首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract

Positive effects of liming on the nitrogen (N) contents of perennial ryegrass (Lolium perenne) shoots might be due in part to the effects of increased exogenous calcium (Ca) level on the rate of N uptake by plants. To test this hypothesis, perennial ryegrass was grown in soil culture treated with different rates of lime, gypsum, and ammonium nitrate (NH4NO3), in a factorial combination. The effects of these treatments on yield, N offtake, and shoot chemical composition were examined at two consecutive harvests. At both harvests, liming significantly increased plant yield and N offtake. There was no response to gypsum at cut 1; but at the second harvest, a negative interaction occurred between the two Ca treatments such that gypsum increased plant yield and N offtake in the absence of lime but not in its presence. The results suggest that liming affects N recovery by swards in at least two different ways, each associated with a different phase in the soil MIT (Mineralization Immobilization Turnover) cycle. During phases of net N mineralization, liming by raising soil pH stimulates biomass activity and increases the amount of organic N mineralized. In contrast, during phases of net N immobilization, liming by increasing Ca availability in the rhizosphere improves the ability of plants to absorb N, and thus helps them to compete more effectively with the biomass for mineral N.  相似文献   

2.
Abstract

Relationships between the disease severity of clubroot caused by Plasmodiophora brassicae, the soil pH value and the concentration of exchangeable calcium associated with liming were investigated under controlled density of resting spores. Disease indices were lower in the plots treated with lime than in the control plots without lime application. The disease index was significantly lower when lime materials were mixed two weeks before sowing compared with four weeks before sowing. The reduction rate of the disease index was larger for a concentration of 2.0 g kg?1 than 1.0 g kg?1 of lime in soil. The density of the resting spores in soil at the time of sowing was significantly reduced by liming. The reduction rate was 17–31 % for calcium cyanamide, 12–29% for dolomite, and 20–39% for calcium carbonate compared with the control plot. It was suggested that the disease severity was influenced by both the soil pH and the content of exchangeable calcium in soil based on the analysis of covariance.  相似文献   

3.
Summary Soil pH, total organic C, total N, exchangeable Al, available P, CO2 evolution, microbial biomass C and N, phosphatase and dehydrogenase activities were determined in acid soils sampled under spruce subjected to acid deposition, before and after liming. A slight decrease in pH values was observed from the edge of a tree canopy to the base of the trunk in acid soils. Liming drastically reduced exchangeable Al and increased CO2 evolution, microbial biomass, and the metabolic quotient. The microbial biomass C to total organic C ratio increased after liming but did not reach 2%, the average value considered valid in soils where the C content is in equilibrium, that is when C inputs are equal to C outputs. The microbial biomass C:N ratio decreased after liming, thus indicating that bacteria became predominant over fungi when soil acidity decreased. Dehydrogenase activity but not phosphatase activity was increased by liming. The decrease in phosphatase activity was not completely related to the increase in available P, but was also dependent on microbial growth and the decrease in acid phosphatase, the predominant component of acid soils.  相似文献   

4.
The benefits of liming acidic or calcium (Ca)-deficient soils for soil structure and fertility are well documented. However, little is known about the effect of liming nearly neutral loess soils – lacking Ca – on interactions between soil nutrients. Over a 2-year period, 62 field trials were conducted in Germany and Austria with three treatments (0, 3 and 12 t CaO ha?1) on slightly acidic loess soils. Soil samples from the top soil layer were taken 4, 8, 16 and 24 weeks after liming. In addition to the pHCaCl2, the phosphorus (P), potassium (K) and Ca contents were analysed using electro-ultrafiltration (EUF). The application of lime increased the pH in average from 6.6 up to 7.0 and 7.2, but did not decrease EUF extractable P and K below the level of untreated control. Contrary to our expectations, EUF extractable P increased 4 weeks after liming in the treatment with 3 t CaO ha?1. At the end of incubation period, 24 weeks after liming, the EUF extractable K in treatment 12 t CaO ha?1 remained still 1.3 mg K 100 g?1 soil above the untreated control.  相似文献   

5.
Summary Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N and some physicochemical properties of different topsoil horizons in a spruce forest (Picea abies L.) were measured throughout one growing season. The highest biomass N was recorded in autumn and spring in the upper soil horizons, while the lowest values were obtained in summer and in deeper horizons. The clearest differences between the different soil treatments were apparent in autumn and in the upper horizons. Liming increased the microbial biomass N from 1.7% of the total N content to 6.8% (Olf1 layer) and from 1% to 2% of the total N content in the Of2 layer. The main inorganic-N fraction in the deeper horizons was NO inf3 sup- . An increase in cation exchange capacity was observed down to the Oh layer, while soil pH was only slightly higher in the Olf1 and Of2 layers after liming. The effects of irrigation were less marked. The microbial biomass N increased from 1.7% of total N to 4.8% in the Olf1 layer and from 1% to 2% of total N in the Of2 layer. In the Olf1 layer an increase in C mineralization was observed. Acid precipitation decreased the microbial biomass N in the upper horizons from 4.8% of total N to 1.8% in the Olf1 layer and from 2% to 0.5% in the Of2 layer. No significant changes in soil pH were observed, but the decrease in cation exchange capacity may result in a decrease in the proton buffering capacity in the near future.  相似文献   

6.
The application of nitrogen (N) fertilizers and liming (CaCO3) to improve soil quality and crop productivity are regarded as effective and important agricultural practices. However, they may increase greenhouse gas (GHG) emissions. There is limited information on the GHG emissions of tropical soils, specifically when liming is combined with N fertilization. We therefore conducted a full factorial laboratory incubation experiment to investigate how N fertilizer (0 kg N ha−1, 12.5 kg N ha−1 and 50 kg N ha−1) and liming (target pH = 6.5) affect GHG emissions and soil N availability. We focussed on three common acidic soils (two ferralsols and one vertisol) from Lake Victoria (Kenya). After 8 weeks, the most significant increase in cumulative carbon dioxide (CO2) and nitrous oxide (N2O) fluxes compared with the unfertilized control was found for the two ferralsols in the N + lime treatment, with five to six times higher CO2 fluxes than the control. The δ13C signature of soil-emitted CO2 revealed that for the ferralsols, liming (i.e. the addition of CaCO3) was the dominant source of CO2, followed by urea (N fertilization), whereas no significant effect of liming or of N fertilization on CO2 flux was found for the vertisol. In addition, the N2O fluxes were most significantly increased by the high N + lime treatment in the two ferralsols, with four times and 13 times greater N2O flux than that of the control. No treatment effects on N2O fluxes were observed for the vertisol. Liming in combination with N fertilization significantly increased the final nitrate content by 14.5%–39% compared with N fertilization alone in all treatment combinations and soils. We conclude that consideration should be given to the GHG budgets of agricultural ferralsols since liming is associated with high liming-induced CO2 and N2O emissions. Therefore, nature-based and sustainable sources should be explored as an alternative to liming in order to manage the pH and the associated fertility of acidic tropical soils.  相似文献   

7.
The effects of simulated acid rain and acidification, combined with liming, on amylolytic, laminarinolytic and xylanolytic activity in whole body homogenates of enchytraeids Cognettia sphagnetorum were studied under field conditions. Simulated acid rain (pH 2.5) and simulated acid rain with subsequent liming (CaCO3) were applied to experimental plots in a mixed forest soil. The pH of the soil was lowered by acid treatment (4.3), while the pH increased after liming (6.3) in comparison with the control (4.5). Acidification of soil caused a decrease in enchytraeid body mass and amylolytic activity. In acidified plots after liming, amylolytic activity and laminarinolytic activity increased, while live body mass decreased. The enzymatic activity of enchytraeids depended on season and also indirectly on individual mean mass. Received: 12 February 1996  相似文献   

8.
ABSTRACT

Three vegetative rootstocks of plum (Prunus domestica), Marianna GF 8-1 (Prunus cerasifera × munsoniana), Myrobolan B (P. Cerasifera) and Pixy (P. Insititia) were grown in pots containing sand and irrigated with complete nutrient solution to investigate the effect of calcium sulfate supplied to the nutrient solution on plants grown under salt stress. Treatments were (1) control (C): nutrient solution alone; (2) S (salinity stress): 40 mM NaCl; (3) S+Ca1: 40 mM NaCl +2.5 mM calcium (Ca) and (4) S+Ca2: 40 mM NaCl + 5 mM Ca. Calcium was supplied as CaSO4. The plants grown under 40 mol L?1 NaCl produced less dry matter and had lower chlorophyll content than those without NaCl. Supplementary CaSO4 at both 2.5 and 5 mM concentrations ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Salt treatment impaired membrane permeability by increasing electrolyte leakage. The addition of calcium sulfate partially maintained membrane permeability. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants under the high NaCl treatment. Pixy had much lower Na. The CaSO4 treatments lowered significantly the concentrations of Na in both leaves and roots. Pixy was more tolerant to salinity than the other two rootstocks. The accumulation of Na in leaves and roots indicates a possible mechanism whereby Pixy copes with salinity in the rooting medium, and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of Ca and K were lower in the plants grown at high NaCl than in those under the control treatment, and these two element concentrations were increased by calcium sulfate treatments in both leaves and roots, but remained lower than control values in most cases.  相似文献   

9.
Abstract

A close relationship was found between the pH of soil suspensions in the SMP buffer solution (pHsmp) and the potential acidity of soils (H + Al) extracted by a neutral calcium acetate solution (r = 0.98), for twenty six soil samples of the State of Sao Paulo, Brazil, This relationship was represented by the equation lnY = 7.76 ‐ 1.053X, which allowed for the calculation of H + Al directly from the values of pHsmp.

With the values of H + Al and the sum of bases, calcium, magnesium and potassium, the cation exchange capacity (CEC), and the base saturation (V) were calculated. Relationships between the base saturation of the soils and the active acidity of soil suspensions were close, both for pH determined in water (r=0.94) and pH determined in 0.01M CaCl2 solution (r ‐ 0.97). Thus the lime requirement (LR) of soils could be calculated, for given values of pH or base saturation, using the equation LR = CEC (V2 ‐ V1)/100, in which V1 is the base saturation of the soil and V2 is the expected value upon liming.

The predicted values for lime required to increase the soil pH in water to either 5.5 or 6.0 were comparable to those obtained by the direct use of the SMP buffer method, and were, respectively, two and four times higher than the amounts required to neutralize exchangeable aluminum, considering the criterion LR = Al × 1.5.

The proposed method to determine lime requirement of soils is described in detail and the advantages of its use are discussed.  相似文献   

10.
Short-term and medíum-term effects of liming (CaCO3), fertilization [5Ca(NO)3)2·NH4NO3], and acidification on soil bioactivity were measured in a spruce stand in Southern Germany. The experiment was set up in a randomized block design. Acid precipitation lowered the pH, liming increased the pH, while fertilization caused only small alterations in pH values. Significant differences in soil moisture occurred only in the mineral horizons. The soil ATP content of the humus layers decreased in all plots (control included) up to day 100. On all sampling dates, a pronounced decrease in ATP content followed the acidification. Minor decreases in ATP were observed after fertilization, while liming produced no defined effects. Similar trends, but less pronounced, were observed in the mineral horizons. Only a few significant correlations were found between pH values and ATP or between moisture and ATP within a treatment and sampling date. Present address: Institut für Biologie II (Zoologie), RWTH Aachen, Kopernikusstrasse 16, D-52056 Aachen, Germany  相似文献   

11.
ABSTRACT

The aim of the present study was to investigate changes of weed species density as a result of long-term (1976–2005) exposure to different soil pH levels, and P2O5:K2O amount in soil created by initial and subsequent periodical liming, and fertilization. As a result of liming during the period 1976–2005, average soil pH levels at the start of the sixth crop rotation (2001–2005) ranged from 4.1 (unlimed) to 6.6. And in each pH plot were four sub-plots with a different amount of mobile phosphorus:potassium. In acid soil (pH 4.1), in spring oilseed rape and in spring barley crops, the dominant weed Spergula arvensis density decreased significantly at a pH of 5.1 or higher. With increasing amount of P2O5:K2O in soil, the abundance of S. arvensis in spring rape and spring barley crops was reduced at all soil pH levels. At pH 5.1, Chenopodium album and Tripleurospermum perforatum were prominent. Elytrigia repens tended to decrease with increased alkalinity and nutrient amount in soil. With reduction of soil acidity from pH 4.1 to 6.6, the total weed infestation consistently declined in all crops. A low amount of P2O5:K2O in soil caused the decline in the abundance of S. arvensis, E. repens and increase in C. album and T. perforatum.  相似文献   

12.
The present study was conducted to investigate the cell-wall polysaccharides and hydroxycinnamates in wheat plants (Triticum aestivum L.) under aluminum (Al) stress at a higher level of calcium (Ca) supply. Seedlings were grown in nutrient solution for 7 d and then subjected to treatment solutions containing Al (0 or 100 μM) and Ca (0 or 2500 μM) in a 500 μM CaCl 2 solution at pH 4.5 for 8 d. Calcium treatment (2500 μM) improved root growth significantly under Al-stress conditions. The contents of pectin and hemicellulose in roots were increased under Al-stress conditions, and this increase was conspicuous in the hemicellulosic fraction. The increase in the hemicellulose was attributed to increases in arabinose, xylose, and glucose in neutral sugars. High Ca treatment decreased these contents in Al-stressed cell walls. Aluminum treatment increased the content of ferulic acid, whereas Ca treatment with Al reduced the content. These results suggest that Al may modify the mechanical properties of cell-wall polysaccharides by enhancing the synthesis of arabinoxylan, β-glucan, and ferulic acid in the cell wall. High Ca treatment may maintain the normal synthesis of these materials even under Al-stress conditions.  相似文献   

13.
Li  Yuan  Cui  Song  Chang  Scott X.  Zhang  Qingping 《Journal of Soils and Sediments》2019,19(3):1393-1406
Purpose

The aim of this meta-analysis was to investigate the interactive effects of environmental and managerial factors on soil pH and crop yield related to liming across different cropping systems on a global scale.

Materials and methods

This study examined the effects of liming rate, lime application method, and liming material type on various soil chemical properties and crop yield based on data collected from 175 published studies worldwide since 1980.

Results and discussion

The most important variables that drive changes in soil pH and crop yield were liming rate and crop species, respectively. Soil conditions, such as initial soil organic matter and soil pH, were more important for increasing soil pH in field-based experiments, while lime material type and application method were more important for improving crop yield. To effectively neutralize soil acidity, the optimum liming duration, rate, and material type were?<?3 years, 3–6 Mg ha?1, and Ca (OH)2, respectively. Averaged across different crop species, the application of CaO, CaCO3, Ca (OH)2, and CaMg (CO3)2 increased yield by 13.2, 34.3, 29.2, and 66.5%, respectively.

Conclusions

This meta-analysis will help design liming management strategies to ameliorate soil acidity and thus improve crop yield in agroecosystems.

  相似文献   

14.
Soil liming may increase phosphorus (P) availability, but this increase may also be achieved with generous P applications. However, it is not well known which practice has longer-term effects. Thus, in a pot experiment, an acidic soil (pH 4.57), limed to pH 6.5, was added with P and sown with Lolium perenne L. We conducted three cuttings (on Days 40, 80, and 120) in order to evaluate P dynamics in each of the treatments. As expected, biomass increased significantly with liming. We also found that plant P concentration increased in the liming treatment, but not in the P-added treatment, although the difference was reduced on Day 120. This shows that in severely acidic soils, liming should be preferred over P addition, although the beneficial effects may not last for a very long time, since in this experiment, they only lasted for 4 months. Similar conclusions were drawn from soil P extraction results.  相似文献   

15.
Summary The effects of simulated acid rain and acidification combined with liming on enzymatic activities in the gut of the enchytraied Fridericia sp. were studied under laboratory conditions. Simulated mild (pH 4.4) and strong (pH 3.1) acid rain was applied throughout a 52-day experiment. Liming, at rates of 1500 and 4000 kg CaCO3 powder ha-1, was applied once on the 27th day of acid rain. After 52 days, the treatment effects were determined by analysing changes in the fresh body weight of enchytraeids and the activities of amylase (EC 3.2.1.1), xylanase (EC 3.2.1.8), trehalase (EC 3.2.1.28) and C1-cellulase (EC 3.2.1.91) in the gut. The effects were significant in only a few instances. After acidification, xylanase and trehalase activities decreased. The changes in fresh body biomass were not significant. Amylase and cellulase activities increased slightly, possibly because the acidification had a stimulatory effect on soil amylolytic and cellulolytic microorganisms. After liming, both xylanase activity and the enchytraeid body biomass decreased. This was the only marked evidence of a negative effect on the enchytraeids. The high amylase, trehalase and cellulase activities that were observed might have been caused by intensive digestion of dead acidophilous microflora.  相似文献   

16.
A stratified subsurface layer of acidic soil can develop in minimally disturbed soil such as no‐till receiving injection of N fertilizer (e.g., anhydrous ammonia). The objective of this study was to evaluate the effectiveness of subsurface band treatments in alleviating soluble Al3+ and Mn2+ toxicities on sorghum growth. Soil columns 40 cm in length were packed with soil (Valentine fine sand mixed mesic Typic Ustipsamment and Thurman loamy sand mixed Mesic Udorhentic Haplustoll) with treatments applied at the 10–18 cm depth to mimic soil pH stratification. The treatments at this depth were: (1) entire layer at soil pH of 3.7; (2) band of soil 6 cm wide at pH of 5.8 with the rest of the soil at pH 3.7; (3) band of soil 6 cm wide at pH of 6.3 with the rest of the soil at pH 3.7; and (4) entire layer at soil pH of 5.8. The soil above and below the 10–18 cm depth was at pH 5.8. Sorghum (Sorghum bicolor L. Moench) was grown in the soil columns under a controlled environment for 6 weeks. High concentration of Al in soil solution was found in soil at soil pH 3.7 which was overcome by either banding to pH 5.8, 6.3, or having the soil layer at pH 5.8. Treatment with pH of 5.8 throughout the soil 10–18 cm depth produced significantly greater top growth, although all other pH or liming strategies performed better than the soil pH 3.7 treatment. The banded treatments at pH 5.8 and 6.3 allowed roots to grow below the 10–18 cm layer of soil, but root growth was still significantly less than in the soil where the entire soil treatment layer was at pH 5.8. The increase in biomass yield with soil pH of 5.8 in the entire treatment layer was higher compared to band treatment at pH 5.8; however, the lime requirement would be 3.4 times more with liming the entire layer compared to banding a portion of the soil to pH 5.8 and would thus be translated into a higher liming cost.  相似文献   

17.
The effects of liming on juvenile stocks of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) in the river Vikedalselva in southwestern Norway were assessed. From 1987 to 1989, the river was limed only during the spring snow melt, and pH varied in the range between 5.5 and 7.0. In 1990 to 1993, the river was limed to pH 6.2 from 15 February to 1 June and to pH 5.7 during the rest of the year. Since 1994, the pH during late winter and spring was maintained above 6.5. Prior to liming fish kills were evident during spring snow melt, but these have not occurred since liming. Electrofishing in the autumn between 1981 and 1994 showed no significant change in densities of juvenile salmon and brown trout after liming, mean densities ranged between 19–50 and 9–32 individuals 100 m–2 respectively. A significant linear correlation between production and biomass of both species was found, indicating that factors directly controlling density affect juvenile production and cause production to remain below carrying capacity. In spite of a clear increase in pH and a reduction in the concentration of labile aluminium after liming, the conditions still do not seem to be optimal for juvenile salmonids. We suggest that a complexity of different factors impose limitations on fish production in the river: inadequate egg deposition, environmental factors such as water temperature and flow, osmoregulatory failure in mixing zones between limed and acidic water and gill damage through deposition of aluminium and iron. However, there are several indications of a reduction in toxic effects after the pH was raised to 6.5 during spring snow melt.  相似文献   

18.
 The effects of growing trees in combination with field crops on soil organic matter, microbial biomass C, basal respiration and dehydrogenase and alkaline phosphatase activities were studied in soils under a 12-year-old Dalbergia sissoo (a N2-fixing tree) plantation intercropped with a wheat (Triticum aestivum) – cowpea (Vigna sinensis) cropping sequence. The inputs of organic matter through D. sissoo leaf litter increased and crop roots decreased with the increase in tree density. Higher organic C and total N, microbial biomass C, basal soil respiration and activities of dehydrogenase and alkaline phosphatase were observed in treatments with tree-crop combination than in the treatment without trees. Soil organic matter, microbial biomass C and soil enzyme activities increased with the decrease in the spacing of the D. sissoo plantation. The results indicate that adoption of the agroforestry practices led to an improved organic matter status of the soil, which is also reflected in the increased nutrient pool and microbial activities necessary for long-term productivity of the soil. However, tree spacing should be properly maintained to minimize the effects of shading on the intercrops. Received: 21 February 1997  相似文献   

19.
Abstract

A pot experiment was performed during the 1992 growing season on an acid, sandy topsoil taken from a Swedish liming experiment. A central composite experimental design was used in order to study the effects of supply of phosphorus (P) and micronutrients at different liming levels on yield of barley (Hordeum vulgare L. c.v. Golf), mineral content in plant, straw, and grain, and level of soil extractable nutrients. The results showed no increase of yield due to liming despite the fact that lime increased the yield significantly in the field experiment. The soil appeared initially to have a good balance between the nutrients included in the experimental design with the exception of P. An excessive supply of manganese (Mn) decreased the yield. The contents of calcium (Ca) and aluminum (Al) in the plant were hardly affected by the treatments, while the contents of P, Mn, copper (Cu), and zinc (Zn) more than doubled compared to no supply. The contents of P, Cu, and Zn were mainly influenced by the supply of the actual element, while the content of Mn was more closely related to the supply of lime. Soil pH(H20) and CaCl2‐extractable P, Mn, Cu, and Zn were highly related to the supplies of lime, P, Mn, Cu and Zn, respectively. Only a few interactions were observed.  相似文献   

20.
Summary The effects of the endogeic earthworm, Aporrectodea caliginosa tuberculata (Eisen) on decomposition processes in moist coniferous forest soil were studied in the laboratory. The pH preference of this species and its effects on microbial activity, N and P mineralization, and the growth of birch seedlings were determined in separate pot experiments. Homogenized humus from a spruce stand was shown to be too acid for A. c. tuberculata. After liming, the earthworms thrived in the humus and their biomass increased (at pH above 4.8). In later experiments in which the humus was limed, the earthworms positively influenced the biological activity in humus and also increased the rate of N mineralization. A. c. tuberculata increased the growth of birch seedlings, with increases observed in stems, leaves, and roots. Neither NH 4 + -N fertilizer nor mechanical mixing with artificial worms affected seedling growth. No plant-growth-affecting compounds (e.g., hormone-like compounds) due to the earthworms were present in the humus. The shoot: root ratio in the birch seedlings was not affected by either the earthworms or the fertilizer. The experiments revealed the impact of earthworm activity on soil processes and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号