mg and S was high during fruit development.  相似文献   

11.
ABSTRACT

Mao bamboo (Phyllostachys pubescens) with a high production and wide utilization has been planted in large scale in southern China, but little information about bamboo nutrition is available. The objective of this study was to reveal the dynamics of nutrition with growing time and the distribution of nutrition in different organs. It was found that the nutrition concentration of the whole plant generally declined with time during the period of 1–6 weeks owing to a dilution effect with the result of quickly increasing the biomass. The leaf concentration of nitrogen (N), phosphorus (P), and potassium (K) changed regularly with high concentrations observed at age 1, 2, 4, and 6, and lower at age 3 and 5. While the concentration of N, P, and K in the branch and stem generally declined with the weeks, a rapid decrease occurred from weeks 1 to 2. The concentrations of calcium (Ca) and magnesium (Mg) in bamboo leaf, branch, and stem appeared to be opposite to those of N, P, and K in corresponding plant parts. The elemental concentrations were greater (P < 0.05) in the leaves than in the branches and stems, while the storage of nutrition was greater (P < 0.05) in stem than in leaves and branch. A relative large total storage of nutrition, except P and Mg, were found in bamboo under an intensive management (IM) stand than those under extensive management (EM) stand. The total storage of different nutritions in the above-ground parts was in the order: K (243.0–285.6 kg ha?1) > N (154.5–207.8 kg ha?1) > P (10.4–12.2 kg ha?1). The nutrition stored in the bamboo plant would be removed away from the soil in every other year by the means of harvest of the bamboo trunk which is the largest nutrition pool of the bamboo plant. Therefore, supplementary nutrients, especially N and K, are strongly recommended in order to keep the productivity of bamboo.  相似文献   

12.
Effectiveness of surface-applied unincorporated broiler litter as a fertilizer relative to conventional inorganic fertilizers under no-till or conventional-till cotton (Gossypium hirsutum L.) production systems in the upland soils of the southern and southeastern USA is not well documented. The objectives of this research were to (1) test if broiler litter improves plant macronutrient (N, P, K, and Mg) nutrition of cotton above that of cotton fertilized with conventional inorganic fertilizers and (2) determine if lack of incorporating litter into the soil reduces macronutrient concentration in cotton plant parts in an upland soil considered marginal for cotton. Six treatments consisting of an unfertilized control, a fertilized standard (STD), two litter-only, and two litter plus inorganic N as urea–ammonium nitrate solution (UAN) were tested in two adjacent fields, one under no-till (NT) and the other under conventional-till (CT) systems. Litter alone, UAN, or a combination of litter plus UAN were applied to supply 101 kg ha−1 plant available N assuming nearly all of the UAN-N and 50% of the total litter N becomes plant available during the cotton growing season. Concentration of N, P, K, and Mg were measured in leaves, stems, and reproductive parts on three or four dates between early flowering and maturity. Cotton fertilized with the litter-only treatments always had less N concentration but greater P and K concentration in leaves, stems, and reproductive parts than cotton that received the STD treatment. Leaf and stem Mg concentration seems to depend on the N concentration in these plant parts. Lack of incorporating litter into the soil reduced N concentration in nearly all plant parts at all growth stages, suggesting some amount of the litter-derived N is lost due to lack of incorporation. Lack of incorporation also reduced leaf and stem Mg concentration, which seemed to be due to its reducing effect on N concentration. Unlike N and Mg, lack of incorporation did not consistently affect concentrations of P and K in all plant parts. Regardless of the incorporation treatment, fertilization with the litter-only treatments increased tissue P and K concentration and supported lint yield exceeding that of the STD without increasing tissue N concentration.  相似文献   

13.
巨桉人工林叶片养分交互效应   总被引:1,自引:0,他引:1  
在四川巨桉栽培区设立了60个标准地,采用相关分析和矢量诊断法进行分析,以了解巨桉人工林养分的相互作用关系。结果表明,巨桉人工林叶片的养分交互作用较为复杂。N可促进P、K、Ca、Mn等的吸收,但易受到Fe、Zn、高Ca、高Mg的拮抗,而且高N抑制了Mn的吸收;P可促进K、Mg、Mn等的吸收,但易受Zn、Fe、高Mn、高K、高Ca、高Mg的拮抗,而高浓度的P将抑制K、Zn、Fe等的吸收;K对其他养分元素均没有明显的促进作用,但高浓度K限制P的吸收;Ca、Mg之间可相互促进吸收。同时,低浓度的Ca和Mg有利于Fe、Zn的吸收,高浓度的Ca和Mg将对N、P、Fe、Mn、S、B等养分产生拮抗,限制吸收;S可促进Zn的吸收,但易受高Ca、高Mg拮抗;Cu、Zn、Fe、Mn之间主要以拮抗为主。B相互作用较少,对其他养分几乎没有明显的促进作用。  相似文献   

14.
A study was made of the effects of soil salinity on dry matter production, grain yield, and the uptake, distribution and redistribution of mineral nutrients in irrigated grain sorghum. Soil salinity (EC, 3.6 mS/cm) reduced seedling establishment by 77%, and dry matter and grain yields per plant by 32%; grain yield/ha was reduced by 84%. Salinity reduced grain number per head, but not individual grain size. The accumulation of dry matter and most nutrients was reduced by salinity, but the distribution and redistribution of nutrients within the plant were largely unaffected. Redistributed dry matter provided 52 and 31% of the grain dry matter for control and salt‐affected plants, respectively. Salt‐affected plants had a greater proportion of their sulfur (S), magnesium (Mg), sodium (Na), and chloride (Cl) in stems and leaves than control plants at maturity. Grain had 50–90% of the nitrogen <N), phosphorus (P), S, and Mg, 20–50% of the potassium (K), manganese (Mn), zinc (Zn), and copper (Cu), but < 20% of the calcium (Ca), Na, Cl, and iron (Fe) contents of the whole plant. Over 65% of the N and P, and from 20 to 30% of the K, S, Mg, Cu, and Zn was redistributed from the stem and leaves to grain. There was no redistribution of Ca, Na, Cl, Fe, and Mn. Leaves were more important than the stem as a source of redistributed N, but the leaves and stem were equally important as sources of redistributed P, K, S, Mg, and Cu. Redistribution from the stem and leaves provided 80% of the K and 20–50% of the N, P, S, Mg, Zn, and Cu accumulated by grain. Concentrations of Na, and especially Cl, were high in vegetative organs of salt‐affected plants, but not in grain. It was concluded that although moderate salinity was detrimental to the establishment and yield of grain sorghum, it had little effect on patterns of distribution and extents of redistribution of mineral nutrients.  相似文献   

15.
硒对烤烟生长、化学指标及矿质营养元素含量的影响   总被引:1,自引:0,他引:1  
为探讨不同浓度的硒(Se)对植物生长、化学指标及矿质营养元素含量的影响,本研究以云烟87为试验材料,采用盆栽试验方法,研究了不同硒浓度对烤烟生长、化学指标及烤烟根、茎、叶中矿质元素N、P、K、Ca、Mg、Mn、Zn、Cu累积的影响。结果表明,土壤施硒(亚硒酸钠)4.4 mg·kg-1时,烟叶中烟碱、蛋白和还原糖等含量处于最适范围,根、茎、叶中矿质元素N、P、K、Ca、Mg、Mn、Zn、Cu的含量达到最大值。低硒处理(Se≤4.4 mg·kg-1)显著提高了烤烟各部位对矿质元素的吸收,尤其对N、K、Ca、Mg、Mn的影响最为显著,从而促进了烤烟的生长,烟叶化学成分更加协调;而高硒处理(Se≥11.1 mg·kg-1)则降低了烤烟各部位对矿质元素的吸收,尤其对N、P、K的影响最显著,从而抑制了烤烟的生长。土壤中不同硒浓度通过调控植物对矿质元素的吸收进而影响植物的生长和化学指标,该研究结果为指导富硒烟叶的生产提供了理论依据。  相似文献   

16.
烤烟矿质营养分布的因子分析   总被引:10,自引:1,他引:10  
为了研究烤烟的B营养及B K交互作用 ,进行了烤烟生长期间不同施K、施B肥的盆栽试验。在两个生育期测定根、叶不同部位 1 0种矿质营养元素含量 ,并对试验结果作了因子分析和方差分析。分析结果表明 ,一个四因子模型解释了试验数据总方差的 92.1% ,10种矿质元素划分为有确切意义的公因子微量元素营养因子、常量元素营养因子、磷因子和硼因子。矿质营养分布方式主要受植株部位、施K量及两者交互效应的显著影响。根部有较高的微量元素浓度分布 ,叶部有较高的常量元素浓度分布。多施K肥可适当提高烟叶含K量 ,也可抑制叶片中的Ca、Mg、S含量 ,减小P营养。K充足时 ,多施B肥有可能增加根部微量元素营养。高B、高K会影响植株对P、B的吸收。  相似文献   

17.
Growth stage effects on distribution of mineral nutrients or beneficial elements phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chloride (Cl), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), molybdenum (Mo), sodium (Na), silicon (Si) and nickel (Ni), and the elements bromine (Br), rubidium (Rb), strontium (Sr), barium (Ba), lanthanum (La), cerium (Ce), and uranium (U) in two barley (Hordeum vulgare L.) cultivars and how the distribution of these elements changed were determined during the 2006–2007 growing season in a field experiment. Barley plants were sampled from the field at shooting, heading, soft dough, hard dough and harvest stages, and mineral nutrients and other elements concentrations of spike, flag leaf, old leaf, and stem samples were determined by polarized energy dispersive X-ray fluorescence (PEDXRF). Distribution patterns varied considerably from element to element. At the end of the season much of the Ca, Mg, S, Si, Fe, Mn, Cu, Ni, Sr, Ba, La, Ce, and U were located in the spikes. However, much of the P, K, Zn, Cl, Na, Br, and Rb remained in the old leaves or stem.  相似文献   

18.
A greenhouse experiment was conducted to study the effect of phosphorus application on the growth of rice and the concentration of P, N, K, Ca, Mg, Fe, Mn, Cu, B and Al in leaves, stems and roots. The results showed that application of phosphorus substantially increased the dry matter of leaves, stems and roots upto 30 ppm of P level. Application of phosphorus caused a decrease in the concentration of Fe, Cu and Al in leaves and stems and increased concentration in roots. Phosphorus concentration increased in all plant fractions, while N and Mn increased in leaves but decreased in stems and roots. Similarly Ca, Mg and B concentration decreased in leaves, stems and roots.  相似文献   

19.
不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响   总被引:2,自引:1,他引:1  
【目的】干旱胁迫是限制植物生长的重要非生物因素之一,而适宜的氮素营养可以提高植物的抗旱性。本文探讨了供应不同形态氮源对干旱条件下杉木[Cunninghamia lanceolata (Lamb.) Hook]幼苗养分吸收及分配的影响。【方法】采用水培试验,供试杉木材料为2个无性系幼苗(7–14号和8–8号),在营养液中添加10%(w/v)PEG-6000进行干旱胁迫。营养液中的氮源处理包括硝态氮、铵态氮、硝铵混合氮,氮素浓度均为4.571mmol/L,每个品种均设6个处理。培养20天后,测定了杉木幼苗根、茎、叶的养分含量及生物量。【结果】与正常水分供应相比较,干旱胁迫条件下供应铵态氮可促进叶片N、K以及茎叶P、K的吸收,供应混合氮可促进根部K的吸收;供应铵态氮可促进根、茎对Ca的吸收,对叶片Ca无明显作用。干旱胁迫对根部Fe、Mn、Cu、Zn吸收量影响显著,氮素供应不同程度地降低了干旱胁迫下各器官Mg、Fe、Mn和Cu吸收量,表现为抑制吸收,但添加铵态氮比硝态氮的降低幅度小。3个氮源处理均降低了干旱条件下根部Zn吸收量,但没有降低甚至增加了茎、叶中Zn的吸收量,说明氮营养可调节Zn在各器官间的分配,缓解干旱导致的缺锌现象。不同器官之间各养分吸收量差异显著,3个氮源处理中,N和P吸收量表现为叶>根>茎,K和Ca为叶>茎>根,Fe、Cu为根>叶>茎,Mg、Mn和Zn在各器官之间的分配规律不一。铵态氮吸收量均表现为叶>根>茎,且各器官铵态氮吸收量显著高于硝态氮,说明杉木具有明显的喜铵特性。【结论】在干旱胁迫下,氮素供应形态显著影响杉木幼苗对养分的吸收及在各器官中的分配,作用效果因家系品种和元素种类而异。总体来讲,铵态氮提高干旱胁迫下杉木幼苗养分吸收的效果好于硝态氮,杉木可以认为是喜铵植物。  相似文献   

20.
Root dry weight and leaf number were not affected by thigmic stress or chlormequat chloride. Shoot dry weight, shoot:root dry weight ratio, shoot height, leaf area, and root surface area were decreased by both thigmic stress and chlormequat chloride. However, root length was decreased and root radius increased only by chlormequat chloride. Total element uptake was decreased by both thigmic stress and chlormequat chloride. In the shoot and root, N was not affected, P was increased in the shoots, K decreased in the shoots but increased in the roots, and Mg decreased in the roots as a result of thigmic stress and chlormequat chloride. Whereas, Ca was decreased in the roots and Mg increased in the shoots by chlormequat chloride. The uptake of N, P, Ca, or Mg was not affected by thigmic stress or chlormequat chloride, however, K uptake per root surface area decreased. Thigmic stress decreased K in both the upper and lower stem but did not affect leaf concentration of K. However, chlormequat chloride decreased K in both the stem and leaves. Thigmic stress because of the role of K in cell elongation. Chemical name used: (2‐chloroethyl)trimethyl‐ammonium chloride (chlormequat chloride).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号