首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The performance of published pedotransfer functions was evaluated in terms of predicted soil water content, pressure heads, and drainage fluxes for a layered profile. The pedotransfer functions developed by Vereecken et al. (1989), Vereecken et al. (1990) were used to determine parameters of the soil hydraulic functions θ(h) and K(h) which were then used as input to SWATRER, a transient one-dimensional finite difference soil water model with root uptake capability. The SWATRER model was used to simulate the hydraulic response of a multi-layered soil profile under natural climatic boundary conditions for a period of one year. The simulations were repeated by replacing the indirectly estimated water retention characteristic by (1) local-scale, and (2) field-scale mean observed θ(h) relationships. Soil moisture contents and pressure heads simulated at different depths in the soil profile were compared to measured values using these three different sets of hydraulic functions. Drainage fluxes at one meter below ground surface have also been simulated using the same three sets of hydraulic functions. Results show that simulations based on indirectly estimated moisture retention characteristics (obtained from pedotransfer functions) overpredict the observed moisture contents throughout the whole soil profile, but predict the pressure heads at shallow depths reasonably good. The results also show that the predicted drainage fluxes based on estimated retention functions are about four times as high compared to the drainage fluxes simulated using measured retention curves.  相似文献   

2.
The management of irrigated agricultural fields requires reliable information about soil hydraulic properties and their spatio-temporal variability. The spatial variability of saturated hydraulic conductivity, Ks and the alpha-parameter αvG-2007 of the van Genuchten equation was reviewed on an agricultural loamy soil after a 17-year period of repeated conventional agricultural practices for tillage and planting. The Beerkan infiltration method and its algorithm BEST were used to characterize the soil through the van Genuchten and Brooks and Corey equations. Forty field measurements were made at each node of a 6 m × 7.5 m grid. The soil hydraulic properties and their spatial structure were compared to those recorded in 1990 on the same field soil, through the exponential form of the soil hydraulic conductivity given by the Gardner equation, using the Guelph Pressure Infiltrometer technique. No significant differences in the results obtained in 1990 and 2007 were observed for either particle-size distribution or dry bulk density. The mean value of αvG-2007 was found to be identical to that of αG-1990, while that of Ks-2007 was significantly smaller than that of Ks-1990. In contrast to the Gardner equation, the van Genuchten/Brooks and Corey expression was found to be more representative of a well-graded particle-size distribution of a loamy soil. The geostatistical analysis showed the two parameters, Ks and αvG-2007, were autocorrelated up to about 30 and 21 m, respectively, as well as spatially positively correlated within a range of 30 m. Despite the difference in the mean values of Ks between the two studies, the spatial structures were similar to those found in the 1990 experiment except for the covariance sign. The similarity in autocorrelation ranges indicate that the spatial analysis of soil hydraulic properties is independent of the infiltration methods (i.e., measurement of an infiltration flux) used in the two studies, while the difference in the covariance sign may be linked to the use of two different techniques of soil hydraulic parameterization. The covariance values found in the 2007 campaign indicates a positive relationship between the two parameters, Ks and αvG-2007. The spatial correlations of soil hydraulic parameters appear to be temporally stabilized, at least within the agro-pedo-climatic context of the study. This may be attributed to the soil textural properties which remain constant in time and to the structural properties which are constantly renewed by the cyclic agricultural practices. However, further experiments are needed to strengthen this result.  相似文献   

3.
Simulating near-surface soil water dynamics is challenging since this soil compartment is temporally highly dynamic as response to climate and crop growth. For accurate simulations the soil hydraulic properties have to be properly known. Although there is evidence that these properties are subject to temporal changes, they are set constant over time in most simulations studies. The objective of this study was to improve near-surface soil water simulations by accounting for time-variable hydraulic properties. Repeated tension infiltrometer measurements over two consecutive seasons were used to inversely estimate the hydraulic properties of a silt loam soil under different tillage - conventional (CT), reduced (RT), and no-tillage (NT). Simulated water dynamics with constant and time-variable hydraulic parameters were compared to observed data in terms of the soil water content and water storage in the near-surface soil profile (0-30 cm). The measurements indicate a considerable temporal variability in the saturated hydraulic conductivity, the field-saturated water content and the parameter α of the van Genuchten/Mualem model. Temporal variability was largest for CT and RT, whereas under NT, replicates of measured water contents and hydraulic properties showed a considerable large spatial variability. Simulations with time-constant hydraulic parameters led to underestimations of soil water dynamics in winter and early spring and overestimations during late spring and summer. The use of time-variable hydraulic parameters significantly improved simulation performance for all treatments, resulting in average relative errors below 13%. Since simulation results agreed with observed water dynamics in two seasons, the applicability of inversely estimated hydraulic properties for soil water simulations is demonstrated. Thus, simulations that address applied questions in agricultural water management may be improved by using time-variable hydraulic parameters. The simulated water balance indicated that RT and NT result in better water storage than CT and therefore may increase water efficiency under water-limited climatic conditions.  相似文献   

4.
Summary The Lewis-Milne (LM) equation has been widely applied for design of border irrigation systems. This equation is based on the concept of mass conservation while the momentum balance is replaced by the assumption of a constant surface water depth. Although this constant water depth depends on the inflow rate, slope and roughness of the infiltrating surface, no explicit relation has been derived for its estimation. Assuming negligible border slope, the present study theoretically treats the constant depth in the LM equation by utilizing the simple dam-break wave solution along with boundary layer theory. The wave front is analyzed separately from the rest of the advancing water by considering both friction and infiltration effects on the momentum balance. The resulting equations in their general form are too complicated for closed-form solutions. Solutions are therefore given for specialized cases and the mean depth of flow is presented as a function of the initial water depth at the inlet, the surface roughness and the rate of infiltration. The solution is calibrated and tested using experimental data.Abbreviations a (t) advance length - c mean depth in LM equation - c f friction factor - c h Chezy's friction coefficient - g acceleration due to gravity - h(x, t) water depth - h 0 water depth at the upstream end - i() rate of infiltration - f(x, t) discharge - q0 constant inflow discharge - S f energy loss gradient or frictional slope - S0 bed slope - t time - u(x, t) mean velocity along the water depth - x distance - Y() cumulative infiltration - (t) distance separating two flow regions - infiltration opportunity time  相似文献   

5.
In this paper, a simple method for estimation of soil-water extraction distribution by roots S (z) is described. S (z) is determined mainly by the distribution of the surface area of the roots. From field measurements it followed that typical distribution of the surface area of roots, as well as their mass, in a sufficiently moist soil has an exponential form. If plant canopy transpiration is potential, soil-water extraction distribution S(z) can be obtained from the root mass distribution. In case soil water potential is less than ‘critical’ and, therefore, the transpiration is lower than the potential transpiration, S(z) will be proportional to the soil water potential.Water-extraction patterns of maize roots, calculated from field data, were compared with calculated S (z) -values. There was a good agreement between that S (z) determined from field measurements and that calculated by means of the suggested method. In the case where the transpiration was potential, S (z) was exponential and was similar to the root mass distribution.  相似文献   

6.
Management and control of surface irrigation, in particular furrow irrigation, is limited by spatio-temporal soil infiltration variability as well as the high cost and time associated with collecting intensive field data for estimation of the infiltration characteristics. Recent work has proposed scaling the commonly used infiltration function by using a model infiltration curve and a single advance point for every other furrow in an irrigation event. Scaling factors were calculated for a series of furrows at two sites and at four points down the length of the field (0.25 L, 0.5 L, 0.75 L and L). Differences in the value of the scaling factor with distance were found to be a function of the shape of the advance curves. It is concluded that use of points early in the advance results in a substantial loss of accuracy and should be avoided. The scaling factor was also strongly correlated with the furrow-wetted perimeter suggesting that the scaling is an appropriate way of both predicting and accommodating the effect of the hydraulic variability.  相似文献   

7.
The objective of this study was to compare soil water measurements made using capacitance and neutron probes by means of a water balance experiment in a drainage lysimeter. The experiment was conducted in a 5-year-old drip-irrigated peach orchard (Prunus persica L. Batsch, cv. Flordastar, on GF-677 peach rootstock) planted in a clay loam textured soil located in southern Spain. Four drainage lysimeters (5 m × 5 m × 1.5 m), each containing one tree, were constructed and equipped with one lateral line containing eight drippers per tree, with a discharge rate of 2 L h−1. Three access tubes for the neutron probe (NP), symmetrically facing three PVC access tubes containing the multi-depth capacitance probes (MDCP) were located perpendicularly to the drip line (0.2, 0.6 and 1 m). The results demonstrated that both the capacitance and neutron probes gave similar soil water content values under steady state hydraulic gradient conditions (0.2 m from the emitter) although some discrepancies were found in heterogeneous soil water distribution conditions (1 m from the emitter), which might be attributed to the smaller soil volume explored by the MDCP compared with the NP. Explanations for the discrepancies between both devised are presented. When water inputs and outputs were fairly constant, the volumetric soil water content could be considered to represent field saturation (θsat = 0.36 m3 m−3). When drainage was zero, there were 2 days when the soil water content was constant and could be considered as field capacity (θfc = 0.31 m3 m−3). The findings suggest that: (i) capacitance probes can be used for continuous real-time soil water content monitoring unlike the manual measurements obtained with the neutron probe; (ii) the location of the sensors is critical when used for drip irrigation scheduling and our recommendations for practical agricultural purposes would be to place MDCP sensors in the place representing the highest root density, leading the sensors to become biological sensors rather than mere soil moisture sensors; and (iii) on average, the water balance values determined by lysimeter match those calculated using the data from both probes. However, due to the smaller soil volume explored by MDCP, more of these sensors must be used to characterize the soil water status in water balance studies.  相似文献   

8.
Two important soil hydrologic properties viz. soil water retention (h-θ relationship) and unsaturated hydraulic conductivity (K-θ relationship), were determined under simulated rainfall conditions. The h-θ relationship was determined using a rainfall simulator infiltrometer (RSI). The resulting h-θ relation was then used as input to the Van Genuchten's model (VGM) for determining the K-θ relationship. In order to validate the results obtained through RSI-VGM combination, the commonly adopted instantaneous profile method (IPM) was also applied to develop the K-θ relationship independently. Functional sensitivity analysis, conducted to simulate the soil water storage using the model Soil Water Actual Transpiration Rate (SWATR), showed that the simulated results obtained through RSI-VGM combination were in agreement with those from IPM.  相似文献   

9.
A combined methodology of basal crop coefficient (Kcb) derived from vegetation indices (VI) obtained from satellite images and a daily soil water balance in the root zone of the crop was proposed to accurately estimate the daily grape crop coefficient and actual evapotranspiration. The modeled values were compared with field measurements of crop evapotranspiration (ET) using an energy balance eddy-covariance flux tower and adjusted for closure using the measured Bowen ratio. A linear relation between Kcb and VI for vineyard was obtained, Kcb = 1.44 × NDVI-0.10 and Kcb = 1.79 × SAVI-0.08. The correlation of the measured crop coefficient (Kc) and modeled (Kcrf) exhibits a linear tendency, Kc = 0.96Kcrf, r2 = 0.67. Other derived parameters such as weekly Kc and daily and weekly ET show good consistency with measurements and higher coefficients of determination. The study of the soil water balance suggests the importance of soil water storage in grapes within the La Mancha region. These results validate the use of remote sensing as a tool for the estimation of evapotranspiration of irrigated wine grapes planted on trellis systems.  相似文献   

10.
The evapotranspiration (ET c) of a table grape vineyard (Vitis vinifera, cv. Red Globe) trained to a gable trellis under netting and black plastic mulching was determined under semiarid conditions in the central Ebro River Valley during 2007 and 2008. The netting was made of high-density polyethylene (pores of 12 mm2) and was placed just above the ground canopy about 2.2 m above soil surface. Black plastic mulching was used to minimize soil evaporation. The surface renewal method was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Later, latent heat flux (LE) values were obtained by solving the energy balance equation. For the May–October period, seasonal ET c was about 843 mm in 2007 and 787 mm in 2008. The experimental weekly crop coefficients (K cexp) fluctuated between 0.64 and 1.2. These values represent crop coefficients adjusted to take into account the reduction in ET c caused by the netting and the black plastic mulching. Average K cexp values during mid- and end-season stages were 0.79 and 0.98, respectively. End-season K cexp was higher due to combination of factors related to the precipitation and low ET o conditions that are typical in this region during fall. Estimated crop coefficients using the Allen et al. (1998) approach adjusting for the effects of the netting and black plastic mulching (K cFAO) showed a good agreement with the experimental K cexp values.  相似文献   

11.
The actual irrigation water demand in a district in Sicily (Italy) was assessed by the spatially distributed agro-hydrological model SIMODIS (SImulation and Management of On-Demand Irrigation Systems). For each element with homogeneous crop and soil conditions, in which the considered area can be divided, the model numerically solves the one-dimensional water flow equation with vegetation parameters derived from Earth Observation data. In SIMODIS, the irrigation scheduling is set by means of two parameters: the threshold value of soil water pressure head in the root zone, hm, and the fraction of soil water deficit to be re-filled, Δ. This study investigated the possibility of identifying a couple of irrigation parameters (hm, Δ) which allowed to reproduce the actual irrigation water demand, given that the study area was adequately characterized with regard to the spatial distribution of the soil hydraulic properties and the vegetation conditions throughout the irrigation season. The spatial distribution of the soil and vegetation properties of the study area, covering an irrigation district of approximately 800 ha, was accurately characterized during the summer of 2002. The soil hydraulic properties were identified by an intensive undisturbed soil sampling, while the vegetation cover was characterized in terms of leaf area index, surface albedo and fractional soil cover by analysing multispectral LandSat TM imageries. Irrigation volumes were monitored at parcel scale.A reference scenario with hm = −700 cm and Δ = 50% (corresponding to a mean actual to potential transpiration ratio of 0.95) allowed to reproduce the spatial and temporal distribution of the actual irrigation demand at the district scale. The spatial variability of the crop conditions in the considered area had much more influence to assess the irrigation water demand than the soil hydraulic spatial variability. The proposed approach showed that, under the agro-climatic conditions typical for the Mediterranean region, SIMODIS may be a valuable tool in managing irrigation to increase water productivity.  相似文献   

12.
An enhanced subsurface irrigation hydrology model, developed by Buyuktas & Wallender (Journal of Irrigation and Drainage Engineering, ASCE 128(3): 71–81), is calibrated and validated using 2 years of data collected in a field in Broadview Water District in California, USA. The first year data is used to calibrate the model, while the second year data is used for model validation. Calibration of the model is achieved by trial-and-error adjustments of model parameters to match simulated results with measured cumulative drain flow, water table depth and salinity of the drain flow. Adjustments of the model input parameters include van Genuchten soil hydraulic function parameters (n and Ks), maximum allowed pressure head at the soil surface and irrigation duration. For validation of the model, a particular case is chosen to match the measured drain flow, water table depth and drain flow salinity, based on the graphical and objective functions used. It is found, through model validation, that the predicted drain flow is slightly lower than the observed data, while the predicted water table depth is slightly higher.  相似文献   

13.
The measurement or prediction of percolation losses in field situations is of great practical significance for efficient irrigation and for determination of the leaching requirement, particularly of clayey soils where impeded percolation occurs. Hydraulic properties and water losses in packed Ashutia clay soil were determined under prevented-evaporation and free-evaporation conditions using lysimeter and tensiometric techniques. Hydraulic conductivity was determined as a function of soil moisture content using percolation flux computed. An exponential relationship between hydraulic conductivity and soil water content K = ae, was found. The percolation and evaporation-plus-percolation fluxes estimated from tensiometer readings under prevented-and free-evaporation conditions, respectively, matched with profile water losses from lysimeter measurements. The error ranged between 0.01 and 0.82 mm day−1 with high correlation coefficient indicating that water loss from a soil profile can be estimated from tensiometer readings.  相似文献   

14.
The quantification of evapotranspiration (ET) from irrigated projects is important for water rights management, water resources planning and water regulation. Traditionally, ET has been estimated by multiplying a weather-based reference ET by crop coefficients (Kc) determined according to the crop type and the crop growth stage. However, there is typically question regarding whether crops grown compare with the conditions represented by the Kc values, especially in water short areas. In addition, it is difficult to estimate the correct crop growth stage dates for large populations of crops and fields. METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) is an image-processing model for calculating ET as a residual of the surface energy balance. METRIC is a variant of SEBAL, an energy balance process developed in the Netherlands by Bastiaanssen and was extended to provide tighter integration with ground-based reference ET. METRIC was applied with Landsat images in southern Idaho to predict monthly and seasonal ET for water rights accounting and for operation of ground water models. ET “maps” (i.e., images) provide the means to quantify, in terms of both the amount and spatial distribution, the ET on a field by field basis. The ET maps have been used in Idaho to quantify net ground-water pumpage in areas where water extraction from underground is not measured and to estimate recharge from surface-irrigated lands. Application and testing of METRIC indicates substantial promise as an efficient, accurate, and relatively inexpensive procedure to predict the actual evaporation fluxes from irrigated lands throughout a growing season.  相似文献   

15.
The accuracy of ‘available’ and ‘extractable’ soil water estimates was investigated using irrigated and unirrigated beans (Vicia faba) grown in an alluvial silt loam in Canterbury, New Zealand. Available water capacity was defined as the difference between soil water contents in the root zone at the drained upper limit (DUL) and at the lower limit (LL) as estimated by laboratory procedures. Extractable water capacity was specified as the difference between field estimates of DUL and LL for the whole profile affected by roots. DUL was estimated in the laboratory by equilibrating soil cores at matric potentials at ?10, ?20 or ?30 kPa, and in the field by neutron moderation. Laboratory estimates of LL were made from soil samples equilibrated at ?1.5 MPa matric potential. In the field LL was measured by neutron moderation on plots where evaporation had apparently ceased due to drought stress.When compared at intervals down the profile laboratory estimates of DUL and LL showed poor agreement with field observations. However, the final estimates of available and extractable water capacities were similar because of compensatory inaccuracies in the laboratory estimates. Furthermore, field measurements of evapotranspiration, using neutron moderation and tensiometry, indicated that the accuracy of the available water estimates was much reduced by upward fluxes of water into the rooting zone. These fluxes resulted in water extraction to at least 1.0 m although the apparent maximum rooting depth (measured by counting roots washed from soil cores) was only 0.7 m.Particular attention was paid to the influence of subsoil textural variability, which is pronounced in such soils. Laboratory and field estimates of the LL had to be carefully matched texturally before relevant comparisons could be made. Problems associated with subsoil textural variability affected laboratory methods of DUL estimation more than field methods.  相似文献   

16.
Soil infiltration problems occur as a result of alternating irrigation with saline-sodic waters and monsoon rainfall. Hydraulic conductivity (K) and related soil properties of a non-calcareous (CaCO3 0.8%) and a calcareous soil (25.7%) having similar textural constituents were monitored. The soils were subjected to six consecutive cycles of irrigation with saline waters (SW) of sodium adsorption ratio (SAR), 10, 20 or 30 (mmol/l)1/2, but of similar electrolyte concentration (EC; 80 mEq/l), and each followed by simulated rain water (SRW) (electrical conductivity <0.02 dS/m). Results are presented in terms of relative K i.e. K r=K sw/K tw where K tw is steady state K measured separately under application with tap water (ECw 0.54 dS/m, SAR 0.9). For irrigation with SW alone, K r values were reduced to 0.95, 0.79 and 0.70 at SAR of 10, 20 and 30, respectively, in non-calcareous soil. The corresponding values of 0.95, 0.87 and 0.79 were slightly higher in calcareous soil. Severe reductions in K r were observed in both the soils when subjected to alternate use of SW and SRW (K r=0.22, 0.03 and 0.02 in non-calcareous, and 0.57, 0.17 and 0.07 in calcareous soil). About half of the reductions in K r were reversible when SW was subsequently applied. Depth distributions of salinity, pH, dispersible clay and hydraulic head indicate that disaggregation and dispersion of surface soil was the cause of reduced K with SRW, whereas “washed in” sub-soil became restrictive and controlled the K values with SW under alternations of SW and SRW. Salt release (<1 mEq/l) was insufficient to avoid dispersion and sustain K even in the calcareous soil. For evaluating the infiltration hazard of saline-sodic water, measurements of stabilized K values after consecutive cycles of SW and SRW should serve as a better diagnostic criteria under monsoonal climates than threshold EC–SAR combinations. Received: 8 June 1998  相似文献   

17.
A mathematical model which describes water flow under subsurface drip lines taking into account root water uptake, evaporation of soil water from the soil surface and hysteresis in the soil water characteristic curve θ(H) is presented. The model performance in simulating soil water dynamics was evaluated by comparing the predicted soil water content values with both those of Hydrus 2D model and those of an analytical solution for a buried single strip source. Soil water distribution patterns for three soils (loamy sand, silt, silty clay loam) and two discharge rates (2 and 4 l m−1 h−1) at four different times are presented. The numerical results showed that the soil wetting pattern mainly depends on soil hydraulic properties; that at a time equal to irrigation duration decreasing the discharge rate of the line sources but maintaining the applied irrigation depth, the vertical and horizontal components of the wetting front were increased; that at a time equal to the total simulation time the discharge rate has no effect on the actual transpiration and actual soil evaporation and a small effect on deep percolation. Also the numerical results showed that when the soil evaporation is neglected the soil water is more easily taken up by the plant roots.  相似文献   

18.
In many models used to simulate soil-water relationships, representations of the transport mechanisms in the soil-plant-atmosphere continuum, range from mechanistic to functional. The objective of this paper is to compare two functional models, FAO (Doorenbos and Pruitt, 1977) and Ritchie (1985)models, with a mechanistic model (Maraux and Lafolie, 1998) to simulate the soil water balance of maize and sorghum grown in sequence in Nicaragua. In the FAO model, the soil is described as a single reservoir which is characterized by its amount of water varying on a daily time scale, depending on the rain, drainage, and actual evapotranspiration. In the Ritchie model, the soil is regarded as a multilayered soil profile. The maximum evapotranspiration is divided between soil evaporation and plant transpiration, and drainage occurs if the amount of water arriving in the last layer corresponds to a water content greater than the field capacity. The mechanistic model is based on the Richards' equation. Comparison of the three models was first made according to a deterministic approach with parameters coming from the same database. We then considered a stochastic approach for which 800 hydraulic characteristics of the soil were generated, according to the spatial variability observed at the field scale and to the scaling theory applied to similar porous media. A distribution of the stochastic parameters used in the three models was thus derived. Results showed that the order of magnitude of the evapotranspiration was similar for the three models (902, 874, 842 mm cumulative evapotranspiration for a 203 day period for the MM, Ritchie, and FAO models, respectively). Adding a capillary rise mechanism in the functional models improved moderately the soil-water balance. Evapotranspiration and drainage showed moderate sensitivity to spatial variability in soil hydraulic properties (coefficients of variation less than 1.6%), whereas final water storage (after 203 days) showed a greater sensitivity (coefficients of variation from 7.9–15.7%, depending on the model).  相似文献   

19.
A field study was carried out in the Cukurova Region, Southern Turkey to investigate the magnitude of the components of water balance, and the water uptake by cotton roots in relation to hydraulic properties of a clay soil. A plot cropped with cotton and with bare soil only were equipped with tensiometers, gypsum blocks, and access tubes for neutron probe to monitor soil water potential and water content.The hydraulic conductivity values, evaporation and drainage rates, and water withdrawal of roots were determined from field data with numerical calculations based on water flow equations.Results showed that the evaporation from bare soil was generally high during the three month period May to July varying between 4.5 and 1.0 mm/day. However, when soil water potential at 10 cm depth had decreased to -0.065 and -0.070 MPa in the drying phase, the evaporation from the soil decreased to 0.4 mm/day. The drainage rates were influenced by rainfall.The highest values of capillary flux toward the surface layer, and drainage rate from the cropped soil, were 2.0 and 1.8 mm/day respectively. Rates of water uptake by roots from the soil profile, not including the 0–10 cm layer, were high when compared with drainage and upward fluxes, changing between 7.7 and 1.4 mm/day during the experimental period. A good agreement between root length densities and water uptake was found; up to 80% of all roots were in the top 50 cm of the soil and 78% of the total water uptake was extracted from the same layer. Evapotranspiration was found to decline as a cubic function of the available water content of the top 120 cm of the soil profile.  相似文献   

20.
Because of the spatial and temporal variabilities of the advance infiltration process, furrow irrigation investigations should not be limited to a single furrow irrigation event when using a modelling approach. The paper deals with the development and application of simulation of furrow irrigation practices (SOFIP), a model used to analyse furrow irrigation practices that take into account spatial and temporal variabilities of the advance infiltration process. SOFIP can be used to compare alternative furrow irrigation management strategies and find options that mitigate local deep-percolation risks while ensuring a crop yield level that is acceptable to the farmer. The model is comprised of three distinct modelling elements. The first element is RAIEOPT, a hydraulic model that predicts the advance infiltration process. Infiltration prediction in RAIEOPT depends on a soil moisture deficit parameter. PILOTE, a crop model, which is designed to simulate soil water balance and predict yield values, updates the soil moisture parameter. This parameter is an input of a parameter generator (PG), the third model component, which in turn provides RAIEOPT with the data required to simulate irrigation at the scale of an N-furrow set. The study of sources of variability and their impact on irrigation advance, based on field observations, allowed us to build a robust PG. Model applications show that irrigation practices must account for inter-furrow advance variability when optimising furrow irrigation systems. The impact of advance variability on deep percolation and crop yield losses depends on both climatic conditions and irrigation practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号