首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
甘蔗作为广西、云南等地的主要农作物,极易受到干旱的影响。土壤含水率是评估甘蔗是否受到干旱影响的重要指标。以蔗田土壤含水率为研究对象,利用无人机搭载的热红外和多光谱传感器数据计算出甘蔗冠层的温度、重归一化植被指数RDVI等植被指数,采用人工测定的方法对无人机监测数据进行校正和率定,构建了甘蔗的温度植被干旱指数(TVDI)模型。结果表明,利用多光谱和热红外传感器计算的TVDI与蔗田苗期、分蘖期、伸长期和成熟期土壤含水率均具有高度相关性,决定系数R2分别为0.906 6、0.819 0、0.852 9和0.916 0。因此,TVDI模型最适合用于监测甘蔗苗期和成熟期的受旱情况。  相似文献   

2.
基于作物生长监测诊断仪的玉米LAI监测模型研究   总被引:1,自引:0,他引:1  
为探索作物生长监测诊断仪(CGMD-402型)在作物长势监测应用中的精准性与适用性,连续2年在不同氮肥水平下进行不同玉米品种的实验。使用作物生长监测诊断仪采集冠层归一化差值植被指数(Normalized differential vegetation index,NDVI)、比值植被指数(Ratio vegetation index,RVI),并同步以ASD FR-2500型野外高光谱辐射测量仪获取冠层光谱反射率,构建NDVI、RVI高光谱植被指数;通过对比两种仪器获取的植被指数特征及其定量关系,评价CGMD-402型作物生长监测诊断仪监测精度;基于CGMD-402型作物生长监测诊断仪获取的NDVI、RVI,建立叶面积指数(Leaf area index,LAI)监测模型,并对模型监测精度进行验证。结果表明:玉米冠层NDVI、RVI随施氮量增加而增加,增加幅度分别为8.20%~36.59%、4.40%~25.16%;CGMD-402型作物生长监测诊断仪与ASD FR-2500型野外高光谱辐射测量仪获取的NDVI、RVI相关系数分别为0.991、0.985,决定系数分别为0.983、0.969,说明CGMD-402型作物生长监测诊断仪具有较高的监测精度,可替代ASD FR-2500型野外高光谱辐射测量仪获取NDVI、RVI指数;利用CGMD-402型作物生长监测诊断仪获取NDVI、RVI,建立LAI监测模型的决定系数分别为0.911、0.898;以独立数据对模型精度进行验证,模型预测值与田间实测值间决定系数分别为0.963、0.954,相对误差分别为6.65%、9.37%,表明二者具有高度一致性。研究表明,利用作物生长监测诊断仪能有效监测玉米不同品种LAI动态变化,可以替代AccuPARLP-80型植物冠层分析仪获取玉米LAI数据。  相似文献   

3.
基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计   总被引:1,自引:0,他引:1  
为探讨利用无人机多光谱遥感影像监测夏玉米冠层叶绿素含量的可行性,基于2019年不同施氮水平下(0,105,210,315 kg·N/hm2)夏玉米多光谱遥感影像和田间实测冠层叶绿素含量数据,分析了不同施氮水平下夏玉米冠层叶绿素含量的变化规律,同时选取10种常用光谱植被指数与实测冠层叶绿素含量进行相关性分析,采用与实测叶绿素含量极显著相关的9种植被指数,构建了基于遥感光谱指数的夏玉米冠层叶绿素含量遥感监测模型,并通过精度检验确定最优估测模型.结果表明,施用氮肥能够提高夏玉米冠层叶绿素含量,过量氮肥不能持续提高叶绿素含量,同一施氮水平下不同追肥处理之间叶绿素含量没有明显差异.绿色归一化植被指数与叶绿素含量的相关性系数最高,达到了0.892.采用逐步回归分析方法建立的模型表现最优,决定系数为0.87,均方根误差及相对误差分别为0.15和2.68%.因此,无人机多光谱遥感结合逐步回归模型可以实现田间尺度的夏玉米冠层叶绿素含量的实时监测.  相似文献   

4.
【目的】快速准确获取大面积果园冠层叶片全氮含量(LNC ,Leaf Nitrogen Content)是实现现代精准农业的基本要求。【方法】本试验通过无人机高光谱成像仪(391.9nm ~ 1006.2nm)采集了甘肃省静宁县两个典型果园的果树冠层光谱图像,包括人工灌溉的苹果示范园与自然降雨的苹果园,综合比较两区共160份冠层叶片样本的原始光谱反射率(OD)、倒数光谱(RT)、对数光谱(LF)、一阶微分光谱(FD),构建任意两个光谱波段集组合的差值植被指数(Difference spectral index,DSI )、土壤调节植被指数(Soil Adjusted Vegetation Index ,SAVI)、归一化光谱指数(Normalized Different Spectral Index, NDSI),分析三种光谱指数与叶片氮含量的相关性,利用一元线性回归模型与光谱指数构建两区最佳苹果冠层LNC估测模型。【结果】研究表明:人工灌溉区的FD-SAVI(825,536)、自然降雨区的LF-SAVI(854,392)与LNC的相关性最强,并基于FD-SAVI、LF-SAVI构建一元线性回归模型。人工灌溉区构建的FD-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6601和0.0678;自然降雨区构建的LF-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6746和0.0665。本试验采用LNC模型绘制出两个试验区的苹果树冠层叶片LNC估测图,实现对果园叶片全氮含量的精准掌握及精细化管理。  相似文献   

5.
氮作为植物生长发育过程中的大量元素之一,其含量的快速准确性获取对大田农作物监测和管理有着重要意义,本研究采用无人机(UAV)搭载多光谱传感器对田间荞麦冠层叶片氮含量(Leaf Nitrogen Content,LNC)进行定量化估测,为荞麦叶片的信息化管理提供理论依据。试验选用“晋荞6号”、“晋荞9号”为研究对象,通过无人机于荞麦开花期和灌浆期获取多光谱影像并同步采集荞麦冠层叶片的氮含量,然后分别提取了五个波段下的反射率,选用与叶片LNC相关的12个植被指数进行皮尔逊(person)相关性分析,选取17个光谱变量中相关性较高的特征变量与实测LNC进行PLSR、SVM和BPNN回归建模,结果表明:适量施用叶面硒肥可促进叶片吸收氮素从而增加LNC,过量硒肥不能持续提高LNC。G、R、NIR、NDVI、RDVI、RVI、SAVI、NLI、OSAVI、GRVI与LNC相关性较高,最高为GRVI,达到了0.824。采用BP神经网络建立的回归模型表现最优,盛花-灌浆期预测集决定系数(R2)为0.828,均方根误差为(RMSE)为2.172,验证集R2为0.939,RMSE为1.100,RPD为4.587。因此,无人机多光谱遥感技术可实现大田尺度的荞麦冠层叶片LNC估测。  相似文献   

6.
【目的】实现小麦农田土壤含水率大面积快速监测。【方法】以冬小麦冠层高光谱数据为基础,计算得到8种植被指数,通过对关键生育时期(拔节期、抽穗期、灌浆期)不同水分处理下冬小麦不同土层(0~20、20~40、40~60 cm)土壤含水率与植被指数拟合状况进行分析和筛选,分别构建了基于植被指数的不同土层土壤含水率反演模型,并对模型进行检验。【结果】①各时期植被指数拟合效果有所差异,拔节期0~20 cm土层以植被指数VOG1拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.75,40~60 cm土层以植被指数VOG3拟合效果较好,相关系数为0.59;抽穗期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.70,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.72,40~60 cm土层以植被指数mSR705拟合效果较好,相关系数为0.57;灌浆期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数SARVI拟合效果较好,相关系数为0.68,40~60 cm土层以植被指数SARVI拟合效果较好,相关系数为0.71;②各土层土壤含水率与植被指数拟合效果有所差异,其中利用VOG1和mNDVI705组合构建的模型反演0~20 cm土层,决定系数R2为0.743,利用mNDVI705和SARVI组合构建的模型反演20~40 cm土层,决定系数R2为0.707,利用VOG3、mSR705和SARVI组合构建的模型反演40~60 cm土层,决定系数R2为0.484;③通过建立植被指数对土壤含水率的反演模型,0~20 cm土层含水率反演效果好于20~40 cm和40~60 cm。【结论】高光谱植被指数反演模型中,以0~20 cm土层的估算模型最佳,植被指数组合为VOG1和mNDVI705。综上可知,该研究方法进行土壤含水率的反演是可行的。  相似文献   

7.
基于无人机高光谱遥感的冬小麦株高和叶面积指数估算   总被引:1,自引:0,他引:1  
为了快速、准确地估算叶面积指数(LAI),通过无人机搭载成像高光谱相机,获取了冬小麦3个生育期的影像数据,从中提取出株高(Hcsm)。首先,分析了植被指数、Hcsm与LAI的相关性,挑选出最优植被指数;然后,分别构建了单个参数的LAI线性估算模型;最后,以植被指数、植被指数结合Hcsm为模型输入因子,采用偏最小二乘回归方法构建LAI估算模型。结果表明:通过无人机高光谱遥感影像提取的Hcsm精度较高(R2=0.95);在不同生育期,大部分植被指数和Hcsm均与LAI呈0.01显著相关水平;基于最优植被指数结合Hcsm估算LAI的精度优于仅基于最优植被指数或Hcsm的估算精度;以植被指数、植被指数结合Hcsm为输入变量,通过偏最小二乘回归构建的LAI估算模型在开花期估算精度达到最高,并且以植被指数结合Hcsm为自变量估算LAI的能力更佳(建模R2=0.73,RMSE为0.64)。本研究方法可以提高LAI估算精度,为农业管理者提供参考。  相似文献   

8.
为剔除无人机多光谱图像中的土壤背景、提高作物根域土壤含水率反演精度,以不同水分处理的拔节期冬小麦为研究对象,利用无人机多光谱相机分别在09:00、11:00、13:00、15:00和17:00等5个时刻获取高分辨率多光谱图像,采用改进的植被指数阈值法快速确定植被像元与土壤像元的分类阈值,通过阈值划分剔除土壤背景,并根据阈值变化研究土壤背景对冬小麦冠层反射率的影响,建立了剔除土壤背景前后基于植被指数的土壤含水率反演模型。结果表明,应用改进的植被指数阈值法可有效剔除多光谱图像中的土壤背景,其中基于植被指数RDVI的剔除精度最高,总体精度在91.32%以上;土壤背景对冬小麦冠层近红外波段的反射率影响较大,红边波段次之,而对可见光波段的反射率影响较小;剔除土壤背景前后的植被指数与土壤含水率均呈线性关系,剔除土壤背景对反演土壤含水率的精度有显著提高,其中NGRDI反演深度10~20cm的冬小麦根域土壤含水率效果最好,建模集R2和RMSE分别为0.739和2.0%,验证集R2和RMSE分别为0.787和2.1%。  相似文献   

9.
为探索高分一号卫星(GF-1)估算农作物光合有效辐射吸收比率(Fraction of absorbed photosynthetically active radiation, FPAR)的潜力,以田间小区与大田夏玉米为对象,基于GF-1卫星的16 m空间分辨率宽视场(Wide field view, WFV)传感器光谱响应函数对地面实测冠层高光谱反射率进行重采样,获取GF-1 WFV的模拟反射率,构建宽波段植被指数,利用与FPAR极显著相关且具有较高相关系数的植被指数,建立不同生育期夏玉米FPAR的一元与多元逐步回归模型,筛选FPAR估算的最适模型,并在此基础上实现县域尺度不同生育期的FPAR动态估算。结果表明:模拟宽波段光谱反射率与GF-1 WFV光谱反射率间的相关系数|R|为0.967~0.985,决定系数R2为0.935~0.969;基于模拟反射率构建3波段植被指数与FPAR的相关性优于2波段植被指数,增强型植被指数(EVI)、土壤调节植被指数(MTVI2)、可见光大气阻抗植被指数(VARI)、综合植被指数(TCARI/OSAVI)等3波段植被指数与FPA...  相似文献   

10.
【目的】快速、精确地获得作物水分状况。【方法】采用高光谱采样数据分析方法,研究了北京大兴冬小麦不同生育期不同水分条件下的冠层光谱变化特点,筛选了水分光谱敏感波段,构建了冬小麦水分状况诊断模型。【结果】(1)在750~1 075 nm近红外反射平台拔节—抽穗期、抽穗—灌浆期冬小麦冠层光谱反射率随植株含水率的增大而上升,在350~750 nm的可见光区域灌浆—成熟期冬小麦冠层光谱反射率随植株含水率的增大而降低;(2)不同生育期冬小麦植株水分状况均与650~775 nm波段密切相关,其中对冬小麦植株含水率变化最为敏感的波段为661nm和771 nm;(3)通过筛选光谱参数模型、构建基于敏感波段回归模型并综合分析2类模型对冬小麦植株含水率的监测效果发现,冬小麦不同生育期植株含水率监测最佳模型均为光谱参数模型。【结论】在利用光谱技术监测冬小麦植株含水率时,包含661 nm及771 nm附近波段的水分监测光谱参数模型效果最佳。  相似文献   

11.
叶绿素是一种反映植物生长水平和健康状况的重要生理生化指标,为快速、无损地大规模获取柑橘冠层的叶绿素含量以精确指导果园管理,利用多旋翼无人机搭载多光谱传感器获取多波段反射率数据,使用多光谱阴影指数对冠层阴影和土壤背景进行剔除,计算得到植被指数与纹理特征,将地面实测的叶绿素含量作为验证,综合对比了全子集回归、偏最小二乘回归和深层神经网络的反演精度以选取最优模型。结果表明,植被指数与叶绿素含量的相关性良好;将仅使用植被指数与仅使用纹理特征的建模结果进行对比,仅使用纹理特征的模型在全子集回归和偏最小二乘回归的反演精度均有明显提升;结合植被指数与纹理特征共同建模后,全子集回归和偏最小二乘回归的反演精度相比仅使用纹理特征的模型均能获得提升;深层神经网络因其良好的非线性拟合能力,获得了最高的反演精度,R2、MAE、RMSE分别为0.665、7.69 mg/m2、9.49 mg/m2,成为本文最优模型。本研究利用无人机多光谱影像反演得到柑橘冠层叶绿素含量,为实现柑橘生长监测提供指导作用。  相似文献   

12.
芳樟(Cinnamomum camphora(Linn.)Presl)精油在林业经济发展中具有巨大市场潜力,多光谱遥感产量预测是高效反演芳樟精油产量的新方式。本研究以矮林芳樟收获期精油产量为研究对象,利用无人机多光谱遥感技术,筛选敏感植被指数作为输入变量,以地面同步观测的精油产量作为输出变量,采用支持向量机(Support vector machine, SVM)、随机森林(Random forest, RF)和反向传播神经网络(Back propagation neural network, BPNN)3种机器学习方法构建矮林芳樟精油产量预测模型。结果表明,修改型土壤调节植被指数(MSAVI)、优化土壤调节植被指数(OSAVI)、重归一化植被指数(RDVI)、土壤调整植被指数(SAVI)和非线性植被指数(NLI)对矮林芳樟精油产量呈现较高敏感性,其相关系数R分别为0.765 1、0.813 1、0.771 1、0.779 4、0.818 3。SVM、RF、BPNN 3种机器学习方法构建的矮林芳樟精油产量预测模型训练集的决定系数R2分别为0.723、0.853、0...  相似文献   

13.
受水稻冠层几何结构的影响,传统的无人机高光谱获取到的反射光谱信息中包含与水稻内部组成物质无关的镜面反射信息,从而影响水稻氮素含量的反演精度,因此在利用无人机获取水稻冠层反射光谱信息时,有必要考虑通过偏振测量技术去除反射光谱中的镜面反射分量,进而实现提升水稻氮素含量反演精度的目的。基于无人机偏振遥感测量得到的水稻分蘖期多角度偏振光谱数据和与之对应的氮素含量数据,采用植被指数方法分析二者之间的相关性,得到了水稻冠层偏振光谱数据与其对应氮素含量相关性最高时对应的角度,选取该观测角度下的偏振光谱数据,利用连续投影法(Successive projections algorithm, SPA)提取特征波段,在此基础上,基于数学变换的方法,提出了构建植被指数的新思路,构建了由2个波段组成的偏振光谱植被指数(Polarisation spectrum vegetation index, PSVI),并利用线性回归方法建立水稻冠层氮素含量的反演模型。结果表明,通过对不同观测天顶角下水稻冠层偏振光谱数据与氮素含量相关性分析,得到最佳观测角度为-15°(后向观测15°);利用连续投影法提取得到该角度下偏振...  相似文献   

14.
为揭示中国西南湿润区猕猴桃园不同尺度光利用效率(LUE)的变化规律,探明生理、环境和植被因子对猕猴桃园不同尺度LUE的影响机理,以四川省蒲江县猕猴桃果园为研究对象,于2018—2020年采用涡度相关系统(EC)开展了连续3 a的水热碳通量综合观测,研究了猕猴桃叶片尺度瞬时光利用效率(LUEi)、冠层尺度光利用效率(cLUE)和生态系统尺度光利用效率(eLUE)的变化规律,并采用通径分析方法量化了生理因子[净光合速率(Pn)、气孔导度(gs)]、气象因子[总辐射(Rg)、光合有效辐射(PAR)、空气温度(Ta)、H2O浓度(CH2O)、CO2浓度(CCO2)、2 m处风速(U2)、水汽压差(VPD)]、土壤水分因子(土壤体积含水率(SWC)]和植被因子[叶面积指数(LAI)]对猕猴桃园不同尺度LUE的总影响.结果表明:猕猴桃LUEi随PAR增大而降低,变化范围为0.006~0.026 μmol/μmol;猕猴桃cLUE和eLUE月平均日内变化均呈先减后增的“U”形,月累积cLUE与eLUE变化幅度分别为0.77~2.67和0.58~1.63 g/MJ, 两者变化趋势基本一致且未呈现明显的季节性变化.叶片尺度LUEi主要受气象因子(PAR)和生理因子(Pn)影响并具有统计学意义,PAR和Pn对LUEi分别具有显著的直接影响(量化值为-0.99)和间接影响(量化值为-0.81);冠层尺度cLUE和生态系统尺度eLUE均受气象因子(Rg,Ta和VPD)以及植被因子(LAI)影响并具有统计学意义,其中Rg和VPD主要通过影响光吸收过程以影响eLUE和cLUE,而Ta和LAI则通过碳同化过程以影响eLUE和cLUE.  相似文献   

15.
为提高干旱区冬小麦叶面积指数(Leaf area index, LAI)遥感估算精度,以拔节期冬小麦LAI为研究对象,在对冠层高光谱数据进行一阶(First derivative, FD)、二阶(Second derivative, SD)微分预处理的基础上,计算了任意波段组合的二维植被指数(Two-dimensional vegetation index, 2DVI)和三维植被指数(Three-dimensional vegetation index, 3DVI),通过进行与LAI之间相关性分析,寻求最佳波段组合的植被指数;利用人工神经网络(Artificial neural network, ANN)、K近邻(K-nearest neighbors, KNN)和支持向量回归(Support vector regression, SVR)算法分别建立LAI估算模型,并进行精度验证。结果表明:任意波段组合的植被指数与LAI相关性均显著提高,尤其是基于一阶微分预处理光谱的FD-3DVI-4(714 nm, 400 nm, 1 001 nm)相关系数达到0.93(P<0.01),且最...  相似文献   

16.
基于无人机多光谱遥感的马尾松林叶面积指数估测   总被引:2,自引:0,他引:2  
快速、准确、无损估测马尾松林叶面积指数对精准林业管理具有重要意义。以小型低空无人机为平台,搭载RedEdge多光谱传感器,获取福建省西部马尾松林多光谱影像,运用重采样的方式获取并计算不同空间分辨率(0.08、0.1、0.2、0.5、1、2、5m)下的植被指数,结合地面实测LAI数据,分析其与植被指数的相关性,进而采用线性模型(LR)、多元逐步回归模型(MSR)、随机森林模型(RF)、支持向量机模型(SVM)和人工神经网络模型(BP)构建不同空间分辨率下的马尾松林LAI估测模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)和总体精度(TA)来评价估测模型精度,从而确定最佳空间分辨率和最佳模型。结果表明,不同空间分辨率下LAI与植被指数均呈极显著相关(p<0.01);多变量模型(MSR、RF、SVM、BP)的调整R2平均值高于LR模型;随着空间分辨率的增加,不同模型的R2整体上呈先增大后减小的趋势;当空间分辨率为0.5m时,利用植被指数建立的RF模型为马尾松林LAI的最佳估测模型,RF模型的调整R2为0.766,模型估测的R2、RMSE、RPD和TA分别为0.554、0.421、1.523和81.95%。本研究可为无人机多光谱遥感反演森林LAI表型参数的空间分辨率和模型选择提供理论参考。  相似文献   

17.
果园靶标冠层叶面积有效探测是施药量在线计算的基本依据。针对树形靶标稠密和稀疏2种冠层类型,搭建叶面积测量三维立体试验平台和激光雷达(Light detection and ranging,LiDAR)探测移动试验平台,构建不同厚度和稠密度树形靶标,采用偏最小二乘回归(Partial least squares regression,PLSR)算法与BP(Back propagation)神经网络算法建立了冠层叶面积探测模型。试验结果表明:PLSR算法获得稠密厚冠层、稀疏厚冠层、稠密薄冠层和稀疏薄冠层叶面积探测模型的决定系数(R2)分别为:0.9626、0.4130、0.8896、0.2699;BP神经网络算法获得模型的R2依次为:0.9727、0.5302、0.8993、0.4290。基于LiDAR的冠层叶面积探测模型对稠密冠层探测精度较高,R2不低于0.8896,对稀疏冠层探测精度较低,不高于0.5302,该探测方法可用于稠密冠层叶面积在线计算,指导果园精准变量喷药。  相似文献   

18.
叶片氮素含量是评价植被生长状况的重要指标,快速、准确监测核桃树冠层氮素含量的变化,对及时掌控树体长势、实施精准管理具有重要意义。本研究通过低空无人机遥感平台搭载GS-2型成像光谱仪,获取了果实膨大期5年生核桃林地的高光谱遥感影像数据。利用ENVI 5.3软件对观测范围内的核桃、土壤以及阴影区域进行识别提取,根据不同地物的波谱差异寻找核桃与土壤、阴影区域之间无交集且差异较大的波段区间,确定冠层的范围,并通过支持向量机方法验证其提取精度;根据NDVI、RVI和DVI植被指数筛选指示冠层氮素含量的特征敏感波段,分析了9种光谱参数对核桃冠层氮素含量的估算能力及其相关性,并将筛选的特征敏感波段作为BP神经网络模型的输入变量,进行了核桃冠层氮素含量的估算。结果表明:当B100 (550.7)处的光谱反射率大于0.10,且 B233 (779.4) 处的光谱反射率大于0.70时,可有效识别和确定核桃树冠层范围,制图精度高达96.43%。在分析核桃树冠层氮素含量与NDVI、RVI、DVI植被指数相关关系的基础上,确定了B33 (440.6)、B165 (660.7)、B186 (697.0)和B347 (986.4)为指示氮素含量的特征敏感波段。9种光谱参数中,以B347 (986.4)和B186 (697.0)重构的NDVI(986.4,697.0) 在核桃林地冠层氮素含量的诊断中更接近实测值,估算模型精度最高。基于BP神经网络建立的估算模型较9种光谱参数具有更高的估算精度,测试集R 2 达0.805,具有一定的估算可靠性。  相似文献   

19.
为提高猕猴桃采摘机器人导航效率,提出一种基于采样状态实时引导随机树扩展的改进方法(Straight-RRT)。首先,针对传统RRT算法盲目搜索的问题,引入评价指数与阈值划分采样状态,根据采样状态决定采样节点的选取方式,实时引导随机树的扩展。其次,为增强算法对不同环境的自适应性及快速避开不规则障碍物,引入动态阈值并优化最近节点选择机制。最后对路径进行优化处理,去除路径冗余点并采用贝塞尔曲线平滑路径减小路径复杂度。基于棚架式猕猴桃果园环境进行路径规划实验,实验结果表明改进后算法在猕猴桃果园环境中具有更好的适应性及规划效率,为提高猕猴桃采摘机器人导航效率提供了解决方法。  相似文献   

20.
为提高猕猴桃采摘机器人导航效率,提出一种基于采样状态实时引导随机树扩展的改进方法(Straight-RRT)。首先,针对传统RRT算法盲目搜索的问题,引入评价指数与阈值划分采样状态,根据采样状态决定采样节点的选取方式,实时引导随机树的扩展。其次,为增强算法对不同环境的自适应性及快速避开不规则障碍物,引入动态阈值并优化最近节点选择机制。最后对路径进行优化处理,去除路径冗余点并采用贝塞尔曲线平滑路径减小路径复杂度。基于棚架式猕猴桃果园环境进行路径规划实验,实验结果表明改进后算法在猕猴桃果园环境中具有更好的适应性及规划效率,为提高猕猴桃采摘机器人导航效率提供了解决方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号