首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

2.
Abstract

Plants grown in acidic soil usually require relatively high amounts of available phosphorus (P) to optimize growth and productivity, and sources of available P are often added to meet these requirements. Phosphorus may also be made available at relatively high rates in native soil when roots are colonized with arbuscular mycorrhizal fungi (AMF). Addition of P to soil usually reduces root‐AMF colonization and decreases beneficial effects ofAMF to plants. In glasshouse experiments, soil treatments of P [0 P (Control), 50 mg soluble‐P kg?1 as KH2PO4 (SP), and 200 mg P kg?1 as phosphate rock (PR)], organic matter (OM) at 12.5 g kg?1, AMF (Glomus darum), and various combinations of these (OM+SP, OM+PR, AMF+SP, AMF+PR, AMF+OM, AMF+OM+SP, and AMF+OM+PR) were added to steam treated acidic Lily soil (Typic Hapludult, pHw=5.8) to determine treatment effects on growth and mineral acquisition by chickpea (Cicer areitinum L.). The various treatment applications increased shoot dry matter (DM) above the Control, but not root DM. Percentage AMF‐root colonization increased 2‐fold or more when mycorrhizal plants were grown with AMF, OM+SP, and OM+PR. Regardless of P source, plant acquisition of P, sulfur (S), magnesium (Mg), calcium (Ca), and potassium (K) was enhanced compared to the Control, and mineral enhancement was greater in PR compared to SP plants. Mycorrhizal plants also had enhanced acquisition of macronutrients. OM+SP and OM+PR enhanced acquisition of P, K, and Mg, but not Ca. Concentrations of Fe, Mn, Cu, and Al were generally lower than Controls in SP, RP, AMF+PR, AMF+SP, and OM plants, and mycorrhizal plants especially had enhanced micronutrients. Relative agronomic effectiveness values for shoot DM and shoot P, Ca, and Mg contents were considerably higher for PR, including OM+PR, AMF+PR, and AMF+OM+PR, than for SP. PR and OM applications to AMF plants are low‐cost attractive and ecologically sound alternatives to intensive use of P fertilizers for crops grown in acidic soils.  相似文献   

3.
Abstract

Maize (Zea mays L.) inbreds were grown on soils known to produce Fe, Zn, Mg, Ca, and Cu deficiency and Al and Mn toxicity. The inbreds were assessed for their differential responses to the elemental problem induced by each soil. Marked differences in susceptibility and/or tolerance to limited or excess amounts of mineral nutrients were noted among the inbreds. Information on differential responses of plants to the various mineral elements should be beneficial for overcoming particular element problems and for developing plants which utilize mineral elements more efficiently.  相似文献   

4.
Mineral element deficiencies and toxicities are common problems associated with sorghum [Sorghum bicolor (L.) Moench] production on acid soils. To better understand some of the mineral element problems and the analysis of plant tissue of sorghum plants grown on acid soils, four sorghum genotypes were grown on an acid Oxisol at Carimagua, Colombia limed with dolomite at 2 and 6 Mg ha‐1.

Samples for mineral element analyses were obtained from leaves at different positions on the four genotypes. Concentrations of P and Mg were highest in the flag leaf (Leaf No. 1) and decreased as the position on the plant declined from the top of the plant for plants grown at 2 Mg lime ha‐1. Similar decreases in P, Mg, K, and Zn concentrations occurred in plants grown with 6 Mg lime ha‐1. Concentrations of Ca, S, Si, Mn, Fe, Cu, and Al increased as leaf position declined from the flag leaf for plants grown at 2 and 6 Mg lime ha‐1. The higher lime supply enhanced Ca and reduced Mn and Fe concentrations in leaves. Differences in mineral element concentrations for the four genotypes used were fairly extensive. The elements to show the greatest range among genotypes were Al and Si and the elements to show the least range among genotypes were P, K, and S. Care should be used in collecting leaf samples for plant analysis and genotypic differences for accumulation of mineral elements should be considered in interpretation of results.  相似文献   

5.
Aluminum (Al) and chromium (Cr) stresses often occur simultaneously in agricultural soils, and pose a great damage to crop growth, yield formation and product safety. In the current study, the influence of combined Al and Cr stresses on plant biomass, metal and nutrient contents was determined in comparison with that of Al or Cr stress alone. A hydroponic experiment was conducted to investigate the effect of pH, Al and Cr in the medium solution on the uptake of mineral elements as well as Al and Cr in the two barley genotypes differing in Al tolerance. Aluminum sensitive genotype Shang 70-119 had significantly higher Cr and Al contents in plants than Al-tolerant genotype Gebeina. Barley roots had much higher Al and Cr contents than above-ground plant parts. Chromium contents were much higher in the solution with pH 4.0 than in that with pH 6.5. Aluminum stress reduced phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), copper (Cu), manganese (Mn), zinc (Zn) and boron (B) contents in roots and restrained potassium (K) and iron (Fe) from being translocated into shoots and leaves. Chromium stress resulted in reduced P, K, Mg, S, Fe, Zn and Mn contents in roots at pH 6.5 and P, K, Ca, Mg, S, Zn and Mn contents at pH 4.0. Translocation of all nutrients from roots to upper parts of plants was inhibited except Ca in pH 6.5 with Cr addition. Lower contents of all nutrients were observed at pH 4.0 as compared to pH 6.5. Combined stress of Cr and Al, on the whole, caused further reduction in mineral content in all plant parts of the two barley genotypes as compared to Al or Cr stress alone. Moreover, the reduction was more pronounced in Al sensitive genotype Shang 70-119.  相似文献   

6.
Two adjacent soils with contrasting sulfate sorption were examined in terms of (i) water-soluble and ion-exchangeable Al, Fe, Ca, Mg, K, Mn and Zn, (ii), water- and bicarbonate-extractable sulfate, (iii) Truog-extractable P, (iv) dithionite-extractable Al, Mn and Fe and (v) treatment response to irrigation with simulated acid precipitation. The biomass of 8 year old black spruce saplings growing on the soils, and the distributions of Al, Fe, Ca, Mg, K, Mn, P and Zn within these plants, were also examined. The soils were well to moderately-well drained, with the mineral soil exposed by site preparation prior to planting. The exposed soil underneath individual saplings was treated with acid sulfate solutions (75 mm containing 2 to 50 mg L?1 H2SO4) applied during each of three consecutive growing seasons. The results indicate that Al, much like Fe, Ca, Mn and Zn, accumulated with time in the foliage, but K, Mg and P were highest in young plant tissues. Much of Al and Fe taken up remained in the fine roots. Aluminum uptake increased with the amount of dithionite-extractable Al (free Al oxide) in the soil. Growth of the black spruce saplings was not visibly affected by readily accessed Al in each soil, or by acid irrigation.Instead, growth was restricted by factors other than soil Al and acid irrigation in spite of (i) low soil pH, (ii) high levels of exchangeable Al, and (iii) high levels of Al in fine roots. Sulfate retention across and within the two soils was positively correlated with free Al oxide. The two soils responded to acid irrigation by accelerated silicate weathering and enhanced ion leaching. Sulfate sorption reduced these effects.  相似文献   

7.
Effectiveness of arbuscular mycorrhizal fungi (AMF) is crucial for maximum plant growth and acquisition of mineral nutrients under drought. The objective of this research was to determine effects of varied rates of AMF inoculum on plant growth and acquisition of phosphorus (P), zinc (Zn), copper (Cu), and manganese (Mn) by barley (Hordeum vulgare L. cv. SLB‐6) grown with and without drought stress (WS and nonWS). Plants inoculated with four inoculum rates [control (M0), 120 (M1), 240 (M2), and360 (M3) spores per 100 g dry soil] of Glomus mosseae were grown in a low P silty clay (Typic Xerochrept) soil (pH=8.0) mix in a greenhouse for 45 days. Root AMF colonization increased as inoculum rate increased in plants grown with WS and nonWS. Leaf area and shoot and root dry matter (DM) increased as inoculum rate increased up to M2 regardless of soil moisture. Shoot concentrations of P, Cu, and Mn were generally higher for mycorrhizal (AMF) than for nonmycorrhizal (nonAMF) plants grown with both WS and nonWS. Shoot contents of P, Zn, Cu, and Mn were higher for AMF than for nonAMF plants grown with nonWS, and shoot contents of P were higher for AMF than for nonAMF plants with WS. For plants grown with WS and nonWS, contents of P, Zn, Cu, and Mn were generally higher for plants inoculated with M2 compared to other rates of inoculum. The results of this study indicated that plant responses to root colonization with AMF were dependent on AMF rate and soil moisture. Based on enhancements in plant DM and mineral acquisition traits, M2 inoculum was the most effective rate of inoculation for this AMF isolate.  相似文献   

8.
Abstract

The lowbush blueberry (Vaccinium angustifolium Ait.) is an important commercial crop of the Lac‐Saint‐Jean area (Quebec, Canada). The major blueberry fields are located on sandy soils relatively poor in available mineral nutrients. The nutrients originate from a thin organic layer found on the top of these sandy soils. The leaf mineral contents (N, P, K, Mg, Ca, Mn, Fe, Cu, Zn and B) were measured in five blueberry fields during 1984 and 1985. Soil pH and soil available P, K, and Mg were also assessed. The results show that the leaf mineral contents are generally adequate. However, K and Zn might be occasionally deficient when compared to the actual established standards. The available Mg in soil was significantly correlated with the leaf Mg concentration. The data also suggest that the increase of the pH following the burn pruning seems to influence the nutrition of this species.  相似文献   

9.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

10.
Mycorrhizal (+VAM) and nonmycorrhizal (‐VAM) maize (Zea mays L.) plants were grown in sand culture in a greenhouse to determine effects of MES [2(N‐morpholino)‐ethanesulfonic acid] (2.0 mM) and pH (4.0, 5.0, 6.0, and 7.0) on mineral nutrient uptake. Plants were inoculated with the vesicular‐arbuscular mycorrhizal (VAM) isolate Glomus intraradices UT143. Shoot and root dry matter yields were lower in plants grown with MES (+MES) than without MES (‐MES), and decreased as pH increased. Shoot concentrations of N, Ca, Mg, Mn, and Zn were generally higher in +MES than in ‐MES plants, and nutrient contents of most nutrients were generally higher in + MES than in ‐MES plants. Concentrations of N, Ca, Mg, and Mn increased and P, S, and Fe decreased, while contents of all measured nutrients except Mn and Zn decreased as pH increased. Concentrations of Mn, Fe, Zn, and Cu were higher in +VAM than in ‐VAM plants, and contents of P and Ca were higher in ‐VAM than in +VAM plants and Zn content was higher in +VAM than in ‐VAM plants. MES had marked effects on mineral nutrient uptake which should be considered when MES is used to control pH of nutrient solutions for growth of maize.  相似文献   

11.
Effect of wastewater irrigation was investigated on mineral composition of corn and sorghum plants in a pot experiment. The ranges for the concentration of different minerals in corn plants were 0.67–0.89% calcium (Ca), 0.38–0.58% magnesium (Mg), 0.09–1.29% sodium (Na), 0.81–1.87% nitrogen (N), 1.81–2.27% potassium (K), 0.12–0.16% phosphorus (P), 190–257 mg/kg iron (Fe), 3.5–5.6 mg/kg copper (Cu), 37.1–44.5 mg/kg manganese (Mn), 21.6–33.6 mg/kg zinc (Zn), 1.40–1.84 mg/kg molydbenum (Mo), 11.0–45.7 mg/kg lead (Pb), and 2.5–10.8 mg/kg nickel (Ni). Whereas for sorghum plants, the ranges were: 0.56–0.68% Ca, 0.19–0.32% Mg, 0.02–0.27% Na, 0.69–1.53% N, 1.40–1.89% K, 0.10–0.14% P, 190–320 mg/kg Fe, 3.8–6.0 mg/kg Cu, 29.2–37.6 mg/kg Mn, 21.1–29.9 mg/kg Zn, 2.2–3.7 mg/kg Mo, 12.3–59.0 mg/kg Pb, and 2.5–15.2 mg/kg Ni. Heavy metals such as cobalt (Co) and cadmium (Cd) were below detection limits at mg/kg levels. The concentrations of Ca, N, K, P, Cu, and Mn in corn plants were in the deficient range except for Mg, Fe, Zn, and Al. The concentrations of Ca, N, P, K, Cu, Mn, Mg, and Zn in sorghum plants were in the deficient range except for Fe and aluminum (Al). The analysis of regression indicated a strong interaction between Pb, Ni, Ca, and Fe in corn and sorghum plants. In conclusion, waste water irrigation did not increase mineral concentrations of either macro‐ and micro‐elements or heavy trace metals in corn and sorghum plants to hazardous limits according to the established standards and could be used safely for crop irrigation.  相似文献   

12.
A study was made of the effects of soil salinity on dry matter production, grain yield, and the uptake, distribution and redistribution of mineral nutrients in irrigated grain sorghum. Soil salinity (EC, 3.6 mS/cm) reduced seedling establishment by 77%, and dry matter and grain yields per plant by 32%; grain yield/ha was reduced by 84%. Salinity reduced grain number per head, but not individual grain size. The accumulation of dry matter and most nutrients was reduced by salinity, but the distribution and redistribution of nutrients within the plant were largely unaffected. Redistributed dry matter provided 52 and 31% of the grain dry matter for control and salt‐affected plants, respectively. Salt‐affected plants had a greater proportion of their sulfur (S), magnesium (Mg), sodium (Na), and chloride (Cl) in stems and leaves than control plants at maturity. Grain had 50–90% of the nitrogen <N), phosphorus (P), S, and Mg, 20–50% of the potassium (K), manganese (Mn), zinc (Zn), and copper (Cu), but < 20% of the calcium (Ca), Na, Cl, and iron (Fe) contents of the whole plant. Over 65% of the N and P, and from 20 to 30% of the K, S, Mg, Cu, and Zn was redistributed from the stem and leaves to grain. There was no redistribution of Ca, Na, Cl, Fe, and Mn. Leaves were more important than the stem as a source of redistributed N, but the leaves and stem were equally important as sources of redistributed P, K, S, Mg, and Cu. Redistribution from the stem and leaves provided 80% of the K and 20–50% of the N, P, S, Mg, Zn, and Cu accumulated by grain. Concentrations of Na, and especially Cl, were high in vegetative organs of salt‐affected plants, but not in grain. It was concluded that although moderate salinity was detrimental to the establishment and yield of grain sorghum, it had little effect on patterns of distribution and extents of redistribution of mineral nutrients.  相似文献   

13.
硒对烤烟生长、化学指标及矿质营养元素含量的影响   总被引:1,自引:0,他引:1  
为探讨不同浓度的硒(Se)对植物生长、化学指标及矿质营养元素含量的影响,本研究以云烟87为试验材料,采用盆栽试验方法,研究了不同硒浓度对烤烟生长、化学指标及烤烟根、茎、叶中矿质元素N、P、K、Ca、Mg、Mn、Zn、Cu累积的影响。结果表明,土壤施硒(亚硒酸钠)4.4 mg·kg-1时,烟叶中烟碱、蛋白和还原糖等含量处于最适范围,根、茎、叶中矿质元素N、P、K、Ca、Mg、Mn、Zn、Cu的含量达到最大值。低硒处理(Se≤4.4 mg·kg-1)显著提高了烤烟各部位对矿质元素的吸收,尤其对N、K、Ca、Mg、Mn的影响最为显著,从而促进了烤烟的生长,烟叶化学成分更加协调;而高硒处理(Se≥11.1 mg·kg-1)则降低了烤烟各部位对矿质元素的吸收,尤其对N、P、K的影响最显著,从而抑制了烤烟的生长。土壤中不同硒浓度通过调控植物对矿质元素的吸收进而影响植物的生长和化学指标,该研究结果为指导富硒烟叶的生产提供了理论依据。  相似文献   

14.
The fluxes of metals (Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Pb, Cd, Cr, and Ni) in two spruce forest soils in S. Sweden were quantified using the lysimeter technique. Amounts in precipitation (dry and wet), throughfall, litterfall and annual accumulation in biomass were also quantified, as well as stores in soil and biomass. The metal concentrations of the soil solutions varied greatly according to season. The leaching of some metals (Fe, Cu, Pb, Cr, and organic forms of Al) was associated with the leaching of organic matter. These complexes were leached from the A horizon in considerable amounts. They were precipitated in the upper B horizon and only small amounts were transported further downward. By contrast, the leaching of Na, Mg, Ca, Mn, Cd, Zn, Ni, and inorganic forms of Al increased with increasing soil depth. The concentrations of these metals also increased with increasing soil solution acidity. The highest concentrations were often found at the transition to the C horizon. The amounts of Na, K, Mg, Ca, Mn, Al, Zn, Cd, Cr, and Ni leached from the rooting zone were found to be larger than the amounts deposited from the atmosphere, the main source of these metals being the mineral soil. The reverse was true of Ph, Cu, and Fe, the sink being the upper part of the B horizon.  相似文献   

15.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

16.
Availability and plant uptake of nutrients were evaluated in three tropical acid soils (Kandiudult) amended with paper pulp and lime under greenhouse conditions. Amendments were applied to attain target pH values of 5.5, 6.0, and 6.5. A control treatment (no paper pulp or lime added) was also included. Rye grass (Lolium perenne L.) as a test plant was grown for three successive cycles of 40 days each. Extractable nutrients and cumulative nutrient uptake were determined. The application of paper pulp or lime resulted in a significant increase in exchangeable Ca and K and a decrease in exchangeable Mg and extractable Fe, Mn, and Zn. Amendment of soils with paper pulp or lime increased plant uptake of Ca and Mg and decreased that of K, Mn, and Zn. Both amendments behaved similarly, but the effect of lime seemed generally greater than that of paper pulp. Paper pulp in tropical acid soils behaved as a liming agent rather than an organic amendment. Similar to lime, amendment of soils with paper pulp resulted in an increase in availability of Ca and Mg and in a decrease in availability of K, Mn, and Zn for plants. Soil extractions appeared to be appropriate for assessing the availability of Ca, Mn, and Zn. Soil pH and effective cation exchange capacity positively influenced the availability of Ca and negatively the availability of Mn and Zn. Thus, the precision of predicting nutrient availability in paper pulp amended tropical acid soils could be improved by including soil pH or effective cation exchange capacity in relevant regression equations.  相似文献   

17.
An on-farm field experiment was conducted on an acidic soil to investigate the effects of combined use of lime and deficient nutrients on herbage yield of alfalfa (Medicago sativa L.). Omitting lime and limiting nutrients led to elevated concentrations of aluminium (Al), iron (Fe), and manganese (Mn) in alfalfa leaves and stems and caused severe reductions in herbage yield of alfalfa. Combined use of lime (2 t ha?1) and nutrients [phosphorus (P): 20 kg ha?1, sulfur (S): 20 kg ha?1, zinc (Zn): 4 kg ha?1, and boron (B): 2 kg ha?1] had the maximum increase in groundcover, root biomass, nodulation, leaf retention, leaf-to-stem ratio, herbage yield, crude protein, and nutrient composition of alfalfa. These beneficial effects were due to raised soil pH; improved calcium (Ca), P, S, Zn, and B nutrition; and reduced Al, Mn, and Fe toxicity. Aluminium and all the nutrients except copper (Cu) were more concentrated in alfalfa leaves than stems.

Aluminum concentration was about three times greater in the lower leaves than in upper leaves. Lower leaves also had much greater concentrations of Ca, Mg, K, S, Fe, Mn, Cu, and B compared with upper leaves. In contrast, P and Zn concentrations were greater in the upper leaves than in lower leaves. Results suggest that the combined use of lime and all the limiting nutrients may realize potential beneficial effects of alfalfa on acidic soils where more than one essential nutrient is deficient. This may increase growth potential, nitrogen contributions, and groundcover by alfalfa and reduce soil erosion and runoff.  相似文献   

18.
Lime-induced iron (Fe) chlorosis is a nutritional disorder common in calcareous soils, which may result from a low level of Fe available or adverse factors that inhibit Fe mobilization and uptake by plants. Organic-matter amendments can prevent or correct Fe chlorosis in plants but the effect of endogenous soil organic matter (SOM) on this disorder is not known. The main subject of this work was to investigate the consequence of two contrasting levels of soil fertility on the nutritional status of an orange grove [Citrus sinensis (L.) Osb. cv. Valencia Late]. The field experiment was conducted in a commercial citrus grove using mature trees distributed in two plots with different values of SOM, phosphorus (P), and potassium (K), but with the same level of active lime. The concentration of nitrogen (N), P, K, magnesium (Mg), calcium (Ca), Fe, copper (Cu), zinc (Zn), and manganese (Mn) in young and mature leaves and flowers was evaluated. The level of Mg and the Mg/Zn ratio in flowers from both plots, although significantly different, only indicated moderate Fe chlorosis, as predicted by a previously developed model, and was consistent with the amount of chlorophyll present in the leaves. However, nutrient partitioning between leaves of contrasting age was very different. Mature leaves from trees grown in the high-fertility plot (HF) had larger concentrations of N, P, and K but lower concentrations of Ca, Fe, and Mn than did those from the low-fertility plot (LF). Young leaves from the LF had more N, P, Mg, Cu, and Mn and less Ca and Fe than did those from the HF. Flower analysis, although useful to predict Fe chlorosis, failed to detect differences in the nutritional status of plants resulting from contrasting levels of soil fertility. Furthermore, endogenous SOM had only a marginal effect on Fe chlorosis.  相似文献   

19.
《Journal of plant nutrition》2013,36(9):1505-1515
Abstract

The nutrient status [annual fluctuation of leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn)], yield and fruit quality [soluble solids concentration (SSC), titratable acids (TA), SSS/TA and juice content] of “Encore” mandarin trees cultivated in two sites of the same orchard were studied. The trees were grafted on Carrizo citrange rootstock and grown under identical conditions, apart from some soil properties. Soil B (site B of orchard) contained more K, Ca, Mg, and organic matter than soil A (site A of orchard). The patterns of annual variation of leaf nutrient concentrations were similar in both soils, although leaf concentrations of Ca, Mg, Mn, and Fe in soil A were significantly higher than those of soil boron (B), while leaf K concentrations were significantly lower. The mineral analyses of the leaves revealed some interesting antagonisms between K–Mg, K–Ca, and K–Mn. Manganese deficiency was especially limited in the trees grown in soil B. The average fruit yield per tree in soil A, on two-year basis, was significantly higher than this in soil B. The significantly higher water infiltration rate in soil B, in contrast to soil A, seemed to be the dominant factor responsible for the differences among the two sites in yielding and leaf mineral composition.  相似文献   

20.
A field study was made of the seasonal changes in dry‐matter production, and the uptake, distribution, and redistribution of 12 mineral nutrients in the semi‐dwarf spring wheat, Egret, grown under typical irrigation farming conditions. Most of the dry‐matter production and nutrient uptake had occurred by anthesis, with 75–100% of the final content of magnesium (Mg), copper (Cu), chloride (Cl), sulfur (S), phosphorus (P), nitrogen (N), and potassium (K) being taken up in the pre‐anthesis period. The above‐ground dry‐matter harvest index was 37%, and grain made up 76% of the head dry matter. Redistributed dry matter from stems and leaves could have provided 29% of the grain dry matter. Concentrations of phloemmobile nutrients, such as N and P, decreased in the leaves and stems throughout the season, whereas concentrations of phloem‐immobile nutrients, such as calcium (Ca) and iron (Fe), generally increased. The decline in the N concentration in stems and leaves was not prevented by N fertilizer applied just before anthesis. Leaves had the major proportion of most nutrients in young plants, but stems had the major proportion of these nutrients at anthesis. Grain had over 70% of the N and P, and 31–64% of the Mg, manganese (Mn), S, and zinc (Zn), but less than 20% of the K, Ca, sodium (Na), Cl, and Fe in the plant. Over 70% of the N and P, and from 15 to 51% of the Mg, K, Cu, S, and Zn was apparently redistributed from stems and leaves to developing grain. There was negligible redistribution of Ca, Na, Cl, Fe, and Mn from vegetative organs. Redistribution from stems and leaves could have provided 100% of the K, 68–72% of the N and P, and 33–48% of the Zn, Cu, Mg, and S accumulated by grain. It was concluded that the distribution patterns of some key nutrients such as N, P, and K have not changed much in the transition from tall to semi‐dwarf wheats, and that the capacity of wheat to redistribute dry matter and nutrients to grain is a valuable trait when nutrient uptake is severely restricted in the post‐anthesis period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号