首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
The effects of extruding temperatures and subsequent drying conditions on X‐ray diffraction patterns (XRD) and differential scanning calorimetry (DSC) of long grain (LG) and short grain (SG) rice flours were investigated. The rice flours were extruded in a twin‐screw extruder at 70–120°C and 22% moisture, and either dried at room temperature, transferred to 4°C for 60 hr, or frozen and then dried at room temperature until the moisture was 10–11%. The dried materials were milled without the temperature increasing above 32°C. XRD studies were conducted on pellets made from extruded and milled flours with particle sizes of 149–248 μm; DSC studies were conducted from the same material. DSC studies showed that frozen materials retrograded more than the flours dried at room temperature. The LG and SG samples had two distinct XRD patterns. The LG gradually lost its A pattern at >100°C, while acquiring V patterns at higher temperatures. SG gradually lost its A pattern at 100°C but stayed amorphous at the higher extruding temperatures. DSC analysis showed that retrograded flours did not produce any new XRD 2θ peaks, although a difference in 2θ peak intensities between the LG and SG rice flours was observed. DSC analysis may be very sensitive in detecting changes due to drying conditions, but XRD data showed gradual changes due to processing conditions. The gradual changes in XRD pattern and DSC data suggest that physicochemical properties of the extruded rice flours can be related to functional properties.  相似文献   

2.
Thermomechanical analysis (TMA) and differential scanning calorimetry (DSC) were used to investigate the thermal transitions of long‐grain rice kernels. Three distinct thermomechanical transitions were identified as rice kernels were heated from 0 to 200°C. The identified transitions were a low temperature transition with onset at ≈45°C, an intermediate temperature transition at ≈80°C, and a high temperature transition at ≈180°C. Low temperature transition with onset from ≈60°C at 5% moisture content (MC) to 30°C at 20% MC was identified as the glass transition of the rice kernels. Intermediate temperature transition from 60 to 100°C, depending on MC, may be caused by rapid evaporation of moisture in the rice kernels. High temperature transition was associated with melting of the crystalline structure of rice starch. The temperatures of all three transitions decreased as MC increased, confirming that moisture acted as a plasticizer in rice kernels.  相似文献   

3.
《Cereal Chemistry》2017,94(1):74-81
In Brazil, rice (Oryza sativa L.) and beans (Phaseolus vulgaris L.) are the basis of the population's diet, and their consumption together is a good strategy to improve protein biological value. The aim of this study was to produce extruded products with whole red bean (WRBF) and polished rice (PRF) flours and to evaluate the effects of extrusion temperature (T) and feed moisture content (FM) on technological properties and total phenolic compounds content. The extrudates were elaborated in a twin‐screw extruder following a 22 central composite rotatable design with FM (15–23%) and T (120–160°C) as independent variables. WRBF and PRF were used at a 1:3 ratio. Amino acid content and profile were evaluated in the optimum extrudate (produced at FM = 19% and T = 140°C). The total phenolic content identified in extruded products was provided by the red bean seed coat, and its quantification suggested the release of bound phenolics with the extrusion process (not temperature dependent). The extrusion of PRF and WRBF, in combination, produced extruded products of high protein quality, being complete in essential amino acids for the diets of people at least 48 months old. The results indicate that legume flours such as WRBF incorporated into rice flour can cause a positive impact on technological, nutritional, and functional quality of extrudates.  相似文献   

4.
The effects of moisture, screw speed, and barrel temperature on pasting behavior of refabricated rice grains were investigated in a corotating twin‐screw extruder with response surface methodology. The rice flour obtained from broken rice (≤1/8 of actual kernel size) of PR‐116 variety was used in the study. The screw speed was set at five levels between 49 and 150 rpm, barrel temperature between 59 and 110°C, and feed moisture between 31 and 45%. All pasting properties of refabricated grains evaluated—peak viscosity, hold viscosity, breakdown viscosity, final viscosity, and setback viscosity—were significantly (P < 0.01) affected by the three process variables. Barrel temperature was the most significant variable, with quadratic effect on all viscosity parameters. Response surface regression models were established to correlate the viscosity profile of refabricated rice grains to the process variables. The optimum moisture content, screw speed, and barrel temperature estimated by a response surface of desirability function for the production of refabricated rice were 36%, 130 rpm, and 89.5°C, respectively. Scanning electron microscopy also revealed that intermediate moisture and temperature along with high screw speed during extrusion could create a more realistic appearance of refabricated rice with less rupture of starch granules.  相似文献   

5.
This study was conducted to develop a ready‐to‐eat extruded food using a single‐screw laboratory extruder. Blends of Indian barley and rice were used as the ingredients for extrusion. The effect of extrusion variables and barley‐to‐rice ratio on properties like expansion ratio, bulk density, water absorption index, hardness, β‐glucan, L*, a*, b* values, and pasting characteristics of extruded products were studied. A central composite rotatable design was used to evaluate the effects of operating variables: die temperature (150–200°C), initial feed moisture content (20–40%), screw speed (90–110 rpm), and barley flour (10–30%) on properties like expansion ratio, bulk density, water absorption index (WAI), hardness, β‐glucan, L*, a*, b* values, and sensory and pasting characteristics of extruded products. Die temperature >175°C and feed moisture <30% resulted in a steep increase in expansion ratio and a decrease in bulk density. Barley flour content of 10% and feed moisture content of <20% resulted in an increased hardness value. When barley flour content was 30–40% and feed moisture content was <20%, a steep increase in the WAI was noticed. Viscosity values of extruded products were far less than those of corresponding unprocessed counterparts as evaluated. Rapid visco analysis indicated that the extruded blend starches were partially pregelatinized as a result of the extrusion process. Sensory scores indicated that barley flour content at 20%, feed moisture content at 30%, and die temperature at 175°C resulted in an acceptable product. The prepared product was roasted in oil using a particular spice mix and its sensory and nutritional properties were studied.  相似文献   

6.
The expansion of value‐added uses for rice has created a demand for quantitative models of functional changes during postharvest handling. Consequently, this study evaluated the effects of postharvest parameters on the functional properties of long‐grain (cvs. Cypress and Kaybonnet) and medium‐grain (cv. Bengal) rice. The experimental treatments included rough rice drying conditions (low vs. high temperature drying), storage moisture content (10, 12, and 14%), storage temperature (4, 21, and 38°C), and storage duration (up to 36 weeks). Milling, cooking, and amylograph pasting properties were analyzed. Polynomial models (up to third‐order) were developed to describe the effects of postharvest factors on the functional properties. Drying treatments, storage moisture content, and storage duration affected (P < 0.05) all of the functional properties. Storage temperature influenced (P < 0.01) cooking and pasting properties, but not milling properties. Overall, there were significant interactions among the postharvest parameters. Additionally, these factors were related to the functional properties by higher‐order relationships.  相似文献   

7.
《Cereal Chemistry》2017,94(2):251-261
The objective for this study was to investigate the effectiveness of scaled‐up infrared (IR) heating followed by tempering steps to dry freshly harvested rough rice. An industrial‐type, pilot‐scale, IR heating system designed to dry rough rice was used in this study. The heating zone of the equipment had catalytic IR emitters that provided heat energy to the sample as it was conveyed on a vibrating belt. The sample comprised freshly harvested rough rice of long‐grain pureline (Cheniere), long‐grain hybrid (6XP 756), and medium‐grain (CL 271) cultivars at initial moisture contents of 23, 23.5, and 24% wb, respectively. Samples at a loading rate of 1.61 kg/m2 were heated with IR of radiation intensity 5.55 kW/m2 for 30, 50, 90, and 180 s followed by tempering at 60°C for 4 h, at a product‐to‐emitter‐gap size of 450 mm, in one‐ and two‐pass drying operations. Control samples were gently natural air dried in an equilibrium moisture content chamber set at relative humidity of 65% and temperature of 26°C to moisture content of 12.5% wb. The effects of IR treatments followed by tempering on percentage points of moisture removed, head rice yield, energy use, rice color, and pasting characteristics were evaluated. For all cultivars, percentage point moisture removed increased with increase in IR drying duration. For all rice cultivars, one‐pass IR treatments for 180 s resulted in head rice yield significantly lower than that of rice dried with natural air in the controlled‐environment conditions (P < 0.05). Energy required to dry rice increased with increase in drying duration. Viscosity values of all the experimental samples were significantly greater (P value < 0.05) than that of the control samples for all the cultivars, except those treated with IR for 180 s. There was a significant difference (P < 0.05) in the color index (ΔE ) of treated milled samples and the controls. In conclusion, the study provided information crucial to understanding the effects of scaled‐up radiant heating and tempering of rough rice on drying rates and rice quality for long‐grain pureline, long‐grain hybrid, and medium‐grain rice cultivars.  相似文献   

8.
Brown rice was blasted with rice flour rather than sand in a sand blaster to make microperforations so that water could easily penetrate the brown rice endosperm and cook the rice in a shorter time. The flour‐blasted American Basmati brown rice, long‐grain brown rice, and parboiled long‐grain brown rice samples were stored in Ziploc storage bags under atmospheric conditions and in vacuum‐packed bags. They were periodically tested for over 10 months for changes in water absorption, free fatty acid (FFA), peroxide value (POV), viscosity changes of flour using the Rapid ViscoAnalyser (RVA), and texture of whole cooked kernel using a texture analyzer during cooking. Flour‐blasted brown rice absorbed less water but needed less cooking time than its counterpart that was not flour‐blasted. There was an increase in FFA, POV, peak viscosity (PV), final viscosity (FV), breakdown viscosity (BD), and setback viscosity (SB) during storage of flour‐blasted brown rice for 300 days, but no change was observed in texture (hardness, gumminess) and water absorption. The combined coefficient of correlation (including all types of rice) between FFA and FV is r = 0.86 and between FFA and SB is r = 0.90 at P < 0.0001.  相似文献   

9.
Rapid visco analysis (RVA) and differential scannning calorimetry (DSC) provided overall assessments of the effects of variable temperature soaking at 30, 50, 70, and 90°C and steaming at 4, 8, and 12 min. Calculation of the relative parboiling index (RPI) and percent gelatinization provided good metrics for determining the overall effects of partial parboiling. FT‐Raman and solid‐state 13C CP‐MAS NMR spectroscopies provided insight to conformational changes in protein and starch of paddy rice under various parboiling conditions. RVA showed lower pasting curves and DSC showed lower ΔH with increased temperature and steaming times. A large decrease in viscosity occurred with only the 30‐4 treatment as opposed to raw rice. This observation was consistent with FT‐Raman results that indicated substantial conversion of the protein from α‐helix to other conformations. DSC indicated incomplete gelatinization of starch, even with 90°C soaking and 12 min of steaming. Solid‐state 13C CP‐MAS NMR spectroscopy confirmed this result. However, it indicated the percent of Vh/amorphous plus the remaining crystalline starch in the 90‐12 treatment was equal to the amorphous and partially‐ordered starch in commercially parboiled rice. These results suggest that partial parboiling, 90°C soaking, and more than 8 min of steaming (ideally ≈12 min) of paddy rice is sufficient to induce changes that inactivate enzymes and provide enough starch gelatinization to prevent kernel breakage.  相似文献   

10.
If properly executed, parboiling, a hydrothermal treatment consisting of soaking, steaming, and drying of rice, substantially reduces its milling breakage susceptibility. Here, brown rice was soaked at 40, 55, or 65°C for different times (150 s to 240 min) and subsequently parboiled under standardized steaming and drying conditions. The moisture absorption during initial soaking induced fissures in more than 90% of the rice grains, which disappeared with further soaking. The fissuring incidence in the soaked rice samples was related to that of the parboiled rice samples. The extent of starch gelatinization during steaming increased with the moisture content of the soaked grains. In addition, as a result of starch gelatinization, the level of white bellies (i.e., parboiled grains with translucent outer layers and an opaque center) decreased from over 90% to less than 3%. Rice grains need to absorb sufficient moisture during soaking to minimize the level of breakage‐susceptible white bellies and fissured rice grains in the parboiled end product.  相似文献   

11.
The compositions and physical properties of Japanese salt and alkaline noodle flours were contrasted and compared to those of flours from U.S. hard white and soft white wheats (HWW and SWW) and from Australian SWW wheats often segregated for salt noodles. The alkaline noodle flours averaged 11.5% protein, which was 3% higher than the salt noodle flours, and they had lower ash content (0.35 vs. 0.41%). Granulation of the salt noodle flours showed the same proportion of small particles (<38 μm) as in soft wheat flours but different levels of intermediate and large particles. The level of small particles was ≈10% greater in salt noodle flours than in the alkaline noodle flours. The alkaline noodle flours had ≈8% more fine particles and 2.5% more damaged starch than the HWW flours, which is consistent with fine grinding of hard wheat flour in the noodle flour. Starch damage also was higher in the salt noodle flours (5.3%) than in the SWW flours. The salt noodle flours had a higher sodium dodecyl sulfate (SDS) sedimentation volume and a higher gluten index than the SWW flours from the United States. The SDS volume and gluten index were lower for the alkaline noodle flours than for the HWW flours, showing the preference for a mellow gluten of low-intermediate strength in alkaline noodle flour. Mixograph data also supported the conclusions of mellow gluten in alkaline noodle flour. The swelling powers (1.7% at 92.5°C) for Australian SWW, salt noodle, U.S. HWW, U.S. SWW, and alkaline noodle flours, were 19.4, 18.1, 17.0, 16.1, and 15.8 g/g, respectively, showing the preferences for high- and low-swelling starch, respectively, in the salt noodle and the alkaline noodle flour. A similar order of flour swelling was indicated by peak viscosity of flours heated at 12% solids in starch paste viscosity analysis. Water holding capacity of flour was correlated highly (r = 0.95, P < 0.01) with swelling power, both measured at 1.7% flour solids at 92.5°C.  相似文献   

12.
The effects of added calcium hydroxide (0.0, 0.15, 0.25, and 0.35%) and processing conditions, feed moisture content (mc) (16, 18, and 20%) and barrel temperature (130 and 150°C) on characteristics of corn meal extrudates were studied. Extruder screw speed was maintained at 130 rpm. Corn meal was extruded with a single-screw extruder (Brabender model GNF 1014/2) with a screw compression ratio of 3:1. The highest values (P < 0.05) for radial expansion and the lowest values for density and breaking force of extrudates were found for the treatment with 0.00% calcium hydroxide extruded at 16% feed mc and 130°C barrel temperature. This treatment was statistically different from the other treatments. Best values for radial expansion of samples extruded with added calcium hydroxide were for the samples with 0.15% calcium hydroxide at 18% feed mc and 130°C barrel temperature, followed by the sample with 0.35% calcium hydroxide at 16% feed mc and 130°C barrel temperature. Water absorption index and water solubility index were affected by calcium hydroxide and extrusion conditions evaluated. Extrudates had large numbers of flattened and sheared granules. Increases in calcium hydroxide increased extrudate yellowness. The combined action of calcium hydroxide and extrusion conditions completely modified the organized structure of the starch and suggest the formation of a starch-calcium complex (crystalline region). The texture of the extruded products was crispy after puffing.  相似文献   

13.
Rice yellowing is a problem for the rice industry. The objective of this research was to determine the effect of various temperatures and exposure durations at certain moisture content levels on yellowing in rice. Preliminary experiments were performed on stored Oryza sativa L. ‘Cypress’ rice. These experiments showed that exposure temperature and duration had a great effect on yellowing, but that the effect of moisture content was not significant (P > 0.15). With this information, similar experiments were performed on freshly harvested ‘Cypress’ and ‘Bengal’ rice. Color degradation, as measured by hue angle and chroma, was observed when at temperatures >50°C for exposure durations >12 hr. Temperatures >55°C with exposure durations >12 hr also resulted in dramatically lowered peak viscosity, but not all samples that showed yellowing had lowered viscosity. For the conditions of these experiments, temperature and exposure duration were the most important factors in color and viscosity change.  相似文献   

14.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

15.
Rough rice (cv. Bengal) was stored at four moisture contents (8.8, 10.7, 12.9, and 13.6% MC) and three temperatures (3, 20, and 37°C) for up to six months. The amylograph overall paste viscosity of the milled rice increased during storage. This increase was most apparent in all samples stored at 37°C. For rice stored at 20 and 37°C at all MC levels, a 30–50% increase in peak viscosity (PV) was observed during the first three months of storage. PV subsequently leveled off for rice stored at 12.9 and 13.6% MC but declined for samples stored at 8.8 and 10.7% MC. The final viscosities also increased during storage. The water-absorption ratio of the samples during cooking in excess water increased by an average of 15% over six months of storage. The amylograph and cooking properties were significantly affected (P < 0.05) by rough rice storage duration, temperature, MC, and their respective interactions.  相似文献   

16.
Changes in gelatinization and retrogradation properties of two rice cultivars, Bengal and Kaybonnet, during rough rice storage were studied using differential scanning calorimetry (DSC). The storage variables included two storage moisture contents (12 and 14%), three storage temperatures (4, 21, and 38°C), and four storage durations (0, 3, 9, and 16 weeks). Rough rice cultivar, storage temperature, moisture content, and duration affected (P < 0.05) the enthalpies and temperatures of gelatinization and retrogradation of rice flour. Bengal had a higher gelatinization enthalpy (P < 0.005) but lower gelatinization temperatures (P < 0.0001) than the long-grain Kaybonnet. Rice stored at 38°C exhibited higher gelatinization enthalpy and temperatures (P < 0.05) than those stored at 4 or 21°C. Storage duration affected the gelatinization and retrogradation properties through a higher order, rather than a linear, relationship.  相似文献   

17.
《Cereal Chemistry》2017,94(4):683-692
In‐bin, on‐farm drying systems for rough rice present challenges for maintaining kernel quality when drying fronts stall and the top layer of grain maintains its harvest moisture content (MC) for extended periods. This high MC, in addition to ambient temperatures in early autumn in the Mid‐South United States, creates ideal conditions for quality losses to occur. This study evaluated the effects of rough rice storage at MCs of 12.5, 16, 19, and 21% for up to 16 weeks at temperatures of 20, 27, and 40°C on milling yields, kernel color, and functionality of three long‐grain cultivars. Head rice yield was negatively impacted only after other reductions in quality had occurred. Temperature‐specific discoloration patterns were observed at 27 and 40°C in 2014; the uniquely discolored kernels seen in 2014 at 27°C were absent from samples in 2015 under identical conditions. Peak viscosity, breakdown, and final viscosity tended to increase over storage duration at 20 and 27°C and all storage MCs but plateaued after 8 weeks. Storage of rice at 40°C and all MCs greatly reduced peak viscosity after 6 weeks. To prevent quality losses, in‐bin dryers should be monitored closely to avoid exceeding the thresholds of storage MC, temperature, and duration identified here.  相似文献   

18.
Effect of cooking time on starch retrogradation and water distribution was studied in pasta (spaghetti) and rice (parboiled and arborio) using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) Optimum cooking times (OCT) were 8, 16, and 18.5 min for spaghetti, parboiled, and arborio rice, respectively. Swelling was observed by image analysis. OCT spaghetti and rice showed various starch retrogradation rates at various aging times and temperatures. Based on the classical Avrami function, the retrogradation rate at 5°C followed the order spaghetti > parboiled rice > arborio rice, while extent was in the opposite order. At higher temperature (20°C), the rates decreased by 20× in all cases. Thermogravimetric analysis (TGA) investigations were undertaken to check the distribution of water within these products and its relationship to starch retrogradation. During heating, water was released in two distinguishable steps at ≈80 and 100°C. Results supported the conclusion that the more tightly bound water might not participate or facilitate starch retrogradation. In this study, the overall water content did not change during storage, and water appeared to migrate from sites of stronger binding to sites of weaker binding. The temperature dependence of the Avrami constant was described with the Vogel‐Tamman‐Fulcher empirical expression.  相似文献   

19.
Asian noodles were prepared by an objective laboratory method that included adding optimum water to the dry ingredients, mixing the ingredients to homogeneous salt distribution, and sheeting of the dough under low shear stress. The lightness (L*) values of alkaline‐ and salt‐noodle doughs made from 65% extraction hard white wheat flours (except KS96HW115 flour at ≈70% extraction) were higher than those from 60% extraction hard red wheat flours (except Karl 92 flour at ≈70% extraction). A hard white spring wheat, ID377s, and a Kansas line of hard white winter wheat, KS96HW115, to be released in 2000, gave the highest L* values for dough sheets stored for 2 and 24 hr at 25°C. Cooking losses were 5–9 percentage points higher for alkaline noodles than salt noodles, but the cooking yields of the two types of Asian noodles were almost the same. Cooked alkaline noodles made from a high‐swelling flour (SP93≈21 g/g) gave higher tensile strength than those made from several low‐swelling flours (SP93 ≈15 g/g) with the same protein contents (≈12.5%). However, the cooked salt noodles gave the same tensile strength.  相似文献   

20.
The effect of moisture content (MC) on the glass transition temperature (Tg) of individual brown rice kernels of Bengal, a medium‐grain cultivar, and Cypress, a long‐grain cultivar, was studied. Three methods were investigated for measuring Tg: differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical analysis (DMA). Among these methods, TMA was chosen, because it can also measure changes in the thermal volumetric coefficient (β) of the kernel during glass transition. TMA‐measured Tg at similar MC levels for both cultivars were not significantly different and were combined to generate a brown rice state diagram. Individual kernel Tg for both cultivars increased from 22 to 58°C as MC decreased from 27 to 3% wb. Linear and sigmoid models were derived to relate Tg to MC. The linear model was sufficient to describe the property changes in the MC range encountered during rice drying. Mean β values across both cultivars in the rubbery state was 4.62 × 10‐4/°C and was higher than the mean β value of 0.87 × 10‐4/°C in the glassy state. A hypothetical rice drying process was mapped onto the combined state diagram generated for Bengal and Cypress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号