首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We describe the morphological organization of the deer brachial plexus in order to supply data to veterinary neuroclinics and anaesthesiology. The deer (Mazama gouazoubira) brachial plexus is composed of four roots: three cervical (C6, C7 and C8) and one thoracic (T1). Within each sex group, no variations are observed between the left and the right brachial plexus, though sex-related differences are seen especially in its origin. The origin of axillary and radial nerves was: C6, C7, C8 and T1 in males and C8-T1 (radial nerve) and C7, C8 and T1 (axillary nerve) in females; musculocutaneous nerve was: C6-C7 (males) and C8-T1 (females); median and ulnar nerves was: C8-T1 (males) and T1 (females); long thoracic nerve was: C7 (males) and T1 (females); lateral thoracic nerve was: C6, C7, C8 and T1 (males) and T1 (females); thoracodorsal nerve was: C6, C7, C8 and T1 (males) and C8-T1 (females); suprascapular nerve was: C6-C7 (males) and C6 (females) and subscapular nerve was: C6-C7 (males) and C7 (females). This study suggests that in male deer the origin of the brachial plexus is more cranial than in females and the origin of the brachial plexus is slightly more complex in males, i.e. there is an additional number of roots (from one to three). This sexual dimorphism may be related to specific biomechanical functions of the thoracic limb and electrophysiological studies may be needed to shed light on this morphological feature.  相似文献   

2.
Ten forelimbs of five Myrmecophaga tridactyla were examined to study the anatomy of the brachial plexus. The brachial plexuses of the M. tridactyla observed in the present study were formed by the ventral rami of the last four cervical spinal nerves, C5 through C8, and the first thoracic spinal nerve, T1. These primary roots joined to form two trunks: a cranial trunk comprising ventral rami from C5‐C7 and a caudal trunk receiving ventral rami from C8‐T1. The nerves originated from these trunks and their most constant arrangement were as follows: suprascapular (C5‐C7), subscapular (C5‐C7), cranial pectoral (C5‐C8), caudal pectoral (C8‐T1), axillary (C5‐C7), musculocutaneous (C5‐C7), radial (C5‐T1), median (C5‐T1), ulnar (C5‐T1), thoracodorsal (C5‐C8), lateral thoracic (C7‐T1) and long thoracic (C6‐C7). In general, the brachial plexus in the M. tridactyla is similar to the plexuses in mammals, but the number of rami contributing to the formation of each nerve in the M. tridactyla was found to be larger than those of most mammals. This feature may be related to the very distinctive anatomical specializations of the forelimb of the anteaters.  相似文献   

3.
4.
The anatomy of the brachial plexus in the common hippopotamus (Hippopotamus amphibius), which has not been previously reported, was first examined bilaterally in a newborn hippopotamus. Our observations clarified the following: (1) the brachial plexus comprises the fifth cervical (C5) to first thoracic (T1) nerves. These formed two trunks, C5-C6 and C7-T1; in addition, the axillary artery passed in between C6 and C7, (2) unique branches to the brachialis muscle and those of the lateral cutaneous antebrachii nerves ramified from the median nerve, (3) nerve fibre analysis revealed that these unique nerve branches from the median nerve were closely related and structurally similar to the musculocutaneous (MC) nerve; however, they had changed course from the MC to the median nerve, and (4) this unique branching pattern is likely to be a common morphological feature of the brachial plexus in amphibians, reptiles and certain mammals.  相似文献   

5.
The cervical intertransverse muscles and their nerve supply are described and illustrated in the ox. The literature is reviewed and the principles of subdividing these muscles are discussed. They are divided into dorsal and ventral intertransversarii according to their innervation. The Mm. intertransversarii dorsales cervicis arise from the articular processes of C7-C3, follow a craniolateral course and insert by means of 1–4 fascicles on the transverse processes of preceding vertebrate including the atlas. They are innervated by the dorsal rami of cervical spinal nerves. The Mm. intertransversarii ventrales cervicis are grouped into medial and lateral parts. The medial part consists of short fascicles which extend between contiguous transverse processes from C7-C2. They are pierced by the emerging ventral branches of the spinal nerves and are innervated by them. The lateral part consists of longer fascicles which follow a dorsocranial course and attach to the ventral tubercles of preceding vertebrae as well as to the wing of the atlas. All ventral intertransverse muscles are innervated by the ventral rami of cervical spinal nerves.  相似文献   

6.
This study aimed to document the detailed features of the morphological structure and the innervation areas of the brachial plexus in Merlin (Falco columbarius). The skin and muscles of five adult male Merlins were dissected under the stereo microscope. The Merlin had two plexus trunks. The accessory brachial plexus consisted of ventral rami C10 and C11. C11 was divided into two branches: the cranial and caudal. The brachial plexus was composed of a rather complex network involving the ventral rami of C11‐C13, T1 and T2. In addition, a thin branch from the last two cervical sympathetic nerves participated in the plexus formation. C12, C13 and T1 had rather thick trunk. C12, C13 and T1 were also involved in the formation of the brachial plexus emerging after 1 cm from the foramen inter‐vertebrale as three trunk roots.  相似文献   

7.
Knowing the structure and variations of the plexus brachialis is important in neck and shoulder surgery. The knowledge of the brachial plexus reduces the injury rate of the nerves in surgical interventions to the axillary region. The major nerve trunks of the thoracic limb were the suprascapular, subscapular, axillary, radial, musculocutaneous, median and ulnar nerves. In Van cats, the brachial plexus was formed by the ventral branches of the spinal nerves, C6-C7-C8 and T1. The 7th cervical nerve was quite thick compared to the others. The subscapular nerve was the thinnest (on the right side, the average length was 6.55 ± 0.60 mm and on the left side was 6.50 ± 0.60 mm), and the radial nerve was the thickest (the average length on the right side was 28.48 ± 0.44 mm and on the left side was 29.11 ± 0.55 mm). The suprascapular nerve was formed by the ventral branch of the 6th cervical nerve. The subscapular nerves were formed by a branch originating from the 6th cervical nerve and the two medial and caudal branches originating from the 7th cervical nerve. No communicating branch between the ulnar nerve and the median nerve was observed in the palmar region. The axillary nerve was formed by the ventral branches of the 7th nerve, the musculocutaneous nerve was formed by ventral branches of the 6th and 7th cervical nerves, and the ulnar nerve was formed by ventral branches of the 8th cervical and the 1st thoracic nerves. The radial nerve was the thickest branch in the brachial plexus. In Van cats, the origin and distribution of nerves were similar to those reported in the literature for other species of cats, with the exception of the suprascapular, subscapular and axillary nerves.  相似文献   

8.
9.
The ventral spinal root origin of the radial nerve, its muscle branches, and brachial plexus nerves which supply shoulder and thoracic musculature was determined in the dog. Electrophysiological signal averaging techniques measured evoked potential from specific ventral spinal roots to individual muscle nerves. The entire radial nerve received input from the sixth cervical (C6) through the second thoracic (T2) spinal roots. The most significant (p less than .05) input to triceps brachii came from C8 while the deep ramus of the radial nerve received its largest input from C7. The brachiocephalicus, suprascapular, and subscapular nerves all received their most significant (p less than .05) innervation from C6. Approximately 90% of the evoked potential to the axillary nerve originated from C7. The thoracodorsal nerve received most of its innervation from ventral roots C7 and C8. The lateral thoracic nerve which innervates the cutaneous trunci muscle was supplied by ventral roots C8-T2. Examination of innervation patterns suggests that only modest variation of spinal root input to specific nerves occurred between individual dogs.  相似文献   

10.
The Mm. scaleni of 20 bovine cadavers were dissected and their attachments and nerve supply are described and illustrated. The literature is reviewed and the principles of subdividing the muscles are discussed. The emerging roots of the brachial plexus rather than the axillary vessels are taken as the dividing line between the middle and ventral scalene muscles. This principle can also be applied to the other domesticated species. Fascicles formerly described as M. iliocostalis cervicis are grouped with the M. scalenus medius as its Pars superficialis on the ground of their nerve supply. The scalene muscles are innervated by the ventral branches of spinal nerves C4—T2. The subdivisions and innervation in the ox are as follows: 1. M. scalenus dorsalis, C5—T2. 2. M. scalenus medius: Pars superficialis, C4—C8; Pars profunda, C8. 3. M. scalenus ventralis, C4—T2.  相似文献   

11.
A technique for ultrasonography of the brachial plexus and major nerves of the canine thoracic limb is described based on examination of five canine cadavers and three healthy dogs. The ventral branches of the spinal nerves that contribute to the brachial plexus are identifiable at their exit from the intervertebral foramina. These nerves may be followed distally, cranial to the first rib, until they form the brachial plexus. The musculocutaneous, ulnar, and median nerves are identified on the medial aspect of mid‐humerus and followed proximally to the axillary region and distally to the elbow. The radial nerve, formed by multiple nerve components, is seen on the mediocaudal aspect of the humerus. Nerves appear as hypoechoic tubular structures with an internal echotexture of discontinuous hyperechoic bands, surrounded by a thin rim of highly echogenic tissue. Improved understanding of the ultrasonographic anatomy of the brachial plexus and its main branches supports clinical use of this modality.  相似文献   

12.
13.
Brachial plexus avulsions commonly occur in cats due to traumatic injuries involving the shoulder. Ultrasound may be an effective method for detecting injured nerves. Additional applications may include characterization of brachial plexus neoplasms and guidance of anesthetic nerve blocks. Aims of this study were to describe ultrasonographic approaches and the normal appearance of this plexus and other major nerves of the thoracic limb in cats. Eight feline cadavers were used to determine anatomic landmarks, obtain cross‐sectional anatomic images of the target nerves, and compare these with ultrasound images. An ultrasonographic study was performed in five fresh feline cadavers to assess the brachial plexus and its major components at the levels of the axilla and proximal, middle and distal (lateral and medial approaches) humeral regions. Five healthy adult cats were recruited for an in vivo ultrasonographic study using the same protocol described for the cadaver ultrasonographic study. The roots of the brachial plexus appeared as a cluster of small, round hypoechoic structures surrounded by a hyperechoic rim in the axillary approach. The radialis, medianus, and ulnaris nerves were individually visualized on proximal and middle humeral approaches. The medianus and ulnaris nerves were easily identified on the medial aspect of the humerus in the distal approach. The superficial branch of radialis nerve was seen on the lateral aspect of the distal humerus approach. The nerves appeared as oval‐to‐round hypoechogenic structures with a hyperechogenic rim. Future studies are needed to compare findings from this study with those in cats with confirmed brachial plexus injuries or other lesions.  相似文献   

14.
Objective To describe an ultrasound‐guided technique and the anatomical basis for three clinically useful nerve blocks in dogs. Study design Prospective experimental trial. Animals Four hound‐cross dogs aged 2 ± 0 years (mean ± SD) weighing 30 ± 5 kg and four Beagles aged 2 ± 0 years and weighing 8.5 ± 0.5 kg. Methods Axillary brachial plexus, femoral, and sciatic combined ultrasound/electrolocation‐guided nerve blocks were performed sequentially and bilaterally using a lidocaine solution mixed with methylene blue. Sciatic nerve blocks were not performed in the hounds. After the blocks, the dogs were euthanatized and each relevant site dissected. Results Axillary brachial plexus block Landmark blood vessels and the roots of the brachial plexus were identified by ultrasound in all eight dogs. Anatomical examination confirmed the relationship between the four ventral nerve roots (C6, C7, C8, and T1) and the axillary vessels. Three roots (C7, C8, and T1) were adequately stained bilaterally in all dogs. Femoral nerve block Landmark blood vessels (femoral artery and femoral vein), the femoral and saphenous nerves and the medial portion of the rectus femoris muscle were identified by ultrasound in all dogs. Anatomical examination confirmed the relationship between the femoral vessels, femoral nerve, and the rectus femoris muscle. The femoral nerves were adequately stained bilaterally in all dogs. Sciatic nerve block. Ultrasound landmarks (semimembranosus muscle, the fascia of the biceps femoris muscle and the sciatic nerve) could be identified in all of the dogs. In the four Beagles, anatomical examination confirmed the relationship between the biceps femoris muscle, the semimembranosus muscle, and the sciatic nerve. In the Beagles, all but one of the sciatic nerves were stained adequately. Conclusions and clinical relevance Ultrasound‐guided needle insertion is an accurate method for depositing local anesthetic for axillary brachial plexus, femoral, and sciatic nerve blocks.  相似文献   

15.
Anatomical variations in lumbosacral plexus or nerves to genitourinary structures in dogs are under described, despite their importance during surgery and potential contributions to neuromuscular syndromes. Gross dissection of 16 female mongrel hound dogs showed frequent variations in lumbosacral plexus classification, sympathetic ganglia, ventral rami input to nerves innervating genitourinary structures and pudendal nerve (PdN) branching. Lumbosacral plexus classification types were mixed, rather than pure, in 13 (82%) of dogs. The genitofemoral nerve (GFN) originated from ventral ramus of L4 in 67% of nerves, differing from the expected L3. Considerable variability was seen in ventral rami origins of pelvic (PN) and Pd nerves, with new findings of L7 contributions to PN, joining S1 and S2 input (23% of sides in 11 dogs) or S1–S3 input (5%), and to PdN, joining S1–S2, unilaterally, in one dog. L7 input was confirmed using retrograde dye tracing methods. The PN also received CG1 contributions, bilaterally, in one dog. The PdN branched unusually in two dogs. Lumbosacral sympathetic ganglia had variant intra‐, inter‐ and multisegmental connectivity in 6 (38%). Thus, the anatomy of mongrel dogs had higher variability than previously described for purebred dogs. Knowledge of this variant innervation during surgery could aid in the preservation of nerves and reduce risk of urinary and sexual dysfunctions.  相似文献   

16.
This study aimed to describe the gross anatomy of the ventral rami of the thoracic spinal nerves in capuchin monkey (Sapajus apella) and compare with humans and other primate species. Eight specimens, prepared in 10% formalin solution and dissected following routine standard techniques, were used. The animals presented 13–14 pairs of thoracic spinal nerves emerging from the intervertebral foramen and divided into dorsal and ventral rami. The ventral rami of the first 12 or 13 pairs represented intercostal nerves and the latter referred to the subcostal nerve. The intercostal and subcostal nerves gave off muscular and cutaneous branches (lateral and ventral), which promote innervation of muscles and skin associated with the chest and abdominal wall. Atypical anatomy was verified for the 1st, 2nd and 7th to 13th intercostal nerves as well as for the subcostal nerve. The morphological characteristics were similar to those observed in humans and some non‐human primates, especially in the absence of collateral branches.  相似文献   

17.
ObjectiveTo provide ultrasonographic mapping of the axillary region of dogs to facilitate identification of the major branches of the brachial plexus in relation to the axillary artery.Study designProspective study.AnimalsA total of two dog cadavers and 50 client-owned, healthy dogs weighing >15 kg.MethodsIn Phase 1, anatomical dissections were performed to identify the relation of the major brachial plexus nerves to the axillary artery. In Phase 2, with the dogs in dorsal recumbency with thoracic limbs flexed naturally, the axillary space was scanned using a linear array probe oriented on the parasagittal plane until the axis transverse to nerves was found. Then, the transducer was rotated to a slight lateral angle approximately 30° to midline. The examination aimed to identify the axillary artery and the musculocutaneous, radial, median and ulnar nerves in addition to determining their position and distribution in four predefined sectors.ResultsThe musculocutaneous nerve was observed in all animals cranial to the axillary artery. The radial, ulnar and median nerves were distributed around the axillary artery, with >90% on the caudal aspect of the axillary artery (sectors 1 and 2).Conclusions and clinical relevanceUltrasonography identified the location of the brachial plexus nerves near the studied sectors, providing useful guidance for performing a brachial plexus nerve block.  相似文献   

18.
Patterns of cutaneous anesthesia were determined in 4 dogs referred for evaluation of brachial plexus trauma. Using these patterns in conjunction with other clinical and electrophysiologic data, avulsion of spinal nerve roots contributing to the brachial plexus (brachial plexus avulsion) was diagnosed in each case. Two of the 4 dogs had avulsions of the C7-T1 nerve roots and the T2 branch to T1. One dog had C7 and C8 nerve root avulsion, and one had avulsion of the C8 and T1 nerve roots and the T2 communicating branch to T1. Each dog had a distinct pattern of cutaneous anesthesia.  相似文献   

19.
ObjectiveTo develop an ultrasound-guided dorsal approach to the brachial plexus and to investigate the nerve distribution and staining of a dyed injectate in common kestrel (Falco tinnunculus) cadavers.Study designProspective, cadaver study.AnimalsA group of three common kestrel cadavers (six wings).MethodsAll cadavers were fresh-frozen at –20 °C and thawed for 10 hours at room temperature before the study. The cadavers were placed in sternal recumbency and their wings were abducted. A 8–13 MHz linear-array transducer was placed over the scapulohumeral joint, at the centre of a triangle formed by the scapula and the humerus. The brachial plexus was identified between the scapulohumeralis muscle and the pectoralis major muscle, as hypoechoic structures lying just cranially to the axillary vessels. After ultrasound-guided brachial plexus identification, a 22 gauge, 50 mm insulated needle was advanced in-plane using ultrasound visualization. A volume of 0.5 mL kg–1 of a 3:1 (2% lidocaine:methylene blue) solution was injected. Following cadaver dissection, the pattern of the spread was assessed, and the extent of nerve staining was measured with a calliper and deemed adequate if more than 0.6 cm of the nerve staining was achieved.ResultsThe brachial plexus was clearly identified in all wings with the dorsal approach. After dye injection, all the branches of the brachial plexus defined as nerves 1–5 (N1, N2, N3, N4 and N5) were completely stained in five (83%) and partially stained in one (17%) of the six wings.Conclusions and clinical relevanceThe ultrasound-guided dorsal approach allows a clear visualization of the brachial plexus structure. The injection of 0.5 mL kg–1of a lidocaine/dye solution produced complete nerve staining in most cases. Further in vivo studies are mandatory to confirm the clinical efficacy of this locoregional anaesthesia technique in common kestrels (Falco tinnunculus).  相似文献   

20.
The study was conducted for the determination of the main nerves of the lumbosacral plexus in the helmeted guineafowl. Five helmeted guineafowls were used. Fowls were anaesthetised and the a. carotis communis was cut for blood drainage. Body cavities were revealed and were fixated with 10% formaldehyde. Nerves forming the lumbosacral plexus were dissected and photographed. Results were named according to the Nomina Anatomica Avium. It was determined that the lumbosacral plexus forms by 8 synsacral ventral rami from the ventrolateral side of synsacrum which include (2–9) synsacral spinal nerves. It was seen that the lumbar plexus was formed by the ventral rami of the 2nd, 3rd and 4th spinal nerves, and the sacral plexus was formed by the ventral rami of the 5th, 6th, 7th, 8th and 9th synsacral spinal nerves. It was observed that following nerves of n. pubicus (ilioinguinalis), r. cutaneous femoris lateralis, r. cutaneous femoris medialis (n. saphenus), n. femoralis and n. obturatorius originate from the lumbar plexus, and following nerves of n. ischiadicus, the common branch of n. fibularis and n. tibialis originate from the sacral plexus. It was determined that the n. ischiadicus was formed by the truncus cranialis, medianus and caudalis. In conclusion, it was determined that there are macro anatomical differences between different avian species in the quantity, thickness and distribution of the spinal nerves that form the lumbosacral plexus, and in formations of the plexus, and in separations of nerve branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号