首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium (Cd) sorption and desorption characteristics by Alfisols from different land uses were examined, and the relationships between soil and sorption/desorption characteristics were investigated. Adsorption studies were done using Cd concentrations (0–100 mg Cd kg?1) in 0.01 M CaCl2. The Cd sorbed by the soils was then subjected to two desorption runs. The soils' adsorption conformed to Freundlich and Langmuir equations. The amount of Cd sorbed by the soils varied. Two desorption runs detached more than 95% of sorbed Cd, but the first accounted for more than 80% of the total. Desorption of Cd in degraded soils was more than in soils from other land uses. The amount of Cd desorbed correlated with amount applied (r = 0.90??), solution concentration (r = 0.83??), and amount sorbed (r = 0.70??). A positive relationship exists between the adsorption maxima of the soils and soil organic matter (r = 0.13, p = 0.87). The relationship between amount of Cd desorbed and sorbed is quadratic for all the soil.  相似文献   

2.
Abstract

Three soils, Hiwassee loam (clayey, kaolinitic, thermic, Typic Rhodudults), Vaiden clay (very fine, montmorillonitic, thermic, Vertic Hapludalfs) and Marvyn sand (fine, loamy, siliceous, thermic, Typic Hapludults), were used in this study. Phosphorus sorption and desorption isotherms of the soils were determined in the laboratory. Average P sorption maximum (b) was calculated using the Langmuir isotherm equation. Based on the P sorption capacity, each soil was fertilized with different P rates and teff [Eragrostis tef (Zucc)] was grown in the greenhouse. The amount of P sorbed and desorbed increased as the concentration of equilibrating solution P increased. Phosphorus sorption maximum from sorption and desorption isotherms was 278, 251, and 37 mg P/kg for Hiwassee, Vaiden, and Marvyn soils, respectively, and for maximum dry matter yield of teff the soils needed a minimum of 0.029, 0.048, and 0.065 mg/L soil solution P, respectively, which were all below the soil solution P at P adsorption maximum.

Soil P was extracted by the Mehlich I, Mehlich III, modified Mississippi, Bray P‐l and Olsen methods. Plant‐available P extracted by each of the five methods was significantly correlated with teff dry matter yield, and statistically any of the five methods can be used as the basis for predicting teff yield responses.  相似文献   

3.
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing.  相似文献   

4.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

5.
On the reversibility of phosphate sorption by soils   总被引:4,自引:0,他引:4  
Sorption of phosphate was induced by incubating phosphate with samples of two soils. Both desorption and further sorption of phosphate were then measured on separate subsamples of the incubated soils. The effects of varying the amount of phosphate incubated with the soil and of period of desorption, or of further sorption, were measured on one soil; the effect of period of incubation was measured on the other. Plots of desorbed phosphate versus concentration were continuous with plots of newly sorbed phosphate versus concentration. Neither of these coincided with the plots of the original additions of phosphate. These results were compatible with a model for the reaction between soil and phosphate in which phosphate is initially adsorbed and subsequently diffuses beneath the adsorbing surfaces. Sorption is reversible in the sense that a continuous curve of sorbed and desorbed phosphate is obtained when these are measured in opposite directions by increasing, or decreasing, the solution concentration of phosphate. However, because dynamic processes are involved, an earlier position of a plot of sorbed phosphate against concentration is not retraced when the concentration is changed.  相似文献   

6.
Sorption and desorption of cobalt by soils and soil components   总被引:2,自引:0,他引:2  
The sorption of Co by individual soil components was studied at solution Co concentrations that were within the range found in natural soil solutions. Soil-derived oxide materials sorbed by far the greatest amounts of Co although substantial amounts were also sorbed by organic materials (humic and fulvic acids). Clay minerals and non-pedogenic iron and manganese oxides sorbed relatively little Co. It is considered that clay minerals are unlikely to have a significant influence on the sorption of Co by whole soils. Cobalt sorbed by soil oxide material was not readily desorbed back into solution and, in addition, rapidly became non-isotopically exchangeable with solution Co. In contrast, Co was relatively easily desorbed from humic acid and a large proportion of the Co sorbed by humic acid remained isotopically exchangeable. Cobalt sorbed by montmorillonite was more easily desorbed than that sorbed by soil oxide but less easily than that sorbed by humic acid. Cobalt sorption isotherms for whole soils at low site coverage were essentially linear and the gradients of isotherms increased with pH. A comparison of isotherm gradients for whole soils and individual soil components supported the suggestion that Co sorption in whole soils is largely controlled by soil oxide materials.  相似文献   

7.
Soil organic matter (SOM) plays an important role in the Se dynamics in soil. The potential effects of vermicompost and digestate as important sources of SOM on selenium (Se) mobility were assessed in this study. Three soils differing in their physicochemical parameters, fluvisol, chernozem, and luvisol, were chosen, and three types of vermicomposts based on various bio-waste materials as digestate (vermicompost 1), kitchen waste with woodchips (vermicompost 2), and garden bio-waste (vermicompost 3) were used due to their high organic matter content. Additionally, digestate samples alone were applied. To evaluate the potential effect of vermicompost application on sorption characteristics of soils, batch sorption experiments were performed. The results showed a predominant effect on Se species in the soils, where selenite sorbed more intensively compared to selenate, regardless of the soil and ameliorative material applied. In the control, the soil sorption ability of selenite tended to decrease in the order:fluvisol > luvisol > chernozem. However, these differences were not significant. Moreover, the effects of the ameliorative materials depended on both soil and amendment used. In fluvisol, all the amendment applications resulted in a decrease in distribution coefficient (Kd values) of Se, whereas in chernozem, this effect was observed only for the digestate-based vermicompost 1. Increasing Kd levels were reported in luvisol treated with digestate; the application of garden bio-waste-based vermicompost 3 tended to decrease the Kd values. Further studies are required on long-term effects of these amendments on Se mobility in soils and the role of individual organic matter fractions in this context.  相似文献   

8.
冻融对东北黑土硒酸盐吸附解吸的影响   总被引:2,自引:0,他引:2  
行文静  牛浩  李娇  吴福勇 《土壤通报》2021,52(2):338-345
为探究冻融过程对东北黑土硒酸盐(Se(VI))吸附、解吸的影响机理,通过室内不同初始含水率及冻融次数模拟冻融循环,随后利用冻融后土壤进行Se(VI)的吸附和解吸试验,分别采用Langumuir和Freundlich方程对Se(VI)吸附过程进行拟合。结果表明:冻融显著(P < 0.05)改变了东北黑土pH值、有机质、球囊霉素相关土壤蛋白及各粒级团聚体含量,冻融后土壤Se(VI)吸附量显著高于未冻融土壤。通过拟合发现东北黑土对Se(VI)的吸附更符合Langmuir模型(R2 > 0.967),高初始含水率及冻融循环次数均增加了冻融后黑土对Se(VI)的最大吸附量及缓冲容量,同时提高了Se(VI)的解吸率。70%含水率及多次冻融循环提高了黑土对Se(VI)的吸附潜能,促进Se(VI)的解吸,使得冻融后土壤硒的生物有效性增加,有利于作物根系对硒的吸收。  相似文献   

9.
The plant availability of phosphate applied to calcareous soils is affected by precipitation and adsorption reactions, the relative significance of which is not well known. We used extended P-sorption curves obtained at phosphate addition rates up to 340 mmol P kg?1 soil to examine the relative contribution of precipitation and adsorption by 24 calcareous Spanish Vertisols and Inceptisols. Adsorption was dominant at 1 day and at small rates of addition (10–35 mmol P kg?1). With increasing clay and Fe and Al oxides contents of the soil, more phosphate was sorbed before the sorption curve bent upwards, as a result of Ca phosphate precipitation. Sorption curves showed a nearly vertical intermediate region, the length of which increased with time, suggesting that a Ca phosphate buffered the concentration of P in solution. The buffering concentration decreased with time, suggesting a progressive transformation of more to less soluble forms of Ca phosphate. A phase less soluble than octacalcium phosphate seemed to control the concentration of P in solution at 180 days in most soils. The apparent solubility of this phase decreased with increasing carbonate content in the soil. Precipitation of poorly soluble Ca phosphates apparently predominated up to a P addition dose ranging from about 30 mmol P kg?1 in some soils to more than 340 mmol P kg?1 in others. At larger doses, the way additional P was bound to the solid phase was different; phosphate was probably adsorbed, at least in part, to low-affinity sites on silicate clays and oxides. The proportion of sorbed phosphate that was isotopically exchangeable decreased with time, soil carbonate content and P addition dose for doses <100 mmol P kg?1. This is consistent with the idea that P in Ca phosphates is less isotopically exchangeable than P adsorbed on mineral surfaces. At larger additions of P, isotopic exchangeability was unrelated to the soil properties measured, probably because there was a variety of sorbed P forms influenced in turn by different soil components.  相似文献   

10.
The dependency of the retention of dissolved organic carbon (DOC) on mineral phase properties in soils remains uncertain especially at neutral pH. To specifically elucidate the role of mineral surfaces and pedogenic oxides for DOC retention at pH 7, we sorbed DOC to bulk soil (illitic surface soils of a toposequence) and corresponding clay fraction (< 2 μm) samples after the removal of organic matter and after removal of organic matter and pedogenic oxides. The DOC retention was related to the content of dithionite‐extractable iron, specific surface area (SSA, BET‐N2 method) and cation exchange capacity (pH 7). The reversibility of DOC sorption was determined by a desorption experiment. All samples sorbed 20–40 % of the DOC added. The DOC sorption of the clay fractions explained the total sorption of the bulk soils. None of the mineral phase properties investigated was able to solely explain the DOC retention. A sorption of 9 to 24 μg DOC m–2 indicated that DOC interacted only with a fraction of the mineral surface, since loadings above 500 μg m–2 would be expected for a carbon monolayer. Under the experimental conditions used, the surface of the silicate clay minerals seemed to be more important for the DOC sorption than the surface of the iron oxides. The desorption experiment removed 11 to 31 % of the DOC sorbed. Most of the DOC was strongly sorbed.  相似文献   

11.
Abstract

Sorption of trace quantities of Cd in four soils of different chemical and mineralogical properties, was studied. Initial Cd concentrations were between 15 to 150 μg. 1?1. The sorption isotherms were linear and had a positive intercept in three of the soils, indicating a constant partition‐high affinity sorption isotherm (Giles et. al6). The data also followed the Freundlich sorption isotherm, and the Freundlich K parameter was taken as a measure of the relative affinity of the different soils for the Cd metal sorbed. Cadmium sorbed was extracted by IN‐NH4C1 followed by 0.1N HC1, and the fraction remaining in the soils was considered specifically sorbed Cd. This fraction also followed a linear sorption isotherm, and was around 30% for the four soils studied. The sorption order for the amount of specifically sorbed Cd showed that the Boomer soil (kaolinite‐iron oxides) had the lowest affinity for specific sorption of this metal. This was taken as evidence that kaolinite and iron oxides have a lower capacity for retaining cadmium through specific sorption mechanism(s) than the materials present on the other soils (2:1 layer silicates and humic substances). The existence of specific mecha‐nism(s) responsible by the sorption of trace quantities of Cd in soil solutions has important implications on soil‐plant relationships, Cd mobility in soil profiles and control of Cd activity in soil solutions.  相似文献   

12.
Solution cadmium (Cd) concentrations and sorption and desorption of native and added Cd were studied in a range of New Zealand soils. The concentration of Cd in solution and the concentrations and patterns of native soil Cd desorbed and added Cd sorbed and desorbed varied greatly between the 29 soils studied. Correlation analysis revealed that pH was the most dominant soil variable affecting solution Cd concentration and sorption and desorption of native and added Cd in these soils. However, organic matter, cation exchange capacity (CEC) and total soil Cd were also found to be important. Multiple regression analysis showed that the log concentration of Cd in solution was strongly related to soil pH, organic matter and total Cd, which in combination explained 76% of the variation between soils. When data from the present study were combined into a single multiple regression with soil data from a previously published study, the equation generated could explain 81% of the variation in log Cd solution concentration. This reinforces the importance of pH, organic matter and total Cd in controlling solution Cd concentrations. Simple linear regression analysis could at best explain 53% of the total variation in Cd sorption or desorption for the soils studied. Multiple regression analysis showed that native Cd desorption was related to pH, organic matter and total Cd, which in combination explained 85% of the variation between soils. For sorption of Cd (from 2 μg Cd g–1 soil added), pH and organic matter in combination explained 75% of the variation between soils. However, for added Cd desorption (%), pH and CEC explained 77%. It is clear that the combined effects of a range of soil properties control the concentration of Cd in solution, and of sorption and desorption of Cd in soils. The fraction of potentially desorbable added Cd in soils could also be predicted from a soil’s Kd value. This could have value for assessing both the mobility of Cd in soil and its likely availability to plants.  相似文献   

13.
The sorption of phosphate by underwater soils rich in carbonate The phosphate sorption isotherms for carbonate rich under water soils (Unterwasserboden) can frequently be linearized by a modified Freundlich-isotherm when one assumes that, because of previously sorbed phosphate, the concentration of the equilibrium soil solution, P1,0 is greater than 0. However, in many cases, the character of the phosphate sorption can be adequately determined with only one phosphate addition (Ps,500). Both methods show that for dried samples from under water soils, the samples from reduced horizons have a higher P sorption than for the associated oxidized horizons. This can be explained by the presence of very sorption active ferrihydrite which has precipitated from previously biologically reduced material.  相似文献   

14.
A. K. DOLUI  S. S. ROY 《土壤圈》2005,15(5):611-619
Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradients in physical and chemical properties were studied to relate phosphate sorption and desorption to soil properties. From the P isotherm curve, the standard P requirement (SPR) of the soils was determined. Phosphate sorption data were also fitted both to the Langmuir and Freundlich Equations. The mean sorption maximum values for three different soil series were: Bastar 〉 Geedam 〉 Mosodi. The fraction of added phosphate sorbed for the 3 series followed this same trend as did SPR; the phosphate sorption maximum and the maximum phosphate buffering capacity, which were estimated by the Langmuir isotherm; and the Freundlich constant 1/n. However, phosphate desorption, as well as the maximum recovery percent did not follow this order. The phosphate affinity constant (K) was also different following the same progression for the 3 soil series as the Freundlich constant K', which measured sorption strength. Meanwhile, an inverse order existed for K and K' versus the percent desorbed relative to the sorbed as well as the maximum recovery percent. In addition, significant correlation coefficients among sorption parameters of P and soil factors were found.  相似文献   

15.
The objective of this study was to examine the effect of soil pH on zinc (Zn) sorption and desorption for four surface soils from the Canterbury Plains region of New Zealand. Zinc sorption by the soils, adjusted to different pH values, was measured from various initial solution Zn concentrations in the presence of 0.01 M calcium nitrate [Ca(NO3)2]. Zinc desorption isotherms were derived from the cumulative Zn desorbed (µg g?1 soil) after each of 10 desorption periods by sequentially suspending the same soil samples in fresh Zn‐free 0.01 M Ca(NO3)2. Zinc sorption and desorption varied widely with soil pH. Desorption of both native and added Zn decreased continuously with rising pH and became very low at pH values greater than 6.5. The proportion of sorbed Zn that could be desorbed back into solution decreased substantially as pH increased to more than 5.5. However, there were differences between soils regarding the extent of the hysteresis effect.  相似文献   

16.
R.J. Haynes  R.S. Swift 《Geoderma》1985,35(2):145-157
The effects of air-drying field-moist soils on the adsorption and desorption of added phosphate and on the levels of extractable native soil phosphate were examined using the A and B horizons of a group of four acid soils.Air-drying increased the capacity of all the soil samples to adsorb phosphate. At an equilibrium solution concentration of 0.5 μg P ml?1, the increase in the quantity of phosphate adsorbed following drying ranged from 23% to 70% of that adsorbed by the moist samples. Considerable hysteresis in phosphate adsorption—desorption isotherms was observed for both moist and dried soil samples indicating that the additional phosphate adsorbed by the dried samples was held with the same strength as that held by the moist samples.Air-drying the soil samples caused a small decrease in soil pH of approximately 0.1 pH unit and a general increase in levels of EDTA-extractable Fe, Al and organic matter. Quantities of native soil phosphate extractable with EDTA, resin and NaHCO3 were also increased. Concentrations of oxalate- and pyrophosphate-extractable Fe and Al and exchangeable Al were, however, unaffected by drying.It was also shown that when the phosphate content of NaHCO3 extracts is measured using the conventional molybdenum blue method, orthophosphate plus a differing amount of acid-hydrolysable organic P present in the extract is measured.  相似文献   

17.
Changes in farming practices over long times can affect the sorption behaviour of MCPA ((4‐chloro‐2‐methylphenoxy)acetic acid). We studied the adsorption–desorption mechanisms of MCPA on soil with varied amounts and origins of soil organic matter obtained from a long‐term field experiment with various organic amendments. The origin of the soil organic matter seems to be crucial for the sorption behaviour of MCPA. Samples of soil amended with sewage sludge sorbed MCPA more strongly than the soil under any other treatment. Peat‐amended soil was second followed by soil receiving animal manure, green manure, mineral fertilizer without N and the fallowed soil. Both the carbon content and the origin of the organic matter are important for the sorption. A decrease of carbon content of a soil does not necessarily imply a reduction of sorption capacity for polar organic acids such as MCPA. Nevertheless, our adsorption–desorption experiments suggest that with decreasing carbon content the role of mineral sorption mechanisms could become more pronounced. Our results showed that interactions of soil organic matter and soil minerals distinctly influence adsorption properties for MCPA.  相似文献   

18.
Phosphorus sorption and desorption processes in selected soils were investigated to evaluate the usefulness of phosphorus sorption isotherms in the estimation of the phosphorus supplying capacity of soils. There was a distinct hysteresis in the phosphorus sorption and desorption isotherms, resulting in an overestimation of the replenishing ability of soils to supply phosphorus to the soil solution, when phosphorus sorption isotherms were used for the estimations.

To attain a value of 0.2 ppm P in the soil solution, 115 µmol P/g soil are required in the Kuromatsunai Ando soil (Ochric Andosols) based on the estimation by the P desorption isotherms; this value is 29% higher than that indicated by the P sorption isotherm. Also 42 µmol P/g soil are required in the Mikatagahara Yellow soil (Helvic Acrisols)—which corresponds to a value 23% higher than that indicated by the P sorption isotherm.

Two types of hysteresis subloops were observed: A reversible type and an irreversible type. The former was found typically in the highly weathered Mikatahagara Yellow soil while the latter was observed in the Kuromatsunai Ando soil.  相似文献   

19.
The sorption of zinc (Zn) by two acid tropical soils, Mazowe clay loam (kaolinitic, coarse, Rhodic Kandiustalf) and Bulawayo clay loam (coarse, kaolinitic, Lithic Rodustalf), was studied over a wide range of Zn solution concentrations. Samples of the two soils used in the experiments were collected at both uncleared, uncultivated (virgin) sites and cultivated sites. The two virgin soils showed similar abilities to bind Zn. Mazowe soil (40 g organic matter kg?1) presented the highest affinity for Zn. Yet, Bulawayo soil (23.5 g organic matter kg?1) sorbed almost the same amount. Bulawayo soil had higher pH and Fe and Mn-oxide content than Mazowe soil. Once cultivated, the two soils behaved quite differently. After 50 years, Mazowe soil had lost 60% of its organic matter and effective cation exchange capacity (ECEC). In this soil, Zn sorption capacity had also been decreased by 60%. Clearing and 10 years under cultivation had affected neither the organic matter content nor the ECEC of Bulawayo soil. For this soil, Zn sorption was even higher in the cultivated soil, presumably due to an increase in the amount of Fe and Mn oxide from subsoiling. Zinc sorption was dependent upon pH, with retention dramatically increasing in the pH range 6–7. Sorption occurred at pH values below the point of zero charge (PZC), indicating that the sorption reaction can proceed even in the presence of electrostatic repulsion between the positively charged soil surface and the cation. In the two soils, the reversibility of the sorption reaction was very low. More than 90% of the sorbed Zn was apparently strongly bonded.  相似文献   

20.
For soils from tea estates in northern India, sulphate sorption was of a similar magnitude to, and sometimes exceeded, phosphate sorption. Only a small part of this relatively large sulphate sorption was caused by the low pH of these soils. Most was caused by increased negative charge as a result of prior reaction over many decades with phosphate fertilizers. This decreased sorption of both phosphate and sulphate, but the effect on phosphate was larger. This is compatible with a model in which the mean location of the charge on the adsorbed phosphate ions is closer to the surface than for sulphate. On soils of low phosphate status, sulphate desorption curves showed hysteresis; on soils of high phosphate status, they did not. Further, on soils of high phosphate status, displacement of sulphate by phosphate solutions was faster. We interpret these observations as showing that, for low phosphate status soils, sulphate ions penetrated the surface, but for high phosphate status soils it did not because the pathways by which sulphate diffuses into the adsorbing material were blocked. We also show that, with increasing soil phosphate status, phosphate solutions were less effective in displacing sorbed sulphate. We think this also occurred because reaction with phosphate had decreased the affinity for phosphate more than it decreased the affinity for sulphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号